

Karlsruher Institut für Technologie

WP1 Brief Introduction

Frank Simon

KIT – The Research University in the Helmholtz Association

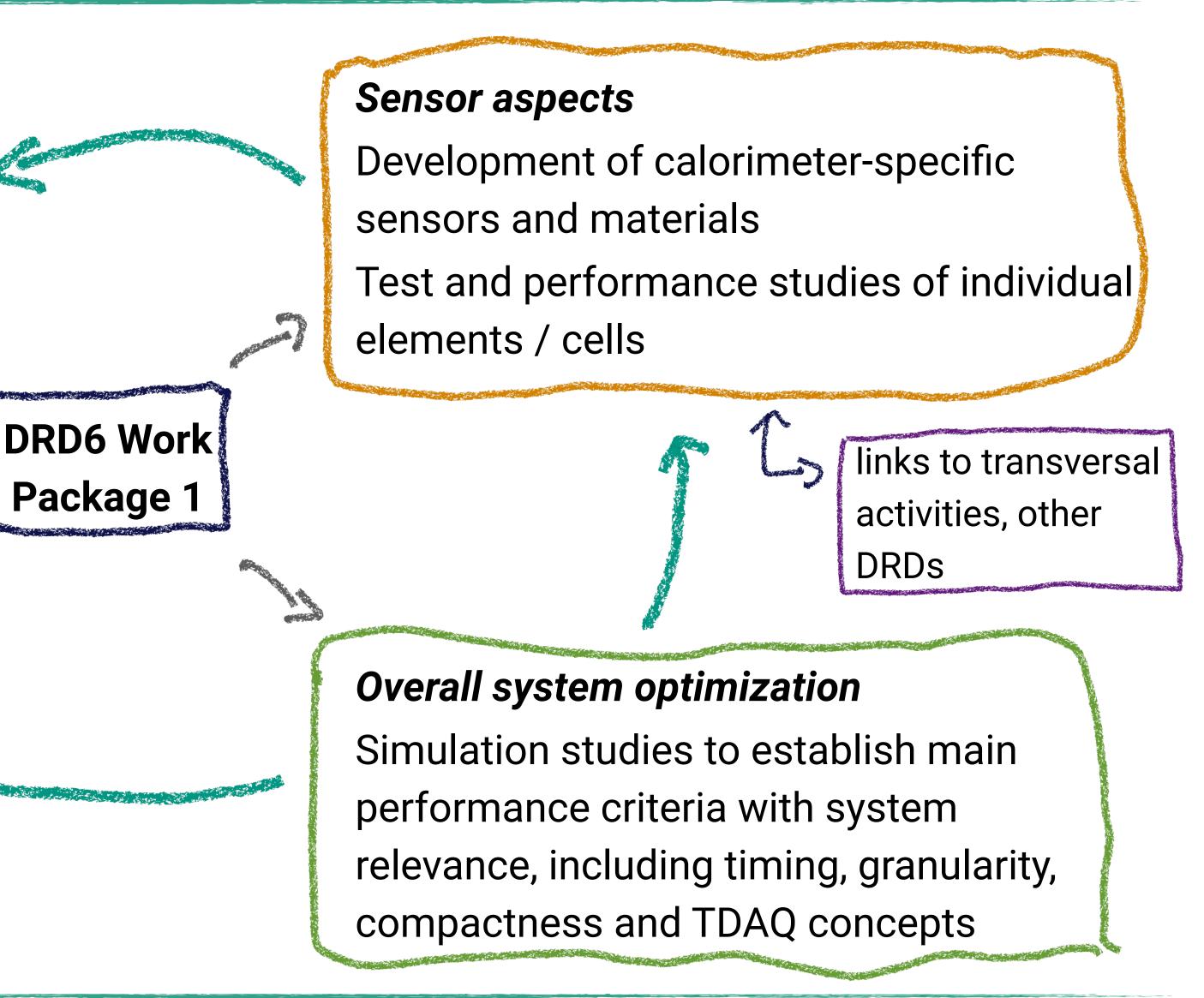
DRD6 Collaboration Meeting, April 2024

<u>www.kit.edu</u>

WP1 High-level Summary

System aspects

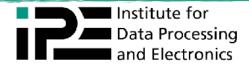
Electronic, mechanical, thermal integration Larger prototypes demonstrating systemlevel aspects of the technology - incl. fully embedded electronics


