DRD-on-Calorimetry Welcome to Collaboration Meeting

Roman Pöschl

On behalf of DRD Calo Proposal Team

DRD Calo – Collaboration Meeting April 2024

Coordinators: Roberto Ferrari, Gabriella Gaudio (INFN-Pavia), R.P. (IJCLab)

Representative from ECFA Detector R&D Roadmap Coordination Team: Felix Sefkow (DESY)

WP 1: Sandwich calorimeters with fully embedded Electronics – Main and forward calorimeters Conveners: Adrian Irles (IFIC, adrian.irles@ific.uv.es), Frank Simon (KIT, frank.simon@kit.edu), Jim Brau (University of Oregon, jimbrau@uoregon.edu), Wataru Ootani (University of Tokyo, wataru@icepp.s.u-tokyo.ac.jp), Imad Laktineh (I2PI, imad.laktineh@in2p3.fr), Lucia Masetti (masetti@physik.uni-mainz.de)

WP 2: Liquified Noble Gas Calorimeters Conveners: Martin Aleksa (CERN, martin.aleksa@cern.ch), Nicolas Morange (IJCLab, nicolas.morange@ijclab.in2p3.fr), Marc-Andre Pleier (mpleier@bnl.gov)

WP 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters Conveners: Etiennette Auffray (CERN, etiennette.auffray@cern.ch), Macro Lucchini (University and INFN Milano-Bicocca, marco.toliman.lucchini@cern.ch), Philipp Roloff (CERN, philipp.roloff@cern.ch), Sarah Eno (University of Maryland, eno@umd.edu), Hwidong Yoo (Yonsei University, hdyoo@cern.ch)

WP 4: Electronics and DAQ

Christophe de la Taille (OMEGA, taille@in2p3.fr)

Transversal Activities

Photodetectors: Alberto Gola (FBK, gola@fbk.eu)

• ECFA R&D Roadmap

- CERN-ESU-017 https://cds.cern.ch/record/2784893
- 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

The Roadmap has identified

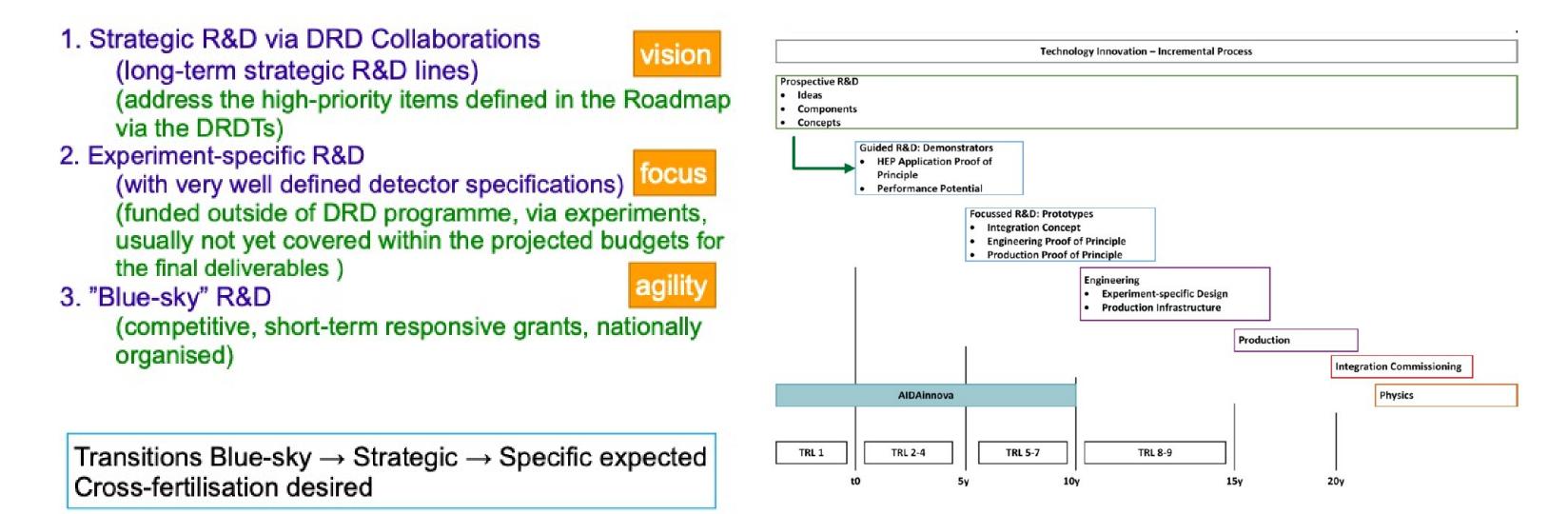
- General Strategic Recommendations (GSR)
- Detector R&D Themes (DRDT)
- Concrete R&D Tasks
- Timescale of projects as approved by European Lab Director Group (LDG)

