Diffuse Axion Background

Joshua Eby Oskar Klein Centre **Stockholm University**

Athens symposium on Exploring the Universe ATHEXIS 2024/06/10

Based on

Eby, Shirai, Stadnik, Takhistov (2106.14893) Arakawa, Eby, Safronova, Takhistov, Zaheer (2306.16468) Arakawa, Zaheer, Eby, Takhistov, Safronova (2402.06736) **Eby**, Takhistov (2402.00100)

Axions / Axion-like Particles*

2

(recent review)

Joshua Eby | Stockholm University

Diffuse Axion Background

*in this talk, same thing

(recent review)

Density field $\rho(\vec{x}, t) \simeq m_a^2 a(\vec{x}, t)^2$

Joshua Eby Stockholm University

Simulations by Schive et al., Phys. Rev. Lett. 113, 261302 (2014)

https://www.youtube.com/watch?v=bY1S6rkWU0c

Density field $\rho(\vec{x}, t) \simeq m_a^2 a(\vec{x}, t)^2$

Joshua Eby Stockholm University

Simulations by Schive et al., Phys. Rev. Lett. 113, 261302 (2014)

https://www.youtube.com/watch?v=bY1S6rkWU0c

Joshua Eby Stockholm University

 \bullet

ullet

Discovering Axions

cosmic axion background $z \gg 30$

- "Hot", *v* ~ *c*
- Relativistic population of axions ulletfrom cosmological sources

Conlon and Marsh (1304.1804, 1305.3603) Dror, Murayama, Rodd (2101.09287)

Eby, Takhistov, indirect detection: annihilation with Shirai, Stadnik (2106.14893) with Arakawa, Safronova, Zaheer, flux from e.g. galactic center (2306.16468, 2402.06736)

Joshua Eby Stockholm University

lacksquare

 \bullet

Discovering Axions

diffuse axion background $z \sim \text{few} - 30$

- build-up of large population ulletof relativistic axions originating in astrophysical bursts
- direct and indirect signals lacksquare

Eby, Takhistov (2402.00100)

cosmic axion background $z \gg 30$

 $> 10^2$

- "Hot", *v* ~ *c*
- Relativistic population of axions \bullet from cosmological sources

Conlon and Marsh (1304.1804, 1305.3603) Dror, Murayama, Rodd (2101.09287)

1. Direct searches for transient signals from relativistic axion bursts

Joshua Eby | Stockholm University

Outline

Joshua Eby | Stockholm University

Ultralight scalars are high 'quality' oscillators: $v_{\rm dm} \simeq 10^{-3} c$

 $\tau_{\rm dm} \sim 2\pi v_{\rm dm}^{-2} m_a^{-1} \sim 10^6/m_a$

Burst Source of Interest: Boson Stars

Schive++ (1406.6586)

Mocz++ (1705.05845)

Joshua Eby Stockholm University

These dense configurations form in astrophysical DM halos

Levkov, Panin, Tkachev (1804.05857) Video via Alexander Panin on YouTube

(among others!)

Diffuse Axion Background

Burst Source of Interest: Boson Stars

Schive++ (1406.6586)

Mocz++ (1705.05845)

Joshua Eby Stockholm University

These dense configurations form in astrophysical DM halos

Levkov, Panin, Tkachev (1804.05857) Video via Alexander Panin on YouTube

(among others!)

Diffuse Axion Background

Equations of Motion

$$\mathscr{L}_{a} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_{a}^{2}}{2} a^{2} + \frac{\lambda}{4!} a^{4} - \dots$$
Axions are
- non-relativistic
- classical field
- gravitating
$$i \frac{\partial \psi}{\partial t} = \left[-\frac{\nabla^{2}}{2m_{a}} + V_{g} \left(|\psi|^{2} \right) + V_{int} \left(|\psi|^{2} \right) \right]$$