FE Electronics (incl. ASICs), data flow, control, trigger and general back-end solutions

WP1 Introduction - DRD6 Collaboration Meeting, April 2024

links to transversal

activities, possibly DRD7


WP1 Technology Areas

The Menu Overview

- General approach: Highly granular calorimeters as integrated systems but often still with separate requirements and correspondingly separate technological solutions for electromagnetic and hadronic sections.
- Overarching goals: Establish (where not existing already) large-scale prototypes that allow to demonstrate the technologies, both stand-alone and in combined tests of different electromagnetic and hadronic sections.
- High-level structure: Tasks covering technology areas
 - Task 1.1: Highly pixelised electromagnetic section
 - Task 1.2: Hadronic section with optical tiles
 - Task 1.3: Hadronic section with gaseous readout

WP1 Technologies

Highly pixelised electromagnetic section

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status
Task 1.1: Highly p	oixelised electromagnetic se	ction		
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/ Tungsten	6.2	e^+e^- collider forward part	Prototypes with non-optimised sensors, Sensor optimisation and data transfer studies ongoing
Subtask 1.1.3: DECAL	CMOS MAPS/ Tungsten	$6.2, \ 6.3$	e ⁺ e ⁻ collider central detector. Future hadron collider	Prototypes with non-optimised sensors, Sensor optimisation ongoing
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed

WP1 Technologies

Hadronic section with optical tiles

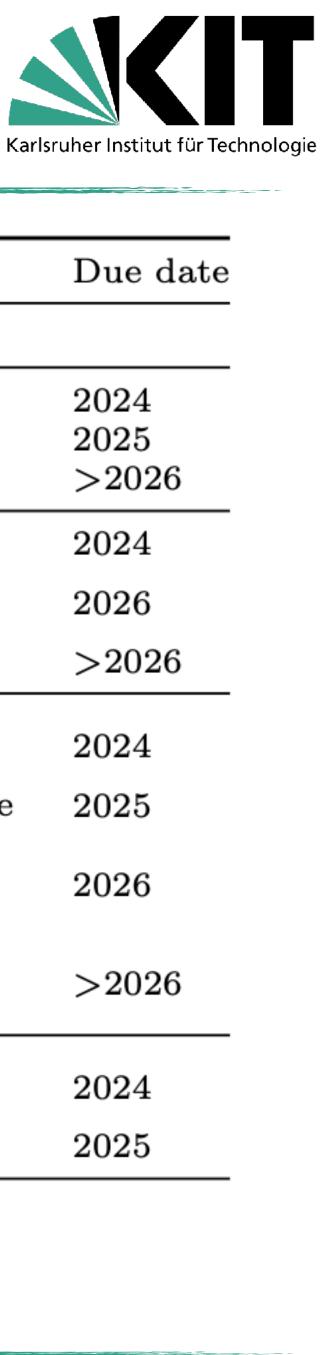
Task/Subtask	Sensitive Material/ Absorber	\mathbf{DRDTs}	Target Application	Current Status		
Task 1.2: Hadronic section with optical tiles						
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed		
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/ Steel	6.2	e^+e^- collider central detector	Material studies and specifications for prototypes		

Frank Simon (<u>frank.simon@kit.edu</u>)