Guiding principle: Project realisation must not be delayed by detectors

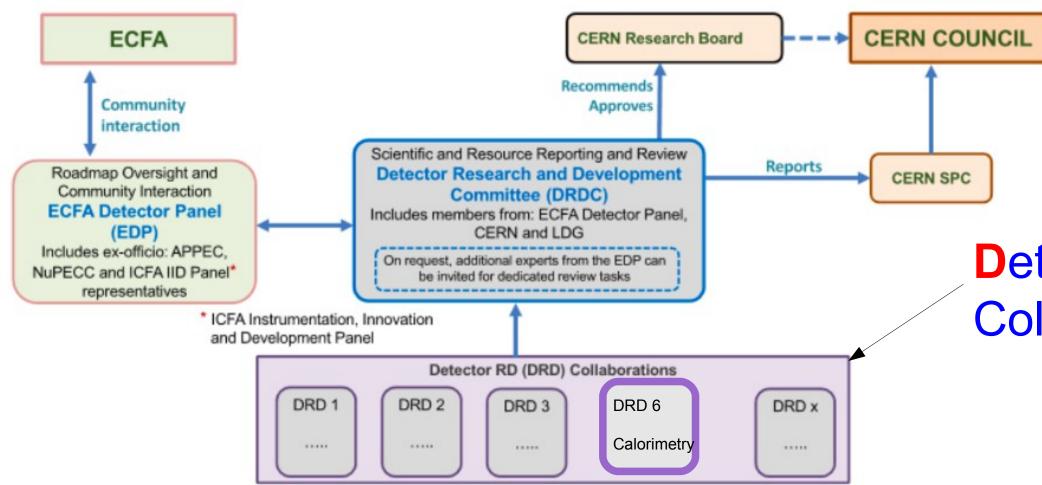
Collaboration Meeting – April 2024

DRD Calo

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP


The European Committee for Future Accelerators Detector R&D Roadmap Process Group