Equations of Motion

$$\mathcal{L}_{a} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_{a}^{2}}{2} a^{2} + \frac{\lambda}{4!} a^{4} - \dots$$
Axions are
- non-relativistic
- classical field
- gravitating
$$i \frac{\partial \psi}{\partial t} = \begin{bmatrix} -\frac{\nabla^{2}}{2m_{a}} + V_{g} \left(|\psi|^{2} \right) + V_{int} \left(|\psi|^{2} \right) \\ \frac{\mathbf{Boson \ star:}}{ground \ state \ of} \\ \approx \frac{1}{m_{a}R^{2}} \\ \approx -\frac{Gm_{a}M}{R} \\ \approx -\frac{|\lambda|M}{m_{a}^{3}R^{3}} + \end{bmatrix}$$

Equations of Motion

$$\mathscr{L}_{a} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_{a}^{2}}{2} a^{2} + \frac{\lambda}{4!} a^{4} - \dots$$
Axions are
- non-relativistic
- classical field
- gravitating
$$i \frac{\partial \psi}{\partial t} = \begin{bmatrix} -\frac{\nabla^{2}}{2m_{a}} + V_{g} \left(|\psi|^{2} \right) + V_{int} \left(|\psi|^{2} \right) \\ \frac{Boson star:}{ground state of} \\ \approx \frac{1}{m_{a}R^{2}} \\ \text{with self-gravity} \end{bmatrix} \overset{\text{self-interaction}}{\approx -\frac{M_{a}M}{R}} \\ \mathscr{L}_{a} = \frac{10}{\sqrt{G\lambda}} \simeq 10^{3} M_{\odot} \left(\frac{10^{-80}}{\lambda} \right)^{1/2} \qquad R_{c} \simeq \frac{0.2}{m_{a}^{2}} \sqrt{\frac{\lambda}{G}} \simeq 70 R_{\odot} \left(\frac{10}{\sqrt{G\lambda}} \right)^{1/2}$$

Life Cycle of a Boson Star

Event Rate vs Burst Flux

Transient Targets for Quantum Sensors

Arakawa, **Eby**, Safronova, Takhistov, Zaheer (2306.16468)

Arakawa, **Eby**, Safronova, Takhistov, Zaheer (2306.16468)

Arakawa, **Eby**, Safronova, Takhistov, Zaheer (2306.16468)

Event Rate vs Burst Flux

Burst properties:

total emitted energy,

distance to burst burst 'size' (duration)

momentum spectrum of emission: peaked at $k_0 \sim \text{few} \times m_a$ with width $\delta k \sim m_a$

Energy density in burst

Joshua Eby | Stockholm University

 $\sim M_c = \frac{10M_{\rm Pl}}{\sqrt{\lambda}}$

Prediction of Bosenova

Eby, Leembruggen, Suranyi, Wijewardhana (1608.06911)

Numerical simulations of collapse+Bosenova process

Levkov, Panin, Tkachev (1609.03611)

Diffuse Axion Background

Wave Spreading in Flight

Eby, Shirai, Stadnik, Takhistov (2106.14893)

Fastest momentum modes "escape" from slower ones during propagation

 $k_1 < k_2 < k_3, \dots$

momentum spectrum of emission: peaked at $k_0 \sim \text{few} \times m_a$ with width $\delta k \sim m_a$

imagine discrete momentum modes k_1, k_2, k_3, \ldots

Joshua Eby | Stockholm University

 \mathcal{R}

Wave Spreading in Flight

Eby, Shirai, Stadnik, Takhistov (2106.14893)

Fastest momentum modes "escape" from slower ones during propagation

 $k_1 < k_2 < k_3, \dots$

 \mathcal{R}

momentum spectrum of emission: peaked at $k_0 \sim \text{few} \times m_a$ with width $\delta k \sim m_a$

imagine discrete momentum modes k_1, k_2, k_3, \ldots

Joshua Eby | Stockholm University

At Detector

2. At any given moment in the detector, one sees a **<u>narrow</u>** distribution of momentum / energy \Rightarrow "effective coherence time" $\tau_* \sim 10^{-2} \Re$

Sensitivity to Transient Signal

Timescales: Interrogation time^T *t*_{int} DM coherence time $\tau_{\rm dm}$

Burst coherence time τ_* δt Burst duration

"Is a given DM experiment equally/more sensitive to relativistic bursts compared to cold DM search?"

