DRD-on-Calorimetry Welcome to Collaboration Meeting

Roman Pöschl

On behalf of DRD Calo Proposal Team

DRD Calo – Collaboration Meeting April 2024

DRD Calo - Proposal Team

Coordinators: Roberto Ferrari, Gabriella Gaudio (INFN-Pavia), R.P. (IJCLab)

Representative from ECFA Detector R&D Roadmap Coordination Team: Felix Sefkow (DESY)

WP 1: Sandwich calorimeters with fully embedded Electronics – Main and forward calorimeters Conveners: Adrian Irles (IFIC, adrian.irles@ific.uv.es), Frank Simon

(KIT, frank.simon@kit.edu), Jim Brau (University of Oregon, jimbrau@uoregon.edu),

Wataru Ootani (University of Tokyo, wataru@icepp.s.u-tokyo.ac.jp), Imad Laktineh (I2PI, imad.laktineh@in2p3.fr), Lucia Masetti (masetti@physik.uni-mainz.de)

WP 2: Liquified Noble Gas Calorimeters

Conveners: Martin Aleksa (CERN, martin.aleksa@cern.ch), Nicolas Morange (IJCLab, nicolas.morange@ijclab.in2p3.fr), Marc-Andre Pleier (mpleier@bnl.gov)

WP 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters

Conveners: Etiennette Auffray (CERN, etiennette.auffray@cern.ch),

Macro Lucchini (University and INFN Milano-Bicocca, marco.toliman.lucchini@cern.ch),

Philipp Roloff (CERN, philipp.roloff@cern.ch), Sarah Eno (University of Maryland, eno@umd.edu),

Hwidong Yoo (Yonsei University, hdyoo@cern.ch)

WP 4: Electronics and DAQ

Christophe de la Taille (OMEGA, taille@in2p3.fr)

Transversal Activities

Photodetectors: Alberto Gola (FBK, gola@fbk.eu)


The roadmap document(s)

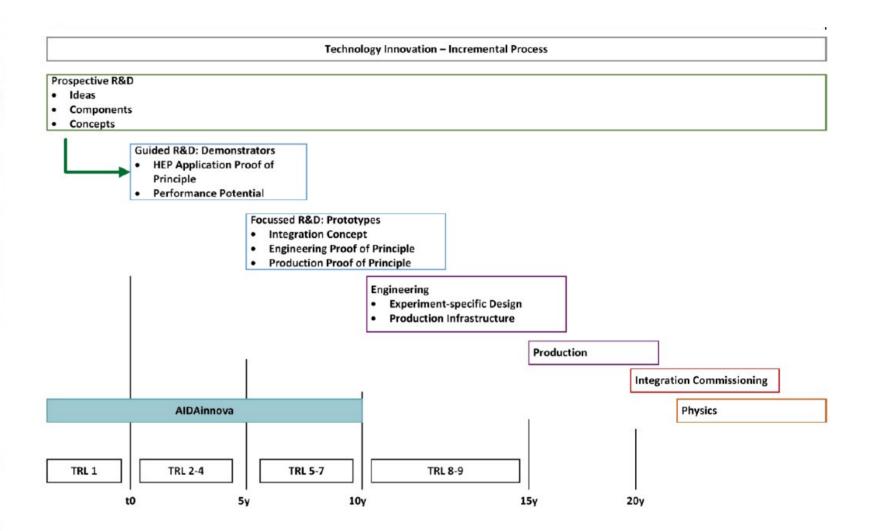
- ECFA R&D Roadmap
 - CERN-ESU-017 https://cds.cern.ch/record/2784893
 - 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

The Roadmap has identified

- General Strategic Recommendations (GSR)
- Detector R&D Themes (DRDT)
- Concrete R&D Tasks
- Timescale of projects as approved by European Lab Director Group (LDG)

