ATLAS InnerDetector: alignment with tracks

ntenet

S. Martí i García IFIC-València on behalf of the ATLAS ID alignment group 2nd LHC Alignment workshop 25-26 June 2007

Introduction

- Tracking based alignment of the ATLAS Inner detector
- ATLAS
 - ID: pixel, SCT & TRT
 - Assembly status & survey
- CSC challenge
 - Goals
 - Material and B field distortion
 - ID misalignments
 - Multimuons sample
- Track based alignment algorithms
 - Robust, Local χ^2 and Global χ^2
 - Residuals, impact parameter and P_t
 - Physics samples: top & $Z \rightarrow \mu \mu$ events
- TRT alignment
- Cosmics at the pit
 - Combine multimuons and cosmic
- Summary and conclusions

ATLAS

- General purpose experiment for the LHC
 - Tracking system (ID) within a 2T magnetic field:
 - Efficient track reconstruction
 - Precise momentum & IP determination
 - B-tagging
 - Calorimetry
 - Electron & photon
 - Hadrons
 - Muon spectrometer (see O. Kortner talk)
 - Toroidal magnetic field

Inner Detector: tracking system

- Three technologies used: pixel, microstrip (SCT), straw drift tubes (TRT)
 - All mounted in a barrel and 2 end caps
 - Pixels:
 - Single module design, analogue readout
 - Size: 50x400 μm²
 - Intrinsic point resolution:
 - 14x115 μm²
 - 3 layers in barrel, 3 discs/end cap

- SCT

- Barrel and end cap module design
- Binary readout
- 3D SP by stereo angle
- Barrel strip pitch: 80 μm
- Resolution 23 μm
- End cap strips: fan structure
- 4 layers in barrel, 9 disc/end cap
- TRT
 - Straw tube diameter 2mm
 - Drift time
 - Straw resolution 170 μm
 - Radii: 56 cm \rightarrow 107 cm
 - 35 points/track on average

Status of ATLAS ID assembly

• All parts of the ATLAS ID are in the pit

- Hot news: last bit, ID end cap C was installed on 19th/June/2007
- Services installation already started
 - Cosmic run with tracking system
 - see C. Schmitt talk
- Survey of the SCT and TRT positioning
 - Shifts of the order of mm
 - X, Y, Z and rotations

- Those misalignments were foreseen
 - Simulation of calibration and physics samples

The ATLAS CSC challenge

- The Computing System Commissioning challenge
 - Its aim is to test the ATLAS software & computing infrastructure for:
 - Calibration and alignment procedures and conditions DB
 - Full trigger chain
 - Event reconstruction and data analysis
 - Huge samples of physics and calibration events were simulated with a *realistic* detector
 - uncalibrated and misaligned
 - Inhomogeneous axial ID magnetic field
 - Distorted material
 - Extra radiation lengths
 - Forward-backward asymmetry
 - ϕ asymmetry

B Filed shifts	Х	Y	Z
Trans. (mm)	1.0	-3.5	2.0
Rot. (mrad)	0.0	0.1	0.2

CSC: Inner Detector misalignment

• Misalignment set at three levels:

- L1: barrel/end cap, L2: layer/disc L3: module

	LEVEL 1	X	Y	Z	α	β	γ
TRT	TRT Barrel	+1	+1	+1	0.20	-0.05	0
	TRT Endcap A	+2	-1	+2	-0.15	0.10	0
	TRT Endcap C	-2	+2	-3	-0.20	-0.15	0
SCT	SCT Barrel	+0.70	+1.20	+1.30	0.10	0.05	0.80
	SCT Endcap A	+2.10	-0.80	+1.80	-0.25	0.00	-0.50
	SCT Endcap C	-1.90	+2.00	-3.10	-0.10	0.05	0.40
Pixel	Whole	+0.60	+1.05	+1.15	-0.10	0.25	0.65

(displacements in **mm**; rotations in **mrad**)

L2	Layer	Systematic radial shift	Random shift in X,Y		
TRT	Layer 0	+1.0 mm	0.2 mm		
	Layer 1	-0.5 mm	0.1 mm		
	Layer 2	+1.5 mm	0.3 mm		

- Shifts are realistic !
 - Though may seem huge
 - Surveyed during assembly

	Laye	r/Disk	X	Y	Z	α	β	γ
	0		0.020	0.010	0	0	0	0.006
Pixel Barrel		1	-0.030	0.030	0	0	0	0.005
		2	-0.020	0.030	0	0	0	0.004
	0		0	0	0	0	0	-0.001
SCT Barrel	1		0.050	0.040	0	0	0	0.009
		2	0.070	0.080	0	0	0	0.008
		3	0.100	0.090	0	0	0	0.007
		1	0.050	0.040	0	0	0	-0.001
		2	0.010	-0.080	0	0	0	0
		3	-0.050	0.020	0	0	0	0.001
		4	-0.080	0.060	0	0	0	0.002
SCT Endcap A		5	0.040	0.040	0	0	0	0.003
		6	-0.050	0.030	0	0	0	0.004
		7	-0.030	-0.020	0	0	0	0.005
		8	0.060	0.030	0	0	0	0.006
	9		0.080	-0.050	0	0	0	0.007
		1	0.050	-0.050	0	0	0	0.008
	2		0	0.080	0	0	0	0
	3		0.020	0.010	0	0	0	0.001
		4		-0.080	0	0	0	-0.008
SCT Endcap C	5		0	0.030	0	0	0	0.003
	6		0.010	0.030	0	0	0	-0.004
		7	0	-0.060	0	0	0	0.004
		8	0.030	0.030	0	0	0	0.006
		9	0.040	0.050	0	0	0	-0.007
		у	Z	α		β	γ	
Pixel Barrel modules 0.030		0.030	0.050	0.001	0	0.001	0.001	
Pixel Endcap modules 0.		0.030	0.030	0.050	0.001	0	0.001	0.001
SCT Barrel modules		0.150	0.150	0.150	0.001	0	0.001	0.001
SCT Endcap modules		0.100	0.150	0.150	0.001	0	0.001	0.001