Categories of R&D

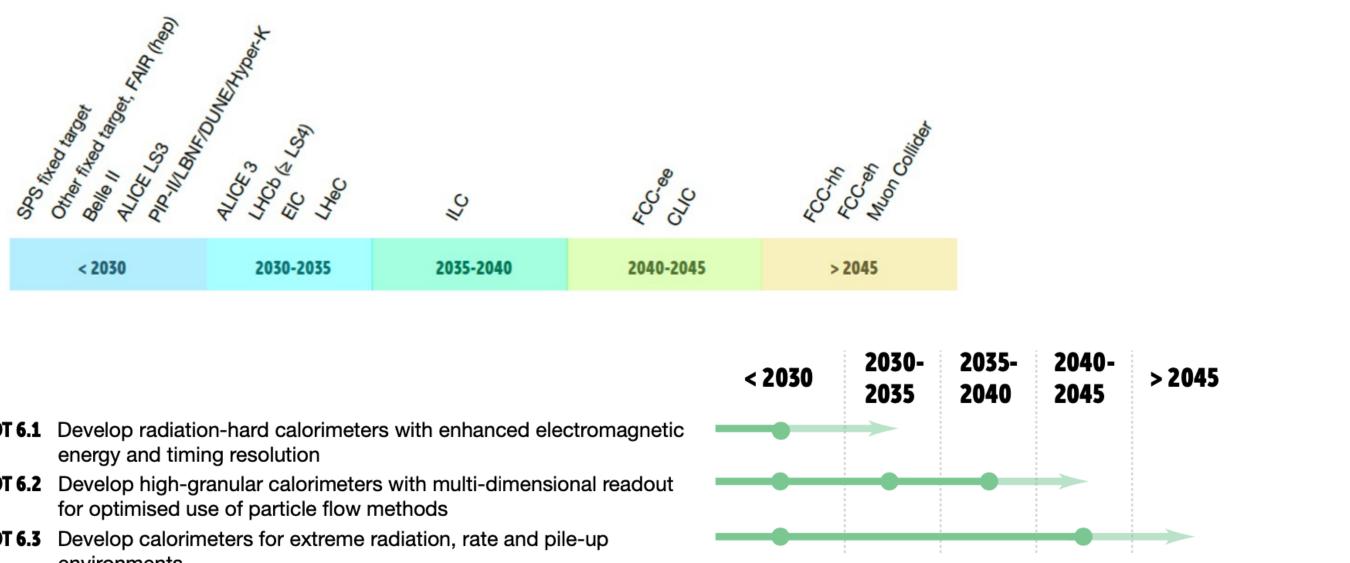


F. Sefkow, CALICE Meeting and ECFA Higgs/top/EW Factory Meeting

DRD Calo

Future Organisation of Detector R&D (in Europe)

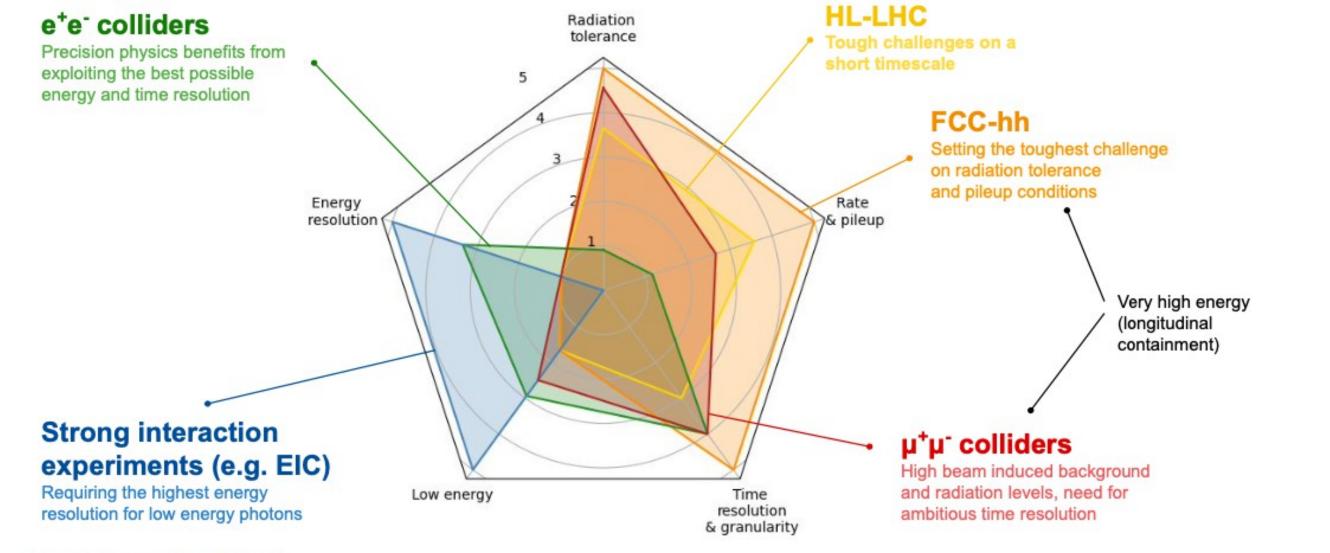
- DRD will be hosted by CERN and therefore become legally CERN collaborations
 - Significant participations by non-European groups is explicitly welcome and needed => World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - Thomas Bergauer of ÖAW/Austria appointed as DRDC-Chair
- The funding will come from national resources (plus eventually supranational projects)