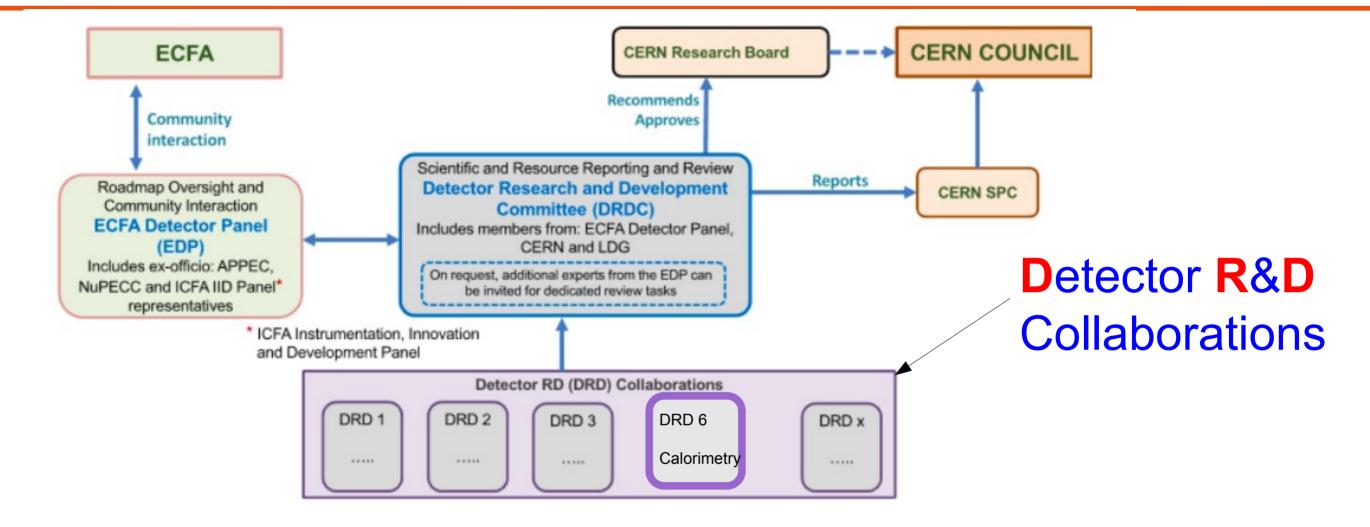
Guiding principle: Project realisation must not be delayed by detectors

Categories of R&D

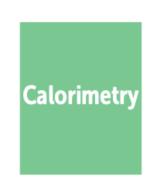


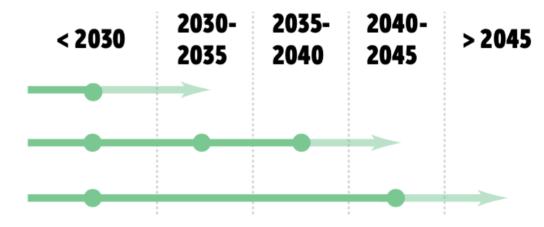
Strategic R&D via DRD Collaborations
 (long-term strategic R&D lines)
 (address the high-priority items defined in the Roadmap via the DRDTs)

2. Experiment-specific R&D
(with very well defined detector specifications)
(funded outside of DRD programme, via experiments, usually not yet covered within the projected budgets for the final deliverables)

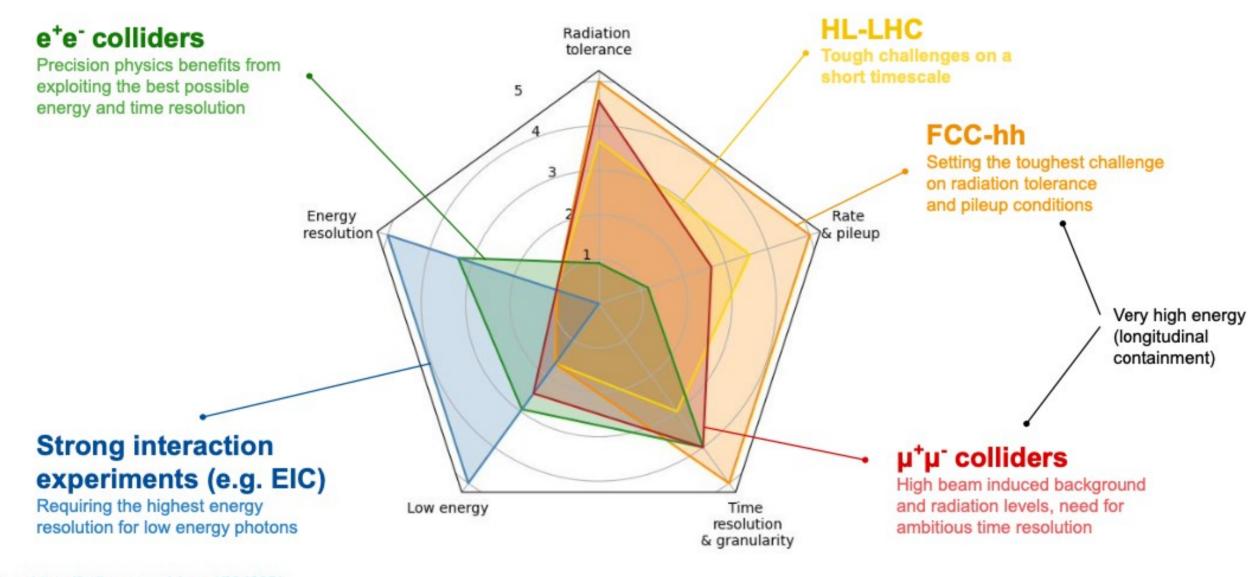

3. "Blue-sky" R&D (competitive, short-term responsive grants, nationally organised)