Joshua Eby | Stockholm University

$$\frac{t_{\text{int}}^{1/4} \min\left(\tau_{\text{dm}}^{1/4}, t_{\text{int}}^{1/4}\right)}{\min\left(\delta t^{1/4}, t_{\text{int}}^{1/4}\right)\min\left(\tau_{*}^{1/4}, t_{\text{int}}^{1/4}\right)}$$

Sensitivity to Transient Signal

Timescales: Interrogation time[†] *t*_{int} DM coherence time $\tau_{\rm dm}$

Burst coherence time τ_* δt Burst duration

"Is a given DM experiment equally/more sensitive to relativistic bursts compared to cold DM search?"

Joshua Eby | Stockholm University

usual scaling of DM signal

$$t_{int}^{1/4} min(\tau_{dm}^{1/4}, t_{int}^{1/4})$$

 $min(\delta t^{1/4}, t_{int}^{1/4}) min(\tau_*^{1/4}, t_{int}^{1/4})$

Sensitivity to Transient Signal

Timescales: Interrogation time^{\dagger} *t*_{int} DM coherence time $au_{ m dm}$ Burst coherence time τ_* δt Burst duration

"Is a given DM experiment equally/more sensitive to relativistic bursts compared to cold DM search?"

Joshua Eby | Stockholm University

usual scaling of DM signal $\left(\frac{\rho_{\rm dm}}{\rho_*}\right)^n \frac{t_{\rm int}^{1/4} \min\left(\tau_{\rm dm}^{1/4}, t_{\rm int}^{1/4}\right)}{\min\left(\delta t^{1/4}, t_{\rm int}^{1/4}\right)\min\left(\tau_*^{1/4}, t_{\rm int}^{1/4}\right)}$

Sensitivity to Transient Signal

Sensitivity Ratio to SM coupling d_i at fixed frequency ω_0 (burst) $a_{i,*}(\omega_0)$ (DM)

Timescales:

Interrogation time^{\dagger} *t*_{int} DM coherence time $au_{
m dm}$ Burst coherence time τ_* δt Burst duration

Joshua Eby | Stockholm University

"Is a given DM experiment equally/more sensitive to relativistic bursts compared to cold DM search?"

coupling: linear, psuedoscalar $\mathcal{L} \supset g_{a\gamma} a F^{\mu\nu} \tilde{F}_{\mu\nu}$ Lagrangian: example field: **QCD** axion experiments: ABRACADABRA, DM-Radio, ... Eby, Shirai, Stadnik, reference: Takhistov (2106.14893)

Joshua Eby Stockholm University

linear, scalar

$$\mathscr{L} \supset d_e^{(1)} \frac{a}{2M_{\rm Pl}} F^{\mu\nu} F_{\mu\nu}$$

relaxion

Quantum sensors

Arakawa, **Eby**, Safronova, Takhistov, Zaheer (2306.16468)

quadratic, scalar $\mathcal{L} \supset d_e^{(2)} \left(\frac{a}{2M_{\rm Pl}}\right)^2 F^{\mu\nu} F_{\mu\nu}$

QCD axion or relaxion

Quantum sensors

Arakawa, Zaheer, Eby, Takhistov, Safronova (2402.06736)

Diffuse Axion Background

Astrophysical bursts of relativistic axions

generally characterised by

Parameterization: DaB

Parameterization: DaB

input parameters

particle physics burst parameterisation $\mathcal{F}, f(z), \quad \overline{\omega}, \delta\omega, \quad \overline{\mathcal{B}}_{\text{tot}} \quad \text{cancels in}$ $m_a, f_a, g_{a\gamma}, \ldots$ (cosmology) (individual bursts)

Parameterization: DaB

: total DM fraction converted to DaB

- : peak burst energy per particle $\boldsymbol{\omega}$
- $\delta \omega$: spread in burst energy per particle
- E_{tot} : energy emitted per burst