Detector R&D Collaborations

Future Facilities and DRDT for Calorimetry

	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution	
Calorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments	


- The Detector R&D Themes and the provisional time scale of facilities set high-level boundary conditions
 - See backup slides for detailed R&D tasks

Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

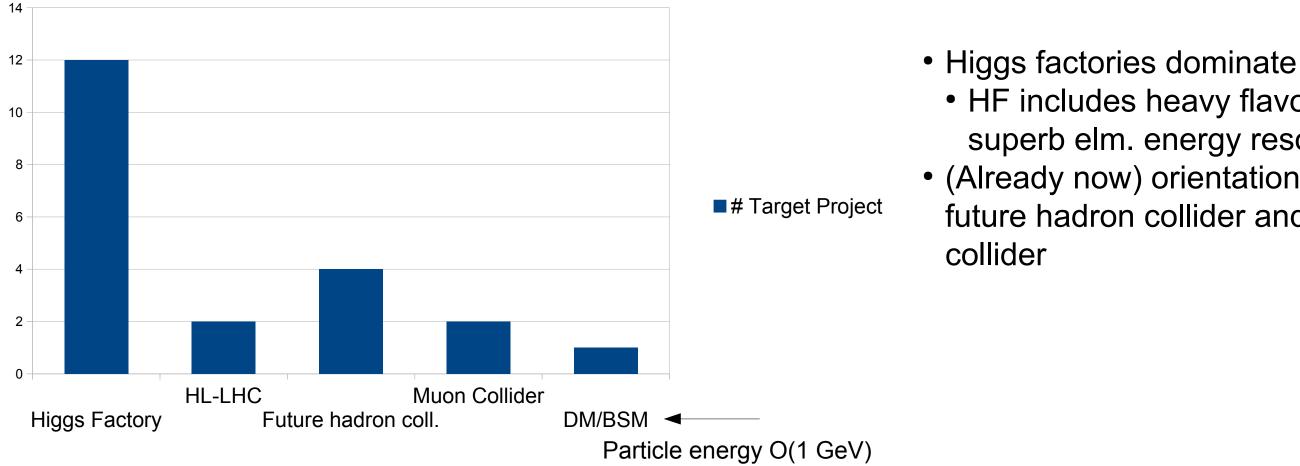
M. T. Lucchini, 1st Calo Community Meeting

DRD Calo

- Proposals comes from pre-existing
- Consolidated modus-operandi and experience
- Need to pick up all the best and put into the DRD6 collaboration