Transitions Blue-sky → Strategic → Specific expected Cross-fertilisation desired


Future Organisation of Detector R&D (in Europe)


- DRD will be hosted by CERN and therefore become legally CERN collaborations
 - Significant participations by non-European groups is explicitly welcome and needed => World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - Thomas Bergauer of ÖAW/Austria appointed as DRDC-Chair
- The funding will come from national resources (plus eventually supranational projects)

Future Facilities and DRDT for Calorimetry



- **DRDT 6.1** Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
- **DRDT 6.2** Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
- **DRDT 6.3** Develop calorimeters for extreme radiation, rate and pile-up environments

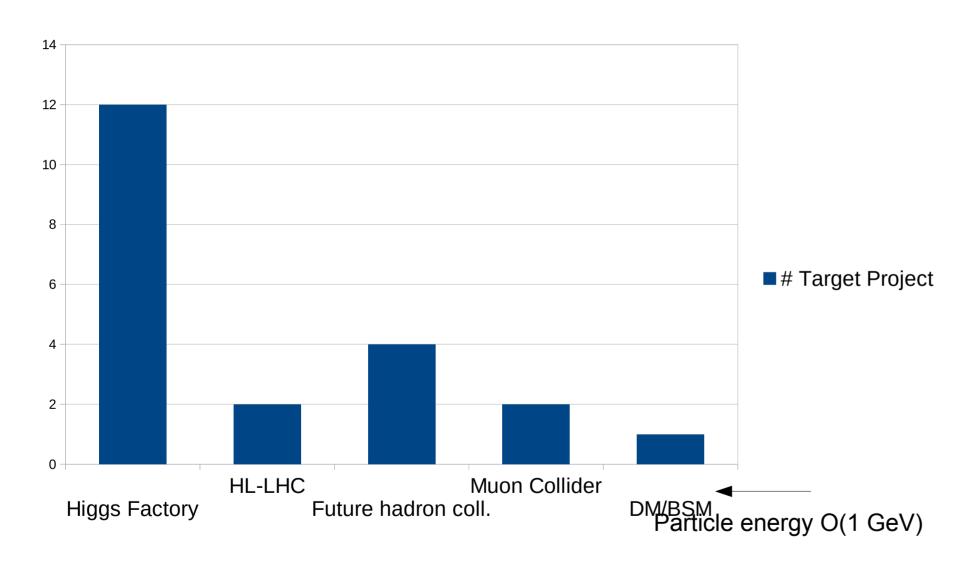
- The Detector R&D Themes and the provisional time scale of facilities set high-level boundary conditions
 - See backup slides for detailed R&D tasks

Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

Calorimetry - "Current Ecosystem"

- Proposals comes from pre-existing collaborations or working framework
- Consolidated modus-operandi and experience
- Need to pick up all the best and put into the DRD6 collaboration



Implementation of DRD Calorimetry

- Entry point, "DRD Calo indico page": https://indico.cern.ch/category/12772/
 - 234 people from four regions registered
 - Indico page now retired
- 1st Community Meeting 12/1/23
 - https://indico.cern.ch/event/1212696/
- Proposal phase until 15th of November 2023
 - Input proposals collected until 1st of April 2023
 - 2nd Community Meeting 20th April 2023
 - https://indico.cern.ch/event/1246381/
 - Input proposals have been condensed into a DRD-on-Calorimetry proposal
 - Final version submitted to DRDC on November 15th
- DRD-on-Calorimetry approved by CERN Research Board on December 6th 2023 to start on January 1st 2024

DRD Calo - Input proposals and target projects

- Higgs factories dominate
 - HF includes heavy flavour that target superb elm. energy resolutions
- (Already now) orientation towards future hadron collider and muon collider

On the DRD Calo proposal ...