WP1 Technologies

Hadronic section with gaseous readout

Task/Subtask	Sensitive Material/ Absorber	\mathbf{DRDTs}	Target Application	Current Status				
Task 1.3: Hadron	Task 1.3: Hadronic section with gaseous readout							
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed				
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/ Steel	$6.2, \ 6.3$	$\mu^+\mu^-$ collider central detector	Small prototype for proof-of-principle, Lateral and longitudinal extension envisaged				
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers +Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3	e ⁺ e ⁻ collider central detector BSM searches in MeV-GeV range	RPC, Scintillating Tiles advanced status, R&D on heavy glass needed				

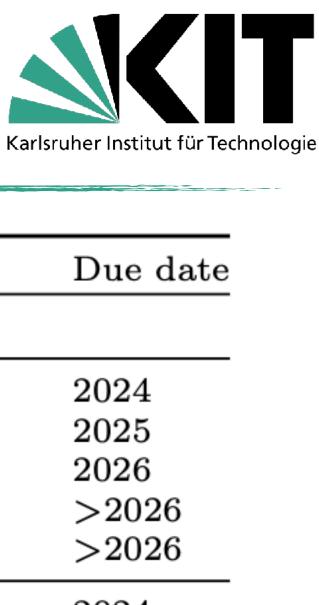


Frank Simon (<u>frank.simon@kit.edu</u>)

WP1 Milestones

Highly pixelised electromagnetic section

Task 1.1: Highly pixelised e	lectromagnet	ic section		
Subtask 1.1.1: SiW ECAL	N/1 1	D1.1	Revised 15 layer stack Specifications for timing and cooling Engineering module for Higgs factory	$2024 \\ 2025$
	M1.1	D1.2		>2025
Subtask 1.1.2: High compact ca		D1.3	Updated set of compact detection layers	2024
	M1.2		Prototype for GaAs sensors with strip readout	2026
		D1.4	Set of validated GaAs sensors	>2026
Subtask 1.1.3: DECAL	M1.3		Requirements for DECAL-specific sensor design established	2024
	M1.4		Full evaluation of (ALPIDE-based) EPICAL-2 performance Design for next-generation sensor with	2025
	M1.5		DECAL-specific optimisation (with machine-specific options)	2026
		D1.5	New sensors producted and evaluated in EPICAL-3 prototype	>2026
Subtack 1.1.4. So ECAT	M1.6		Improved components (engineering for	2024
Subtask 1.1.4: Sc-ECAL		D1.6	production, timing, active cooling, etc.) 40-layer prototype and testbeam	2025



WP1 Milestones

Hadronic section with optical tiles

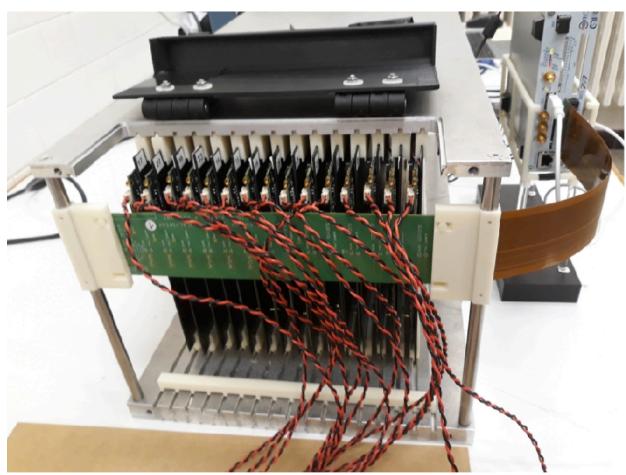
	Milestone	Deliverable	Description	Due da
Task 1.2: Hadronic section v	with optical t	iles		
Subtask 1.2.1: AHCAL	M1.7		Concept for continuous readout	2024
	M1.8		First layer with continuous readout	2025
		D1.7	EM prototype demonstrating system aspects	2026
		D1.8	Full-size layer and multi-layer demonstrator	>2026
		D1.9	Engineering prototype	>2026
Subtask 1.2.2: ScintGlassHCAL	M1.9		cm-scale tiles	2024
		D1.10	15-layer EM module	2025
		D1.11	40-layer prototype	>2026