collaborations or working framework

• Entry point, "DRD Calo indico page": https://indico.cern.ch/category/12772/

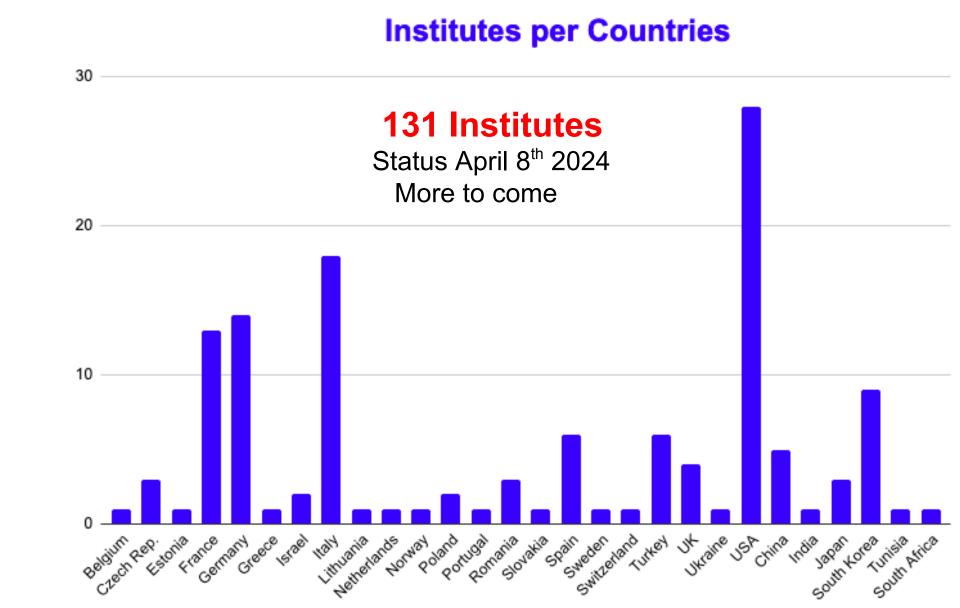

- 234 people from four regions registered
- Indico page now retired
- 1st Community Meeting 12/1/23
 - https://indico.cern.ch/event/1212696/
- Proposal phase until 15th of November 2023
 - Input proposals collected until 1st of April 2023
 - 2nd Community Meeting 20th April 2023
 - https://indico.cern.ch/event/1246381/
 - Input proposals have been condensed into a DRD-on-Calorimetry proposal
 - Final version submitted to DRDC on November 15th
- DRD-on-Calorimetry approved by CERN Research Board on December 6th 2023 to start on January 1st 2024

9

• HF includes heavy flavour that target superb elm. energy resolutions • (Already now) orientation towards future hadron collider and muon

On the DRD Calo proposal ...

DRD 6: Calorimetry



- 34 pages
 - Based on worldwide community input
- Short description of goals, projects and organisation
 - Research program (and resources) focuses on 2024 2026
 - ... and outlooks beyond
 - Introduction of
 - Proposal of initial Governance structure (see below)
 - Work Packages and Working Groups (see below)
- CERN-DRDC-2024-004 ; DRDC-P-DRD6: http://cds.cern.ch/record/2886494

DRD Calo – Who are we?

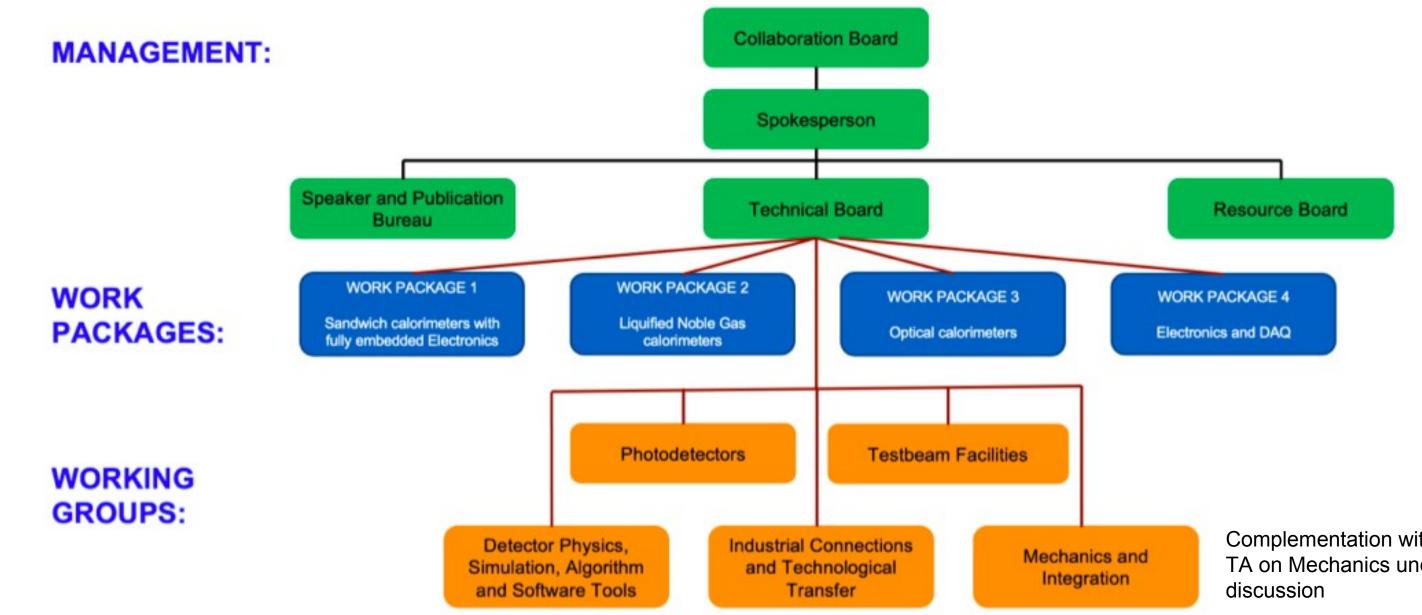
- Counted are groups that have expressed an interest to join the DRD Calo via the input proposals or in communication afterwards
- Representatives of these groups form the proto-Collaboration Board (proto-CB)