DRD 6: Calorimetry

Proposal Team for DRD-on-Calorimet

January 6, 2024

Roberto Ferrari⁴, Gabriella Gaudio⁴, Alberto Gola⁵, Adrian Irles⁶, Imiad Laktineh⁷, Marco Lucchini⁸, Nicolas Morange⁸, Wataru Ootani¹⁰, Marco-André Pleier¹⁴, Roman Pöschl⁹ Philipp Rolofi¹, Felix Sefkow¹², Frank Simon¹³ Tommaso Tabarelli de Fatis⁵, Christophe de l Taille¹⁴, Hwidong Yoo¹⁵ (Editors)

¹CERN, Geneva, SWITZERLAND

²University of Oregos, Enzene, OR USA

³University of Maryland, College Park, MD USA

⁴MFN, Pavi, TIALY

⁵FBK, Povo, ITALY

⁵FBK, Povo, ITALY

⁵FBK, Povo, ITALY

⁶FBC, CSIC-Unversity of Valencia, Valencia, SPAIN

⁶BPIC, CSIC-Onterview of Tokyo, Tokyo, JAPAN

¹¹Broschhaven National Laboratory, Upfon, NY USA

¹²Potatecke Selektrone-Synchrotron DESY, GERMANY

¹⁵Karkerule Iraditute of Technology, Karlaruhe, GERMANY

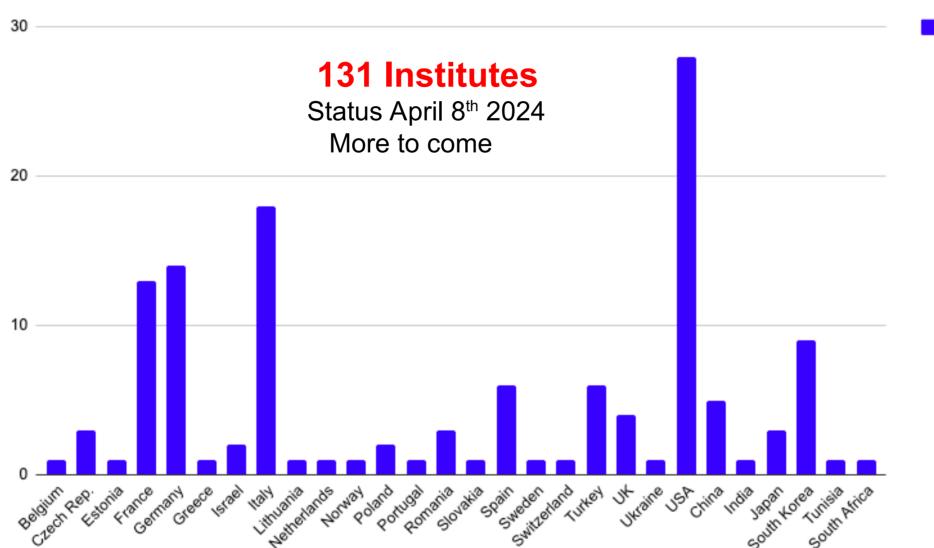
¹⁶OMEGA, Palaiseau, FRANCE

¹⁶OMEGA, Palaiseau, FRANCE

¹⁷OMEGA, Palaiseau, FRANCE

¹⁸OMEGA, Palaiseau, FRANCE

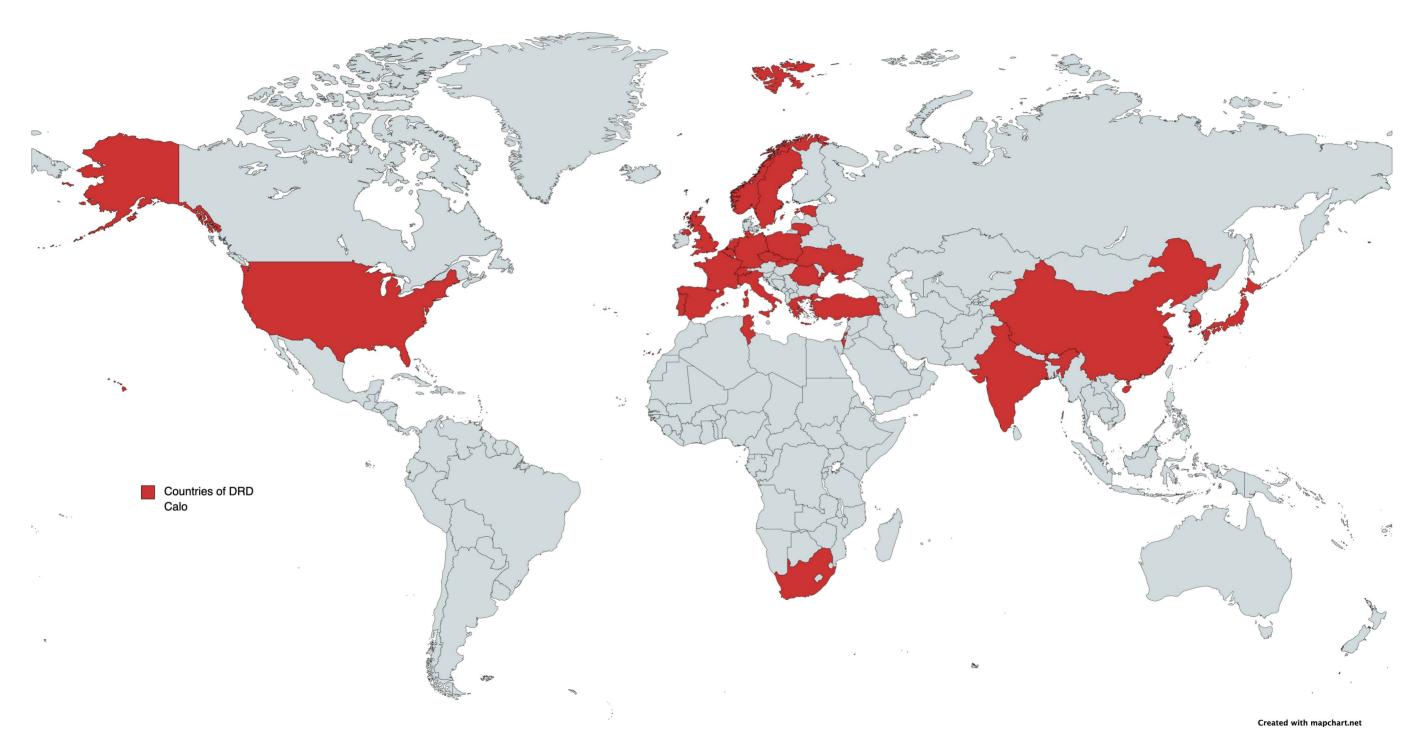
Contents


1	Intr	oduction	3
2	Org	anisation of the DRD-on-Calorimetry	3
Т	2:1	Scientific organisation	4
А	2.2	Governance	5
		2.2.1 Executive bodies	6
3	Wor	k Package 1: Sandwich calorimeters with fully embedded electronics	7
	3.1	Description	7
	3.2	Activities and objectives	8
		3.2.1 Task 1.1: Highly pixelised electromagnetic section	8