WP1 Milestones

Hadronic section with gaseous readout

	Milestone	Deliverable	Description	Due da
Task 1.3: Hadronic section	with gaseous	readout		
Subtask 1.3.1: T-SDHCAL	M1.10		Study of the impact of timing on PFA performance	2024
	M1.11		Specifications for first layers	2025
	M1.12		First T-SDHCAL layers	2026
		D1.12	40-layer prototype	>2026
Subtask 1.3.2: MPGD-HCAL		D1.13	Completion of 6-layer $20 \times 20 \text{ cm}^2$ prototype	2024
	M1.13		Specifications for $50 \times 50 \text{ cm}^2$ prototype	2025
	M1.14		Design of $50 \times 100 \text{ cm}^2$ layers	2026
		D1.14	10-layers prototype (6L: $20 \times 20 \text{ cm}^2$ +4L: $50 \times 50 \text{ cm}^2$)	2026
		D1.15	$3\ 100 \times 100\ {\rm cm}^2\ { m layers}$	>2026
Subtask 1.3.3: ADRIANO3	M1.15		Small-scale test layers	2024
	M1.16		Small-scale prototype	2025
		D1.16	Large-scale prototype & testbeam	2026

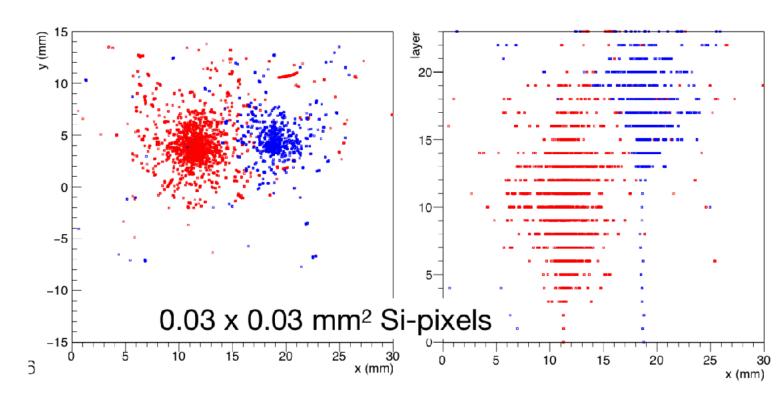
Project Information from Input Proposals