Joshua Eby Stockholm University

input parameters

particle physics burst parameterisation $\mathcal{F}, f(z), \quad \overline{\omega}, \delta\omega, \quad \overline{\mathcal{B}}_{\text{tot}} \quad \text{cancels in}$ $m_a, f_a, g_{a\gamma}, \ldots$ (cosmology) (individual bursts)

How to search for DaB: (1) direct detection, (2) photon signals, [more to come]

Locally,
$$\left(\frac{d\phi}{d\omega}\right)_{\text{local DM}} \simeq \frac{n_a v_{\text{dm}}}{m_a} \simeq \frac{\rho_{\text{dm}}}{m_a^2} v_{\text{dm}}$$

DaB flux in present day
 $\frac{d\phi}{d\omega}(\omega) = \int_0^\infty dz \frac{dN_a(\omega(1+z))}{d\omega} \frac{R_{\text{burst}}(z)}{H(z)}$

DaB Flux vs DM Flux

Diffuse Axion Background

Locally,
$$\left(\frac{d\phi}{d\omega}\right)_{\text{local DM}} \simeq \frac{n_a v_{dm}}{m_a} \simeq \frac{\rho_{dm}}{m_a^2} v_{dm}$$

DaB flux in present day
 $\frac{d\phi}{d\omega}(\omega) = \int_0^\infty dz \frac{dN_a(\omega(1+z))}{d\omega} \frac{R_{\text{burst}}(z)}{H(z)}$
Parameterise
flux and rate $\approx \frac{\mathcal{F}\bar{\rho}_U}{m_a\delta\omega} \int dz f(z) \frac{H_0}{H(z)} \exp\left[-\left(\frac{(\omega(1+z)-\bar{\omega})}{\delta\omega}\right)\right]$

DaB Flux vs DM Flux

Locally,
$$\left(\frac{d\phi}{d\omega}\right)_{\text{local DM}} \simeq \frac{n_a v_{dm}}{m_a} \simeq \frac{\rho_{dm}}{m_a^2} v_{dm}$$

DaB flux in present day
 $\frac{d\phi}{d\omega}(\omega) = \int_0^{\infty} dz \frac{dN_a(\omega(1+z))}{d\omega} \frac{R_{\text{burst}}(z)}{H(z)}$
Parameterise
flux and rate
 $\approx \frac{\mathscr{F}\bar{\rho}_U}{m_a\delta\omega} \int dz f(z) \frac{H_0}{H(z)} \exp\left[-\left(\frac{(\omega(1+z)-\bar{\omega})}{\delta\omega}\right)^2\right]$
narrow: $\frac{\delta\omega}{\omega} \to 0$
recent: $z \sim 0$
 $\approx \frac{\mathscr{F}\bar{\rho}_U}{\bar{\omega}^2}$

DaB Flux vs DM Flux

$$Locally, \left(\frac{d\phi}{d\omega}\right)_{local DM} \simeq \frac{n_a v_{dm}}{m_a} \simeq \frac{\rho_{dm}}{m_a^2} v_{dm}$$

$$DaB \text{ flux in present day}$$

$$\frac{d\phi}{d\omega}(\omega) = \int_0^\infty dz \frac{dN_a(\omega(1+z))}{d\omega} \frac{R_{\text{burst}}(z)}{H(z)}$$
Parameterise
flux and rate
$$\frac{\mathscr{F}\bar{\rho}_U}{m_a\delta\omega} \int dz f(z) \frac{H_0}{H(z)} \exp\left[-\left(\frac{(\omega(1+z)-\omega)}{\delta\omega}\right)^2 \frac{(\omega(1+z)-\omega)}{\delta\omega}\right]$$
narrow:
$$\frac{\delta\omega}{\omega} \to 0 \sim \frac{\mathscr{F}\bar{\rho}_U}{\omega^2}$$

$$\frac{d\phi/d\omega}{(d\phi/d\omega)_{\text{IDM}}} \simeq \left(\frac{1}{v_{\text{dm}}}\right) \left(\frac{m_a}{\omega}\right)^2 \left(\frac{\mathscr{F}\bar{\rho}_U}{\rho_{\text{dm}}}\right) \simeq 3 \cdot 10^{-3} \mathscr{F}\left(\frac{(\omega(1+z)-\omega)}{\omega}\right)$$

DaB Flux vs DM Flux

Likely challenging!