Collaboration Meeting – April 2024

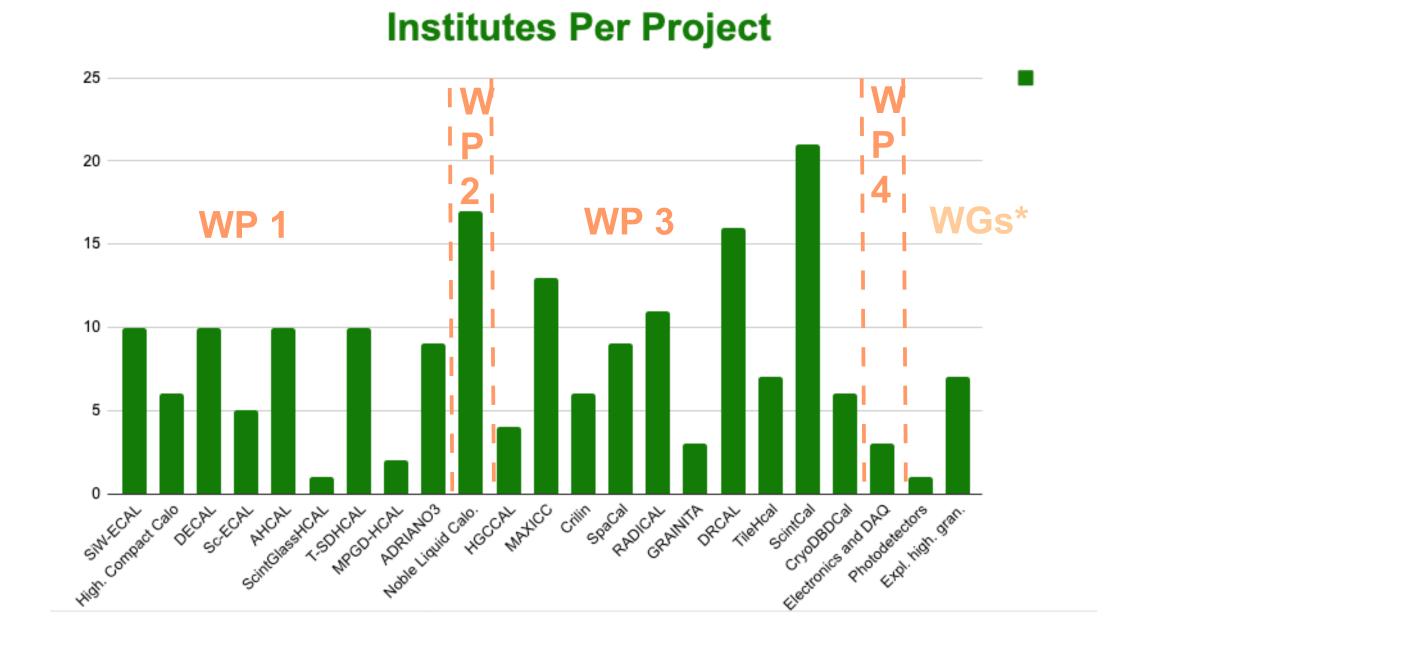
12

DRD Calo – Where are we?