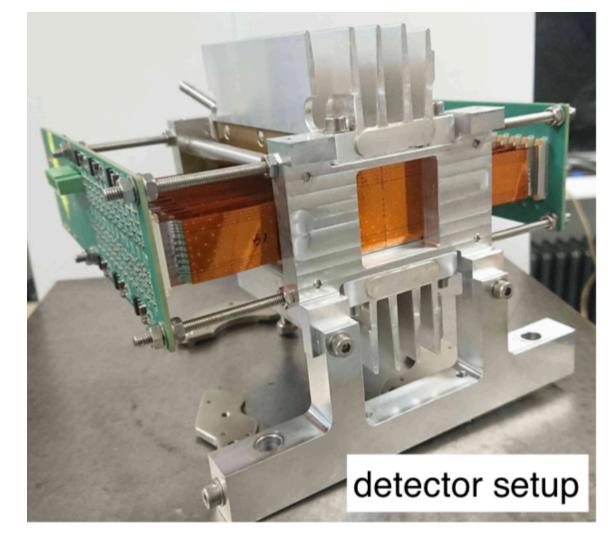

Institute for Data Processing and Electronics

SiW ECAL LLR, IJCLab, LPNHE, OMEGA, IFIC, Kyushu U, KEK, CERN

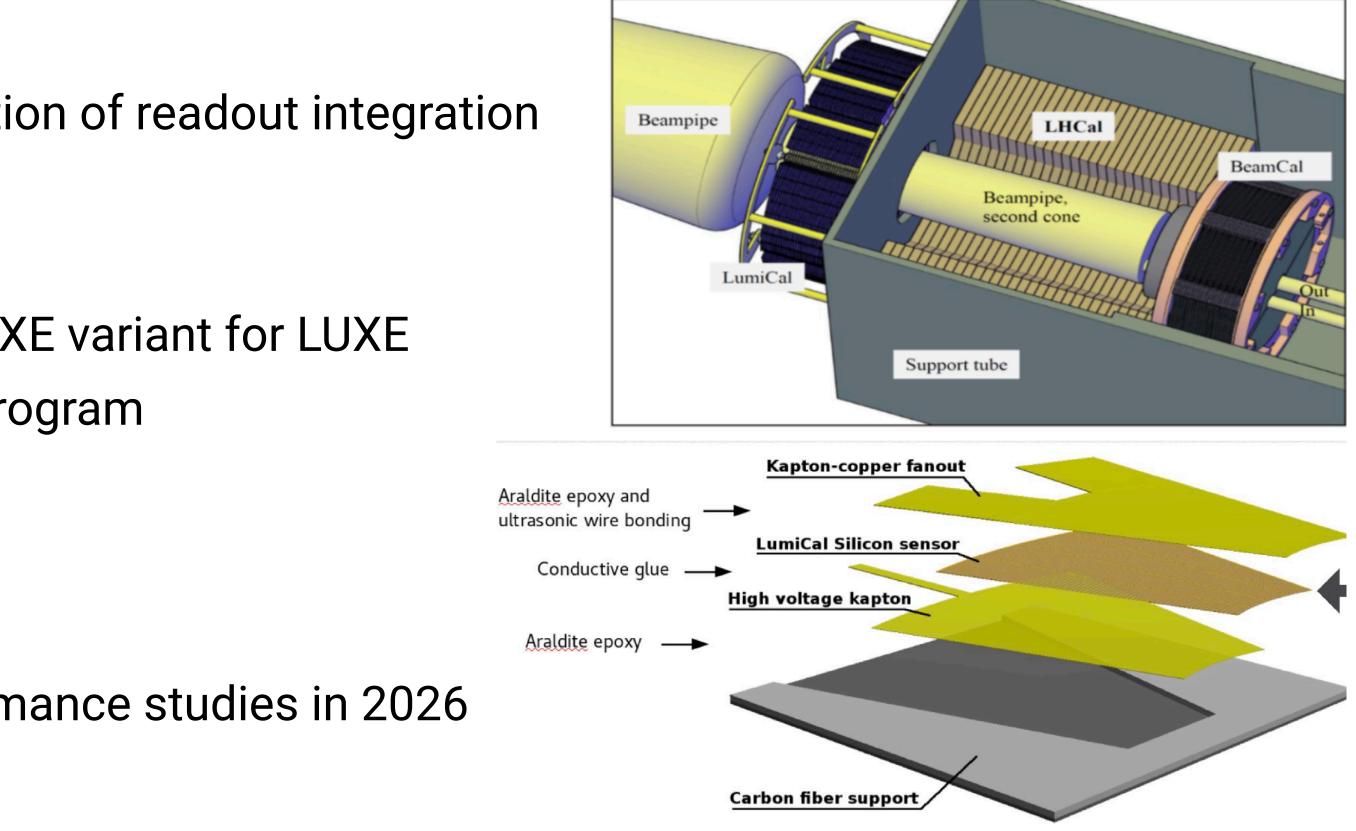
- Primary experimental context: Higgs Factories, possible near-term applications in LUXE and others
- A SiW-ECAL using silicon pad sensors with analog readout Builds on CALICE SiW ECAL technological prototype
- Main R&D topics
 - Extension of current prototype based on power pulsing to continuous operations: reduction of power consumption, of cooling
 - Study of the addition of timing, either dedicated layers or volume timing
- 15 single-ASU prototype in beam in 2024 current technology)
- Design for HF pilot module in 2025