- DaB flux generally \leq local DM flux
- Signal likely much less coherent than local DM

$$\tau_{\rm coh} \simeq \frac{2\pi}{m_a v^2}$$
, $v_{\rm dm} \sim 10^{-3} \,\mathrm{vs} \, v_{\rm DaB} \sim 1$

Worth investigating!

- Nontrivial energy distribution encodes cosmological evolution and source properties
- Can also encode information about fundamental axion potential, e.g. self-interactions

Direct Detection

z = 0

(today)

Joshua Eby | Stockholm University

Signal: Photons

Axion decay to photons

- Galactic magnetic fields of $\sim \mu G$ dominate (typical distances $\sim \text{kpc} - \text{Mpc}$)
- $P_{\gamma \rightarrow a}$ grows with large ω and small m_a

 \Rightarrow largest when $\omega \gg m_a$ with small m_a

z = 0

(today)

Photon Signals from DaB

 $\mathscr{L} \supset \frac{\mathbf{I}}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$

conversion to photons

Signal: Photons

Axion decay to photons

- Decay can occur anywhere in space (typical distances \sim Gpc)
- P_{decay} grows with small ω and large m_{α}

 \Rightarrow largest when $\omega \gtrsim m_a$ with large m_a

Eby, Takhistov, (2402.00100)

Where to Search: Today

$$\omega \,[{
m eV}$$

Eby, Takhistov, (2402.00100)

Where to Search: Today

$$\omega \,[{
m eV}]$$

Eby, Takhistov, (2402.00100)

Searches for DaB Gamma-Rays

Joshua Eby | Stockholm University

A very tiny energy fraction in DaB can give rise to striking signals!

Best sensitivity when $\bar{\omega} \gg m_a$

What about low-energy signals?

Eby, Takhistov, (2402.00100)

Where to Search: Future

Joshua Eby | Stockholm University

Next-Gen searches will see huge improvements, especially at low energy

Future: search even for semirelativistic burst sources of DaB, like bosenovae!

Eby, Takhistov, (2402.00100)

Where to Search: Future

Conclusions

- sectors; give rise to a diffuse axion background (DaB)
- viable but exclusion difficult; need stronger prediction of burst rate
- with existing DM searches. Direct detection difficult but promising!
- In progress: investigate signals from other couplings, e.g. electrons and quarks

• <u>Relativistic bursts of axions</u> commonly originate in astrophysical processes, both in SM / dark

• Axions emitted in recent transient bursts, e.g. from bosenovae in boson star collapse, lead to direct-detection signals which can exceed sensitivity of local DM searches. At present, detection

The DaB encodes novel information about cosmology and burst sources, <u>implying complementarity</u>

• Existing photon-search experiments (e.g. Fermi) can already constrain DaB using photon couplings.

• Further characterization of burst sources is worthy of dedicated study, strong discovery potential!

Thank you for your attention!

DALL-E 3 illustration: "Athens symposium on Exploring the Universe"

Backup Slides

0. Birth

0. Birth

1. Growing up

1. Growing up

Merger

at $M = M_c$

Boson Star Encounters

Joshua Eby | Stockholm University

Overdensity

 $\delta \equiv \frac{\rho_{\star}}{\rho_{\rm dm}} \propto \rho_{local}^{-1} R_{\star}^{-4} m_{\phi}^{-2}$

Encounter rate

 $\Gamma \equiv \frac{\rho_{\rm dm}}{M_{\star}} \sigma_{\star} v_{\star} \propto \rho_{local} R_{\star}^3 m_{\phi}^2$

Both parameters are only significant when $m_{\phi} \gtrsim 10^{-7} \,\mathrm{eV}$

 10^{17}

Boson Star Encounters (2)

