LHCb Laser Alignment Monitoring System (LAMS) for the RICH

Andrew Macgregor ${ }^{1}$, Paul Soler ${ }^{1,2}$, Gabriel Vidal-Sitjes ${ }^{3}$
Antonis Papanestis ${ }^{2}$
${ }^{1}$ University of Glasgow
${ }^{2}$ STFC, Rutherford Appleton Laboratory
${ }^{3}$ Imperial College, London

2nd LHC Detector Alignment Workshop

Contents

1. Laser Alignment Mirror monitoring System (LAMS) for RICH2
2. LAMS for RICH1
3. Analysis software and resolution
4. Conclusions

Laser alignment monitoring system LHCb

- Mirror alignment system for RICH2:
- Requires 0.1 mrad resolution as seed for final software alignment
- Monitors changes in selected mirror segments
- Laser with optical fibre coupling system delivers light to 16 fibres.
- Each fibre has a focusing unit at its end and is focused onto a mirror segment (4 spherical and 4 flat per side).
- A beam splitter provides a reference beam for each fibre
- All laser signals monitored by CCDs on roof of RICH2.

HPD Plane Flat
Mirror Mirror

Laser and fibre couplers

- Laser system:
- Multi-mode connector can connect to 16 fibres
- All components commercially available

Prototype system

LHCb

Beam spot at 10 m

Prototype setup

- Focal length at 10 m gives optimal size at $\sim 8 \mathrm{~m}$
- CCD: 752(H) x 582(V) pixels with dimensions: $8.6 \mu \mathrm{~m}(\mathrm{H}) \times 8.3 \mu \mathrm{~m}(\mathrm{~V})$
- Used single mode fibre ($2 \mu \mathrm{~m}$ core); Multi-mode fibre ($200 \mu \mathrm{~m}$ core) also tested.

Test of mirror support
 LHCb

- Adjustment mirror support and measurement mirror movement:

Hysteresis

Simulation of laser system

- Implemented within Gauss (GEANT4)
- "Particle gun" to fire visible photons onto mirror segments
- Software implementation done in 2003-04.
- Recording plane (sensitive volume) on top of RICH2 to simulate CCD.
- Observe movement of beam spot onto recording plane
- Linear transformation between tilt $\left(\Delta \theta_{x}, \Delta \theta_{y}\right)$ vs movement of spot on CCD ($\Delta x, \Delta y$) :

$$
\begin{aligned}
& \Delta \theta_{x}=A \Delta x+B \Delta y \\
& \Delta \theta_{y}=C \Delta x+D \Delta y
\end{aligned}
$$

Can recover tilts by inverting transformation after observing spot movement.

Component location process

Focusing unit and CCD are placed along the Local Z axis of the mirror segment (perpendicular to the centre of the segment).

Mirrors monitored in RICH2

Flat mirrors monitored in RICH2

Looking towards the interaction point

[^0]Positive x

Positions of optical elements

Plates installed February $z(m m)$ CCDs 11-14 July

$x(\mathrm{~mm}) \quad$ Focusing units (bottom)

Antonis Papanestis

Mount holders

- Mount holders (focusing units at bottom):

Front view

Position optical elements

LHCb

Sensors

- Lumenera (Ontario, Canada) Le175M monochrome camera:
- 1280×1024 CMOS sensor ($1 / 2$ ", $7.7 \mathrm{~mm} \times 6.1 \mathrm{~mm}$)
- 1.3 M pixels, $6 \mu \mathrm{~m}$ square pixels at 25 frames/s
- Ethernet connection
- Power: 9-24 V (<4W)
- 300 g
- Dose at $y=+3000 \mathrm{~m}$: < 6×10^{-14} Gylcollision x1.6×1014 collisions/yr = 10 Gylyr = 1 kRad/yr
 (http://lhcb-elec.web.cern.ch/lhcb-elec/html/radiation_hardness.htm) Standard CMOS should be able to withstand this radiation.