Frank Simon (frank.simon@kit.edu)


DECAL - Digital ECAL based on MAPS HU Berlin, U B'ham, DESY-Z, HEPHY & NTU Athens, IC, Frankfurt, Rutherford, Sussex, Utrecht


- Primary experimental context: ALICE FOCAL, Higgs Factories
- A MAPS-based digital Silicon-Tungsten ECAL, building on current DECAL and EPICAL projects, partially integrated in CALICE
- Main R&D topics:
 - Full exploitation of existing EPICAL-2 prototype to evaluate performance
 - Establish requirements of a sensor dedicated for digital calorimetry
 - Design of next-generation sensor with calorimeter-specific optimisation (overlaps with DRDs 3, 7), and evaluation of sensor design
- Small-scale digital ECAL prototype in 2026, sensor submission early 2025

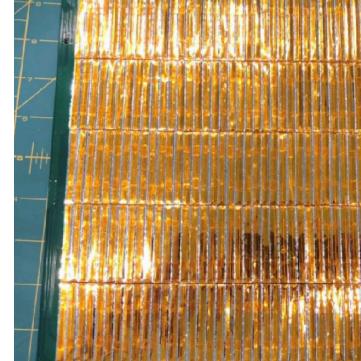
Note: Also relevant activities (and interest) at SLAC, U Oregon with connections to CERN


Highly Compact ECAL

TAU, AGH Cracow, U Warsaw, IFIC, ISS Romania

- Primary experimental context: Higgs Factories, possible near-term applications in LUXE
- Highly compact electromagnetic calorimeter with semiconductor sensors Builds on developments in FCAL
- Main R&D topics:
 - R&D on Si and GaAs sensors, including optimisation of readout integration
 - Development of thin conductive gluing
 - Development of readout electronics:
 - Readout of FLAME ASICs; development of FLAXE variant for LUXE
 - Wireless data transmission, joining WASAPT program
 - Mechanics with minimal tolerances
 - Simulation studies
- Design of prototype in 2024, construction & performance studies in 2026
- Design for HF calorimeter in 2026

ssible near-term applications in LUXE semiconductor sensors



Highly Granular Scintillator-strip Calorimeter U Tokyo, USTC, IHEP, Shinshu U, SJTU

- Primary experimental context: Higgs Factories
- A tungsten-scintillator-strip (with SiPM readout) calorimeter Building on CALICE technological prototype
- Main R&D goals for next period:
 - Engineering study for large-scale production
 - Timing performance possibly by introducing dedicated timing layer(s)
 - Scintillator material also extending to new ideas such as quantum dot material
 - Scintillator strip design
 - Active cooling system
 - Mechanical structure and services
 - Electronics including low-power readout ASIC
 - Trigger-DAQ system studied for Circular Colliders
- Construction of a new prototype as main deliverable

MPGD-based Hadronic Calorimeter

INFN & U Bari, Weizman Inst.

- Primary experimental context: Muon Collider
- Inspired by CALICE DHCAL & SDHCAL
- Using MPGDs (examples uRWELL, resistive Micromegas) for higher-rate environments
- Already ongoing activities: testing of detectors, test of a small calorimeter prototype with up to 6 GeV pions in 2023
- Main R&D topics
 - Simulation for HCAL design definition
 - Construction of a prototype with 50 x 50 cm² active layers, further extensions
 - Test beam campaigns
- NB: At the moment prototypes do not have integrated electronics: R/O at detector edges