		3.2.2 Task 1.2: Hadronic section with optical tiles	9
		3.2.3 Task 1.3: Hadronic section with gaseous readout	10
	3.3	Short-term applications	11
4	Wor	k Package 2: Liquified Noble Gas Calorimeters	11
	4.1	Description	11
	4.2	Objectives	14
5	Wor	k Package 3: Optical calorimeters	15
	5.1	Description	15
) /	5.2	Activities and objectives	15
- (5.2.1 Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters	16
- 1		5.2.2 Task 3.2: Innounting compling EM calorimeters	17

00	5.2.3 Task 3.3: Hadronic sampling calorimeters	17		
er.	5.2.4 Task 3.4: Materials	18		
45	5.3 Milestones and deliverables	19		
00	5.4 Short-term applications	19		
90	6 Work Package 4: Electronics and readout	21		
11.	6.1 Description	21		
12	6.2 Objectives	21		
55	7 Resources	22		
16		22		
95	8.1 Photodetectors	22		
10	8.2 Testbeam plans, facilities and infrastructure	25		
57	8.2.1 Thoughts on facilities and infrastructures	25		
58	8.3 Detector physics, simulations, algorithms and software tools	26		
VO.	8.3.1 Data models and data management	26		
60	8.3.2 DAQ software	27		
61.	8.3.3 Simulation	27		
12	8.3.4 Particle flow algorithms	27		
65	8.3.5 Machine learning approach	27		
16	8.4 Industrial connection and technological transfer	27		
**	8.5 Mechanics and Integration	28		
65	9 Interconnections with other DRDs	28		
		28		
er.	10 Conclusion	28		
	A Institute list			