CSC Multimuons for alignment

- CSC calibration sample: 100K multimuon events were generated with a misaligned setup
 - Level 1, Level 2 and Level 3
 - 10 muons per event originated at a common vertex (PrimVtx)
 - $\sigma_{x,y} = 0.015 \text{ mm}, \sigma_z = 56 \text{ mm}$
 - Flat $|\eta| < 2.7$
 - Flat Pt: [2, 50] GeV/c
 - Flat ϕ : [0,2 π]
- Simulation and digitization
 - Performed with the misaligned detector
- Reconstruction run on simulation with
 - Perfect knowledge of the modules locations
 - Modules at their nominal position

ATLAS Inner detector: alignment with tr

ID track based alignment algs.

- Track based algorithms used for the silicon part
 - Robust, Local χ^2 and Global χ^2 for the silicon part (pixels and SCT)
 - TRT alg.: can switch between Local and Global χ^2
 - Needs calibration for R-t relation
- Robust:
 - Center overlap residuals from adjacent modules
 - Center non overlap residuals as well
 - 2 Dof (within plane) + average radial shift
 - Iterative algorithm
- Local χ^2 :
 - Distance of closest approach
 - Invert 6x6 matrices
 - $\Delta a_{i} = \left| \sum_{hits} \left(\frac{2}{\sigma^{2}} \frac{\partial r}{\partial a_{j}} \frac{\partial r}{\partial a_{i}} \right) \right|^{-1} \cdot \sum_{hits} \left(\frac{2}{\sigma^{2}} r \frac{\partial r}{\partial a_{i}} \right)$ - Correlations taken into account by iterations
- Global χ^2 :

 - within plane residuals $\delta a = -\left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{i}} W \frac{\partial r}{\partial a_{j}}\right)^{-1} \left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{i}} W r\right) = M V$ Need to invert a 35000x35000 matrix
 - Test performed on barrel geometry
 - Fast solvers: MA27...
 - Full solution on ALINEATOR: parallel processing with SCALAPACK, 32 GB memory. Solution takes <1 hour (14000 dofs)

Staves Rings

CSC multimuons alignment

Ť

Run reconstruction and track fitting

- Starting from nominal position
- Iterate
- **Residuals look almost perfect!** \bullet
 - More hits per module
 - Centered around 0
 - Sigma close to naïve expectation

Local X Residual [mm]

Pixel Barrel residuals

CSC multimuons alignment (ii)

80

70

60

50

• Iterations improve

- Residuals (as already seen)
- Recovery of track efficiency

Convergence is found

ATLAS Inner detector: alignment with tracks

Entries 421197

Perfect

Nominal Iter 1

Iter 2 Iter 3

Impact Parameter

- Level 1 shifted by (0.60, 1.05) mm the pixel modules
 - Impact parameter distribution distorted
 - Need for primary vertex fit
 - Track refit with primary vertex

ATLAS Inner detector: alignment with tracks

P_t reconstruction

- Effects of the Level 1, 2 and 3 on P_t
 - L1: pixels to SCT, to TRT, barrel to end cap shifts
 - L2: layer to layer shift
 - L3: module to module shift

P_t reconstruction (ii)

Effects of the Level 1, 2 and 3 on P₊

Entries 105846

- L1: pixels to SCT shift
- L2: layer to layer shift
- Sagitta introduced
 - P_t depends on ϕ_0
- Need to correct L2
 - At least

Entries75577

Pt from physics samples

• Can the sagitta distortions be spot on physics samples?

n

Residuals

• Effects of level 1, 2 and 3 on the residuals

- Correcting levels 1 and 2 produces already quite good residuals
 - As well as momentum and impact parameter

CSC misalignments on TRT

- Check Pt reconstruction with TRT
 - When TRT aligned, Pt suffers a clocking effect
 - Implicit clocking effect in CSC
 - No explicit rotation around Z axis
 - due to TRT modules:
 - Radial plus X & Y translations

CSC misalignments on TRT (ii)

• After alignment:

- Global rotation around Z axis looks negligible: 0.08 mrad
 - However the Pt systematic shift is due to this
 - One needs to achieve a 0.01 mrad precision for a 0.1% momentum measurement

Using cosmics in the pit

- Coscmic ray tracks introduce different correlations between modules CSC Multimuons CSC Cosmics in the pit Iterai
 - They may help to constrain weak modes
 - Global χ^2 matrices become not sparse

ATLAS Inner detector: alignment with tracks

Merge matrices and vectores (add_big tool)

Summary & conclusions

- ATLAS CSC challenge sample has proven to be very useful for the alignment exercise
 - Try to align shifts of mm
 - From large structure movements
 - Minimizing residuals is not enough
 - Residuals distribution may look as good as perfect
 - track parameter may remain poorly determined
 - Weak modes may not be detected
 - Good news is:
 - lots of developments within the alignment algorithms
 - Some observables proven to give a hint on misalignment
 - Impact parameter (d0), its error, d0 vs phi0
 - Pt asymmetry for Q>0 and Q<0
 - Primary Vertex and track refit will help
 - Able to detect and correct global shifts in the XY plane
 - Pt reconstruction reasonable good at level 2
 - Gaining valuable experience
 - Use of cosmic ray
 - Helps constraining weak modes
 - Improve track parameter determination