LAMS for RICH1

\square System for RICH1 should be similar to RICH2, except in horizontal plane rather than vertical plane
\square Required accuracy 0.3 mrad
$\square \quad$ Monitor 4 spherical mirrors ($\mathrm{R}=2700 \mathrm{~mm}$): 4 fibres +4 CCDs, same laser as RICH2

LAMS for RICH1
LHCb

Antonis Papanestis

LAMS for RICH1

\square Issue: radiation dose for CCD sensors in RICH1 $x=700-800 \mathrm{~mm}, \mathrm{y}=+-275 \mathrm{~mm}$
Dose: 10^{-12} Gylcollision $\times 1.6 \times 10^{14}$ collisons/yr $=160$ Gylyr= 16 kRad/yr!!
(http://lhcb-elec.web.cern.ch/lhcb-elec/html/radiation_hardness.htm)
Off-the-shelf CMOS sensors rated to 1-2 kRad, so Lumenera sensors not suitable.
$\square \quad$ Thermo Sceintific CID8712D1M Radiation Hard Solid State Camera.

- Dose up to 1 MegaRad.
\square Separate sensor and readout electronics.

RICH1 LAMS schematic diagram

Analysis software

- Analysis software needs to recover centre position of reference and reflected beam with optimum accuracy and robustness.
- Beam not a perfect Gaussian so fitting method is not appropriate for a variety of differently shaped beams
- Adopt a different approach using techniques borrowed from image processing.
- Have a multi stage approach:

1. Smoothing filter
2. Edge enhancement
3. Sobel mask edge detection
4. Hough transform accumulator to determine centre of beam
5. Anomaly cut for spurious centre elimination
6. Centre spot location mask
7. Weighted average for centre determination.

Analysis software

1. Smoothing filter

Removes striations in image (dark and light diagonal bands) probably due to CCD aliasing effects.
Filter works by averaging blocks of 5×5 pixels scanned over whole CCD:

$a 1$	$a 2$	$a 3$	$a 4$	$a 5$
$a 6$	$a 7$	$a 8$	$a 9$	$a 10$
$a 11$	$a 12$	$a 13$	$a 14$	$a 15$
$a 16$	$a 17$	$a 18$	$a 19$	$a 20$
$a 21$	$a 22$	$a 23$	$a 24$	$a 25$

Analysis software

2. Edge enhancement: cuts at $>60 \%$ and $<80 \%$ of maximum

3. Sobel mask edge detection:

- 2D spatial gradient method using two spatial masks
- Finds magnitude: $\mathrm{G}=\mathrm{sqrt}\left(G x^{2}+G y^{2}\right)$ and angle: $\theta=\operatorname{arc} \tan (G y / G x)$
\mathbf{G}_{x}

-1	0	+1
-2	0	+2
-1	0	+1

Analysis software

3. Sobel mask edge detection (cont.) Gradient: 'G|

4. Hough transform accumulator

- From Sobel edge, sum of image values along Sobel gradient angle.
- Central accumulator gives maximum at centre image

Analysis software

3. Sobel mask edge detection (cont.) Gradient: 'G|

4. Hough transform accumulator

- From Sobel edge, sum of image values along Sobel gradient angle.
- Central accumulator gives maximum at centre image

Analysis software

4. Hough transform accumulator (cont.)

Can find centre outside detector:

Analysis software

5. Anomaly cut for spurious centre elimination: - Apply 70\% cut on Hough accumulator

- Spurious maxima removal by selecting masks of increasing size (regions of interest)

6. Centre spot location mask:

Finds region of interest around centre:

7. Weighted average for centroid determination.

$$
\begin{aligned}
& \text { Weighted } X=\frac{\Sigma\left(x_{1} \times R_{1}+x_{2} \times R_{2}+\ldots x_{n} \times R_{n}\right)}{N} \\
& \text { Weighted } Y=\frac{\Sigma\left(y_{1} \times C_{1}+y_{2} \times C_{2}+\ldots y_{n} \times C_{n}\right)}{N}
\end{aligned}
$$

Analysis software

Final centroid finding result: robust algorithm that does not depend on shape of beam

Analysis software

Can track difference between two beam spots, even if spots move: Accuracy of monitoring less than 0.01 mrads.

Conclusions

- Main design:
o Basic idea of laser alignment monitoring system well developed
o System consists of 532 nm laser coupled to $\mathbf{1 6}$ optic fibres attached to focusing units on bottom of RICH2. Readout to be carried out with CCDs on top of RICH2
o GEANT4 simulations have shown optimal positions for focusing units and CCDs 16 mirror segments in RICH2
o For RICH1, concept is the same except that CCD and focusing units on horizontal plane on either side of RICH1. Mechanical design includes shelves for LAMS.
- Sensors:
o Lumenera Le175 CMOS sensor 1280×1024 with ethernet readout for Rich2
o CID8712D1M Radiation Hard Solid State Camera for Rich1.
- Multi stage image analysis software.

[^0]: Negative x