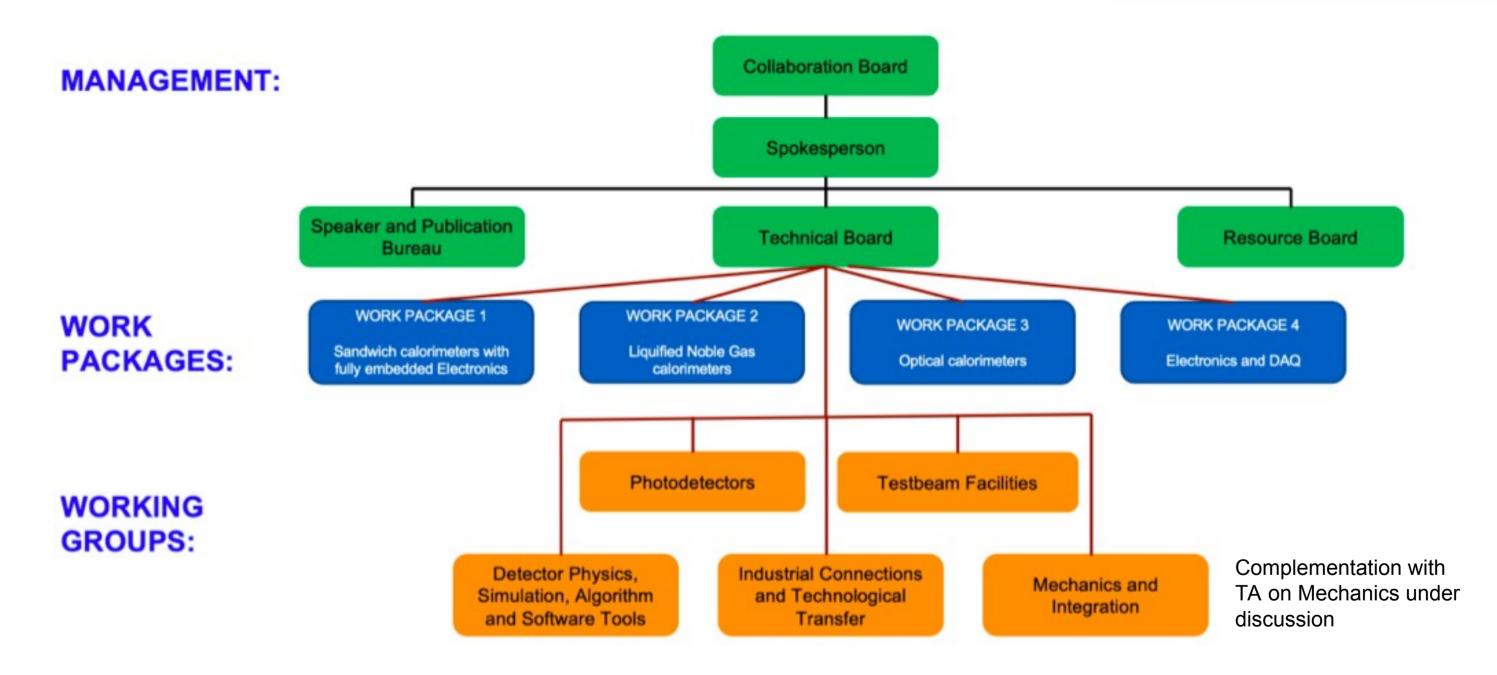
- 34 pages
 - Based on worldwide community input
- Short description of goals, projects and organisation
 - Research program (and resources) focuses on 2024 2026
 - ... and outlooks beyond
 - Introduction of
 - Proposal of initial Governance structure (see below)
 - Work Packages and Working Groups (see below)