Budker, Eby, Gorghetto, Jiang, Perez (2306.12477)

m/eV

The Very Local DM Density

Standard Scenario No small-scale

overdensities

 $\rho = \rho_{\rm dm}$

Joshua Eby | Stockholm University

Boson Stars

DM bound in clumps

 $\rho \ll \rho_{\rm dm}$

Gravitational Atoms

Overdensities inside the Solar System

Bosenova Simulation Results

Multiple explosions per collapse! (Ignored here)

Bosenova Simulation Results

Other sources of Bosenovae

Gravitational Atoms

Joshua Eby | Stockholm University

Other sources of Bosenovae

Gravitational Atoms

Joshua Eby | Stockholm University

Other sources of Bosenovae

Gravitational Atoms

Joshua Eby | Stockholm University

Black Hole Superradiance

Diffuse Axion Background

Other Couplings

Coupling to photons

Oscillation of fine-structure constant

Other Couplings

Coupling to photons

Oscillation of fine-structure constant

GHz

Coupling to <u>electrons</u>

 $\mathscr{L} \supset d_{m_e} \frac{\varphi}{2M_{\rm Pl}} \bar{e}e$

Oscillation of electron-proton mass ratio

 $\frac{m_e}{d_e} \rightarrow \frac{m_e}{d_e} + \frac{\delta m_e(d_{m_e}, \rho, m_{\phi})}{d_e}$ m_p m_p m_p

Other Couplings

Coupling to photons

Oscillation of fine-structure constant

GHz

Coupling to <u>electrons</u>

 $\mathscr{L} \supset d_{m_e} \frac{\phi}{2M_{\text{Pl}}} \bar{e}e \longrightarrow \frac{m_e}{m_p} \rightarrow \frac{m_e}{m_p} + \frac{\delta m_e(d_{m_e}, \rho, m_{\phi})}{m_p}$

Oscillation of electron-proton mass ratio

Coupling to <u>quarks</u> Coupling to gluons $\mathscr{L} \supset d_g \frac{\phi}{2M_{\rm Pl}} G^{a\mu\nu} G^a_{\mu\nu} \qquad \qquad \mathscr{L} \supset d_{m_q} \frac{\phi}{2M_{\rm Pl}} \bar{q}q$ $\frac{m_q}{\Lambda_{\rm QCD}} \rightarrow \frac{m_q}{\Lambda_{\rm QCD}} + \delta\left(\frac{m_q}{\Lambda_{\rm QCD}}\right)(d_{m_q}, d_g, \rho, m_{\phi})$

Oscillation of ratio of quark mass to QCD scale

Diffuse Axion Background

Diffuse Axion Background

Parameterization: Flux

Joshua Eby | Stockholm University

E_{tot} : total energy emitted in single burst

peak energy $\bar{\boldsymbol{\omega}}$.

$\delta \omega$: energy width

- easily captures peaked distribution
- computationally simple
- sum of Gaussians can be used for
- asymmetric distributions, e.g. power-law

8

Parameterization: Rate

 $f(z) = (1 + z)^{p} \Theta(z - z_{\text{max}})$ for power-law

$$f(z) = \exp\left(-\frac{(z-\overline{z})^2}{\delta z^2}\right)$$
 for Gaussi

 $ho_{
m loss}$: total relativistic energy density emitted across all z

Convenient normalisation:

$$\rho_{\rm loss} \equiv {\mathscr F} \bar{\rho}_U$$
 with $\bar{\rho}_U \simeq 10^{-6} \,{\rm GeV}$

Joshua Eby | Stockholm University

Diffuse Axion Background

B-Field Conversion Probability

Joshua Eby | Stockholm University

Diffuse Axion Background

Joshua Eby | Stockholm University

Decay Probability

DaB Flux: Other f(z)

Power law

Joshua Eby | Stockholm University

Gaussian

Eby, Takhistov, (2402.00100)

DaB Flux from Decay

If there's time!

Joshua Eby | Stockholm University

42

Case Study: DaB From Bosenovae in SKA

Joshua Eby | Stockholm University