DRD Calo



- DRD should deliver informed input to technological decisions of future facilities (of all sizes)
- All proposals should reach the same level of maturity
- Openness to new ideas
- Collaboration structure should reflect these goals
- Research Programs of Work Packages and Working Groups will be at the heart of the collaboration
 - Work Package 1: Sandwich calorimeters with fully embedded Electronics Main and forward calorimeters
 - Work Package 2: Liquified Noble Gas Calorimeters
 - Work Package 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters
 - Work Package 4: Electronics and DAQ
 - The Work Packages are complemented by a set of Working Groups that help to ensure the overall coherence of the scientific program


DRD Calo – Basic structure

DRD Calo

Complementation with TA on Mechanics under

*Listing those for which a clear association could be made

T. Bergauer, 113th Plenary ECFA Meeting, Nov. 2023

ACADEMY OF

Memorandum of Understanding

- All institutes of one DRD collaboration sign a "light-weight" • MoU
 - Does not contain commitments on strategic funds
 - Defines Common Fund, if agreed by the respective DRD Collaboration
 - Covers IP topics, how to handle involvement of industr (In that case very similar as the current existing MoUs of RD50/51)
 - MoU Template will be provided by CERN (currently being negotiated with legal office, KT, DRC,..)
- Strategic funding will be agreed upon in annexes to this lightweight MoU
 - One Annex per Work Package, signed by the FAs of the institutes involved in the respective WP
- Active discussions on MOU with DRDC and CERN Management
- More in talks by Thomas and Roberto

- 10th of January 2024 1st proto-Collaboration Board Meeting = First event of new DRD-on-Calorimetry Collaboration
 - 92 groups registered
 - Recap of way until approval of DRD
 - Outline and discussion of "way ahead"
 - First steps to implement the Collaboration and their endorsement
 - Bootstrap procedure
 - Initial Collaboration structure
 - Preparation of CB-Chair election
- Election of Collaboration Board Chair
 - Meeting on CB Election on February 22nd
 - Roberto Ferrari (INFN Pavia) elected on March 6th
- Preparation of Spokesperson Election
 - Call for proposals until April 4th
 - Candidate presentation today
 - Election after Collaboration Meeting

- In general we will use CERN e-groups as main communication channel
- Tree structure for general DRD Calo e-group
 - This means that **each institute** creates and maintains its own e-group
 - drdcalo-cern, drdcalo-pavia, drdcalo-ijclab, drdcalo-desy, ...
 - Only these e-groups will be included into the general e-group drdcalo-general@cern.ch
 - drdcalo-general exists since 22/2/24
 - Remark: It will take some time until all institutes have created their e-group
 - Until this happens the corresponding group leader will be explicitly part of drdcalo-general@cern.ch and will be responsible for propagating relevant information to his/her group
 - As soon as the e-group is created the group leader will be removed from the general e-group
 - As of today 30 institute e-groups exist, further reminders will be sent regularly to the Collaboration Board
- We need a web page ...
- We need a logo (and another name?)

- Indico page: https://indico.cern.ch/event/1368231/
 - 130 registered participants, 67 on-site partially from far away
- Support by Patricia Mage-Granados and Caroline Cazenoves, Thank you very much!!!!!
- Sessions and Rooms
 - April 9th: CERN Council Chamber for plenaries
 - April 10th: CERN Council Chamber, Salle Dirac, Filtration Plan for parallels
 - Parallels on WP 1-3 in morning and early afternoon (see agenda)
 - Two parallel sessions for Software (Council) and Beamtest WG (Filtration Plant) including discussion/brainstorming on how to set them up
 - April 11th: CERN Council Chamber for plenaries
 - Room B as office space that might be also used for ad-hoc meetings
- Social events
 - Dinner on Wednesday 10th of April at CERN, area outside of Glassbox in R1
 - Coffee breaks
 - Delivery Pas Perdus on 9th and 11th
 - 5 CHF vouchers on April 10th