CERN-DRDC-2024-004; DRDC-P-DRD6: http://cds.cern.ch/record/2886494

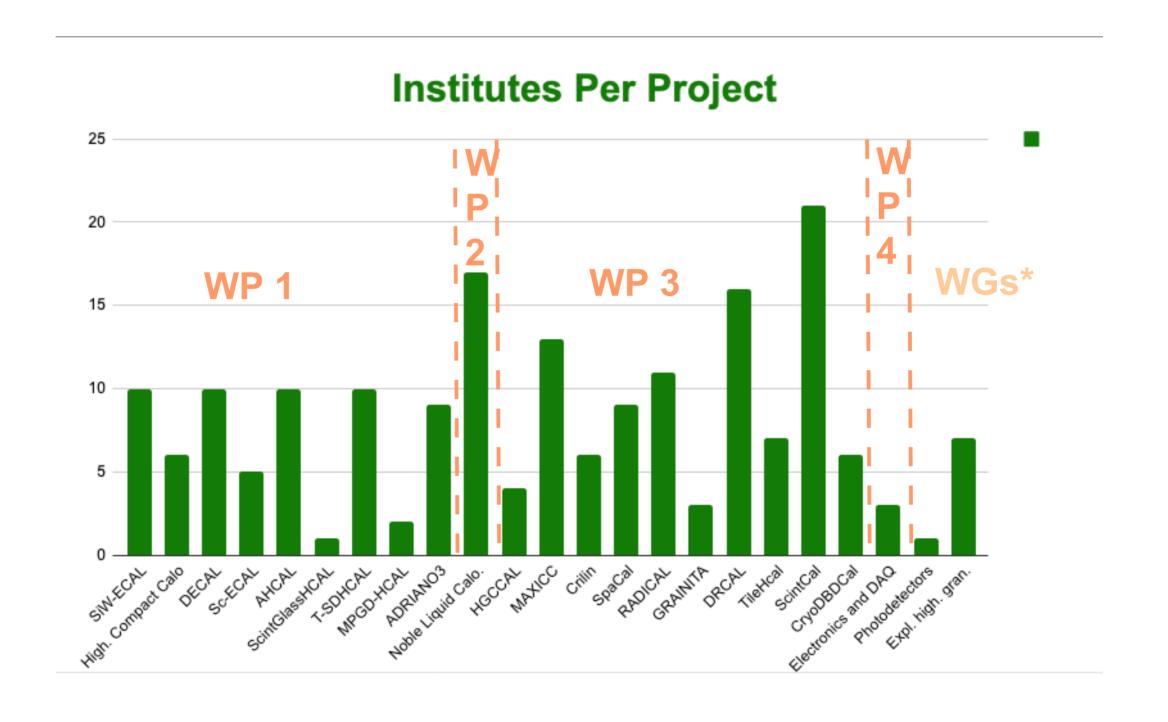


- Counted are groups that have expressed an interest to join the DRD Calo via the input proposals or in communication afterwards
- Representatives of these groups form the proto-Collaboration Board (proto-CB)

DRD Calo – Where are we?



DRD Calo – Overall goals


- DRD should deliver informed input to technological decisions of future facilities (of all sizes)
- All proposals should reach the same level of maturity
- Openness to new ideas
- Collaboration structure should reflect these goals
- Research Programs of Work Packages and Working Groups will be at the heart of the collaboration
 - Work Package 1: Sandwich calorimeters with fully embedded Electronics Main and forward calorimeters
 - Work Package 2: Liquified Noble Gas Calorimeters
 - Work Package 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters
 - Work Package 4: Electronics and DAQ
 - The Work Packages are complemented by a set of Working Groups that help to ensure the overall coherence of the scientific program

DRD Calo – Basic structure

DRD Calo – Institutes and Work Packages (Working Groups) DRD Calo

Transition to DRD – DRDs and MoU

T. Bergauer, 113th Plenary ECFA Meeting, Nov. 2023

Memorandum of Understanding

- All institutes of one DRD collaboration sign a "light-weight" MoU
 - Does not contain commitments on strategic funds
 - Defines Common Fund, if agreed by the respective DRD Collaboration
 - Covers IP topics, how to handle involvement of industr
 (In that case very similar as the current existing MoUs of RD50/51)
 - MoU Template will be provided by CERN (currently being negotiated with legal office, KT, DRC,...)
- Strategic funding will be agreed upon in annexes to this lightweight MoU
 - One Annex per Work Package, signed by the FAs of the institutes involved in the respective WP
- Active discussions on MOU with DRDC and CERN Management
- More in talks by Thomas and Roberto

Setting up the DRD-on-Calorimetry – First actions

- 10th of January 2024
 - 1st proto-Collaboration Board Meeting = First event of new DRD-on-Calorimetry Collaboration
 - 92 groups registered
 - Recap of way until approval of DRD
 - Outline and discussion of "way ahead"
 - First steps to implement the Collaboration and their endorsement
 - Bootstrap procedure
 - Initial Collaboration structure
 - Preparation of CB-Chair election
- Election of Collaboration Board Chair
 - Meeting on CB Election on February 22nd
 - Roberto Ferrari (INFN Pavia) elected on March 6th
- Preparation of Spokesperson Election
 - Call for proposals until April 4th
 - Candidate presentation today
 - Election after Collaboration Meeting

DRD-on-Calorimetry – Communication

- In general we will use CERN e-groups as main communication channel
- Tree structure for general DRD Calo e-group
 - This means that each institute creates and maintains its own e-group
 - drdcalo-cern, drdcalo-pavia, drdcalo-ijclab, drdcalo-desy, ...
 - Only these e-groups will be included into the general e-group drdcalo-general@cern.ch
 - drdcalo-general exists since 22/2/24
 - Remark: It will take some time until all institutes have created their e-group
 - Until this happens the corresponding group leader will be explicitly part of drdcalo-general@cern.ch
 and will be responsible for propagating relevant information to his/her group
 - As soon as the e-group is created the group leader will be removed from the general e-group
 - As of today 30 institute e-groups exist, further reminders will be sent regularly to the Collaboration Board
- We need a web page ...
- We need a logo (and another name?)