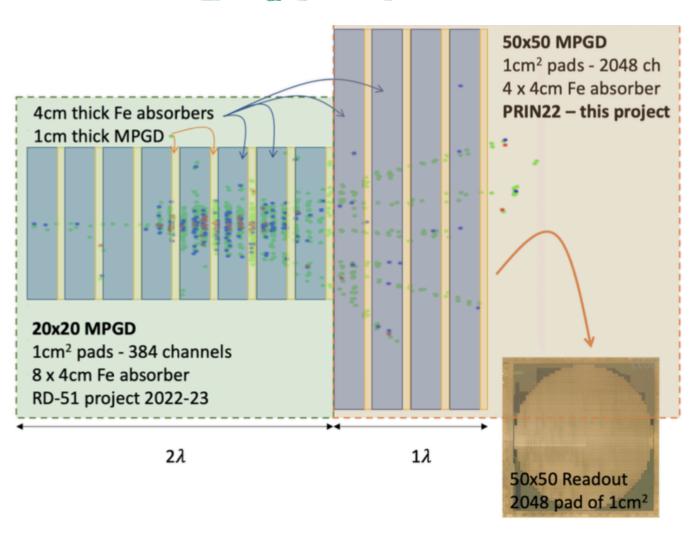
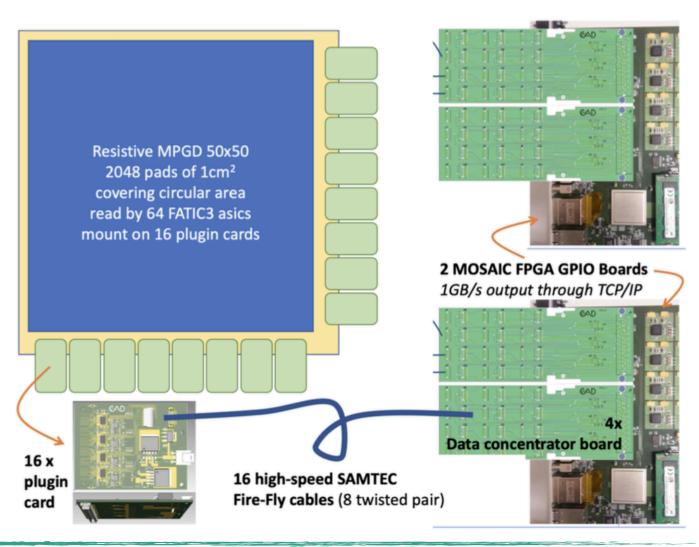
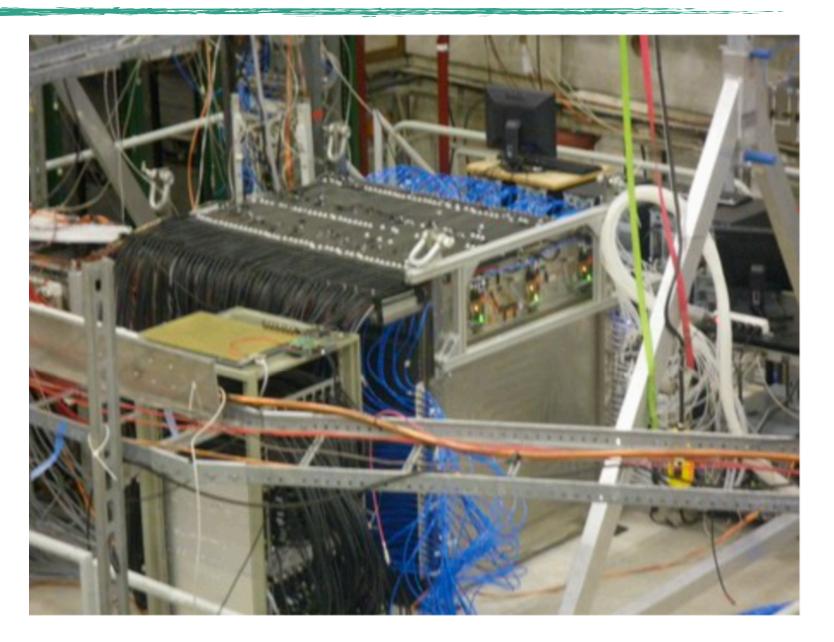