20

- DRD-on-Calorimetry will pursue strategic R&D for calorimeters for future colliders
 - Partially new efforts, partially capitalising on existing activities
- Scientific programme and first ideas of Collaboration structure have been worked out by Proposal Team in collaboration with community
- Approval by CERN Research Board to start Collaboration on January 1st 2024
- Now progressive move from Proposal Team to full collaboration structure
- This meeting kicks off the collaboration and the scientific programme

Welcome to the meeting (and be there for the Group Photo at 15.30h)

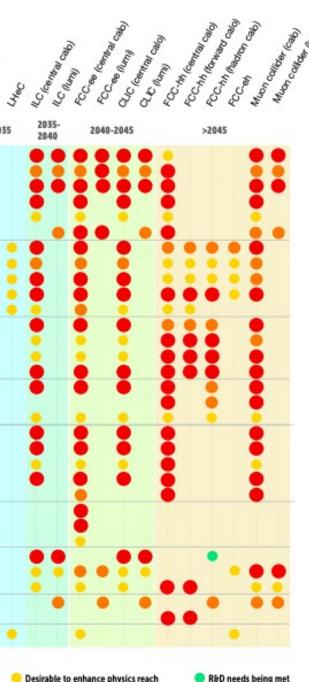
Backup

2024

2027

- Input proposals reveal little (extra) need at the beginning (2024-2026)
 - Start with prototypes that are either existing or currently under construction
 - (Mainly) benefitting from existing funding at national or international level (i.e. AIDAinnova, EUROLABS in Europe or CalVision, RADICAL in the US [plus maybe others])
 - Specification studies, concept proof would require fresh funding
- Relatively high density of beam tests with new (large scale) prototypes after 2026
 - Several large-scale prototypes demonstrate ambition of R&D programme
- Execution of program requires availability and support of beam test facilities

2030


• Key technologies and requirements are identified in ECFA Roadmap

- Si based Calorimeters
- Noble Liquid Calorimeters
- Calorimeters based on gas detectors
- Scintillating tiles and strips
- Crystal based high-resolution Ecals
- Fibre based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
- R&D Tasks are grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

		5	3	*
	Per al	Some	ALC NO	ALSA)
Needer .	3	Pro Lagano	Ho. Blue Di	Se OF

	Low power	6.2,6.3		
	High-precision mechanical structures	6.2,6.3		
Si based	High granularity 0.5x0.5 cm ² or smaller	6.1,6.2,6.3	•	
calorimeters	Large homogeneous array	6.2,6.3		
	Improved elm. resolution	6.2,6.3		
	Front-end processing	6.2,6.3		
	High granularity (1-5 cm ²)	6.1,6.2,6.3		
	Low power	6.1,6.2,6.3		
Noble liquid calorimeters	Low noise	6.1, 6.2, 6.3		
	Advanced mechanics	6.1, 6.2, 6.3		
	Em. resolution O(5%/JE)	6.1,6.2,6.3		•
	High granularity (1-10 cm ²)	6.2,6.3		
Calorimeters based on gas	Low hit multiplicity	6.2,6.3		
detectors	High rate capability	6.2,6.3		
	Scalability	6.2,6.3		
e-1-000-01	High granularity	6.1,6.2,6.3		
Scintillating tiles or strips	Rad-hard photodetectors	6.3		
thes or surps	Dual readout tiles	6.2,6.3		
	High granularity (PFA)	6.1,6.2,6.3		
Crystal-based high	High-precision absorbers	6.2,6.3		
resolution ECAL	Timing for z position	6.2,6.3		
	With C/S readout for DR	6.2,6.3		
	Front-end processing	6.1,6.2,6.3		•
	Lateral high granularity	6.2		
Fibre based dual readout	Timing for z position	6.2		
	Front-end processing	6.2		
	100-1000 ps	6.2		
Timing	10-100 ps	6.1,6.2,6.3	•	•
	<10 ps	6.1, 6.2, 6.3		
Radiation	Up to 10 ¹⁶ n_/cm ²	6.1,6.2	• •	•
hardness	> 10 ¹⁶ n_/cm ²	6.3		1.0
Excellent EM energy resolution	< 3%/√E	6.1,6.2		•

R&D Tasks DRD Calo