DRD Calo – First Collaboration Meeting

- Indico page: https://indico.cern.ch/event/1368231/
 - 130 registered participants, 67 on-site partially from far away
- Support by Patricia Mage-Granados and Caroline Cazenoves, Thank you very much!!!!!
- Sessions and Rooms
 - April 9th: CERN Council Chamber for plenaries
 - April 10th: CERN Council Chamber, Salle Dirac, Filtration Plan for parallels
 - Parallels on WP 1-3 in morning and early afternoon (see agenda)
 - Two parallel sessions for Software (Council) and Beamtest WG (Filtration Plant) including discussion/brainstorming on how to set them up
 - April 11th: CERN Council Chamber for plenaries
 - Room B as office space that might be also used for ad-hoc meetings
- Social events
 - Dinner on Wednesday 10th of April at CERN, area outside of Glassbox in R1
 - Coffee breaks
 - Delivery Pas Perdus on 9th and 11th
 - 5 CHF vouchers on April 10th

Conclusions

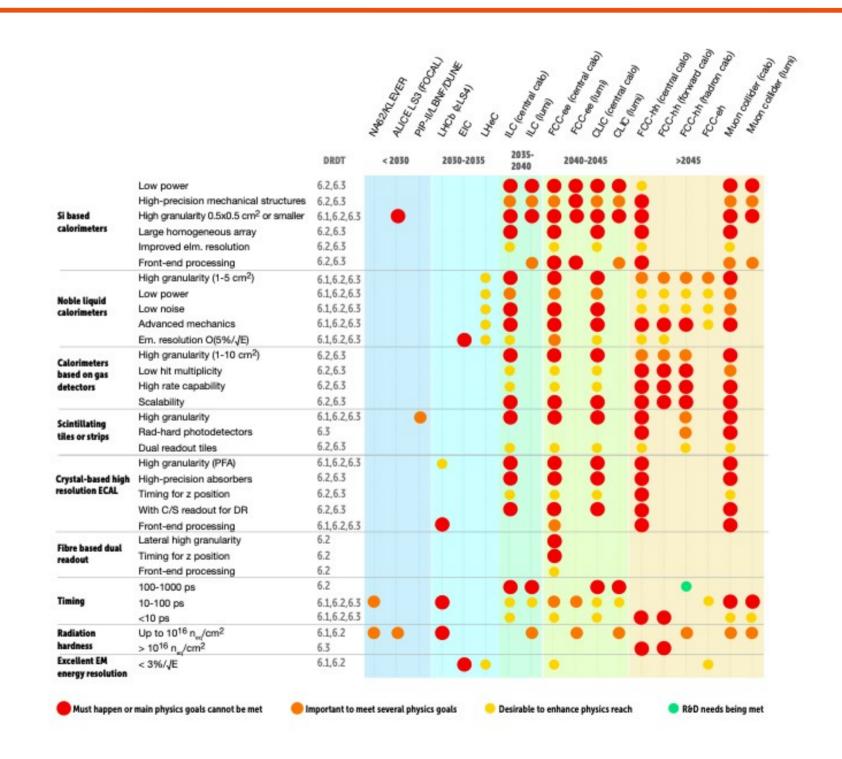
- DRD-on-Calorimetry will pursue strategic R&D for calorimeters for future colliders
 - Partially new efforts, partially capitalising on existing activities
- Scientific programme and first ideas of Collaboration structure have been worked out by Proposal Team in collaboration with community
- Approval by CERN Research Board to start Collaboration on January 1st 2024
- Now progressive move from Proposal Team to full collaboration structure
- This meeting kicks off the collaboration and the scientific programme

Welcome to the meeting (and be there for the Group Photo at 15.30h)

Backup

Ramp up of activities – Rough View

2024 2027 2030


- Input proposals reveal little (extra) need at the beginning (2024-2026)
 - Start with prototypes that are either existing or currently under construction
 - (Mainly) benefitting from existing funding at national or international level (i.e. AIDAinnova, EUROLABS in Europe or CalVision, RADICAL in the US [plus maybe others])
 - Specification studies, concept proof would require fresh funding
- Relatively high density of beam tests with new (large scale) prototypes after 2026
 - Several large-scale prototypes demonstrate ambition of R&D programme
- Execution of program requires <u>availability and support</u> of beam test facilities

Calorimetry- Identified Key Technologies and R&D Tasks

- Key technologies and requirements are identified in ECFA Roadmap
 - Si based Calorimeters
 - Noble Liquid Calorimeters
 - Calorimeters based on gas detectors
 - Scintillating tiles and strips
 - Crystal based high-resolution Ecals
 - Fibre based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
- R&D Tasks are grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