Fig. 2.4: Layout of the HCAL prototype with 3λ depth. The first 2λ is made of the $20x20cm^2$ prototype developed in the RD-5 ject in 2022, while the last λ necessary to contain longitudinally (95%) protons and pions of 1-6 GeV is made



T-SDHCAL

IP2I Lyon, CIEMAT; VUB, OMEGA, U Cordoba, Yonsei Cancer Center, GWNU, SJTU, U Tunis El Manar

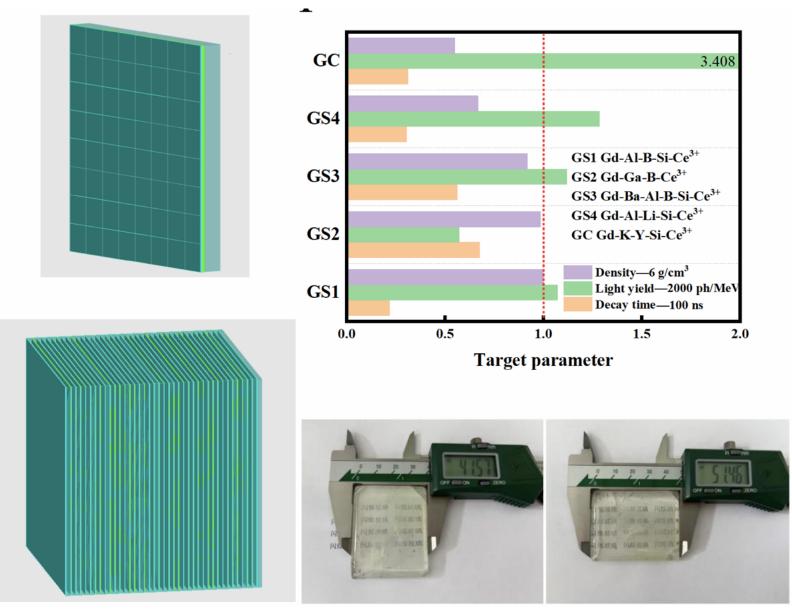
- Primary experimental context: Higgs Factories
- A RPC-based semi-digital HCAL with timing capability Builds on CALICE SDHCAL technological prototype
- Main R&D directions
 - Simulation studies extending to time information
 - Study and development of cooling and cassette concepts
 - Fast timing electronics
 - Development of DAQ system \bullet
 - Construction of detector units, validation in beam tests
- Until 2026: Complete initial R&D steps to propose T-SDHCAL concept for circular HF

Institute for Data Processing and Electronics

SiPM-on-Tile AHCAL

DESY, U Göttingen, U Hamburg, U Heidelberg, KIT, U Mainz, FZU Prague, OMEGA

- Main experimental context: Higgs Factories
- SiPM-on-tile / steel HCAL Builds on CALICE AHCAL Technological Prototype
- Main R&D topics:
 - Extension of current detector concept to circular colliders with continuous readout
 - evaluate consequences of higher data rate
 - re-evaluate need for cooling
 - re-optimisation of detector to ensure optimal performance while respecting new constraints
- Corresponding hardware development: ASICs (KLAuS, OMEGA), HBU and interfaces, mechanical and thermal design; scintillator geometry
- First layers for new system design in 2026, EM stack with ~15 layers ~ 2029



Highly Granular HCAL with Glass Scintillator Tiles IHEP

- Primary experimental context: Higgs Factories
- A variation of the CALICE AHCAL concept: Using glass scintillator tiles instead of plastic Increased sampling fraction - with the potential for improved energy resolution
- Main R&D directions:
 - R&D of scintillator material main targets: high density, high light yield, low cost Simulation studies of hadronic performance: single particles, jets

 - Development of modules:
 - setup for characterization,
 - EM prototype ~2025
 - HCAL prototype ~ 2027

ADRIANO3 - Triple Readout Calorimeter

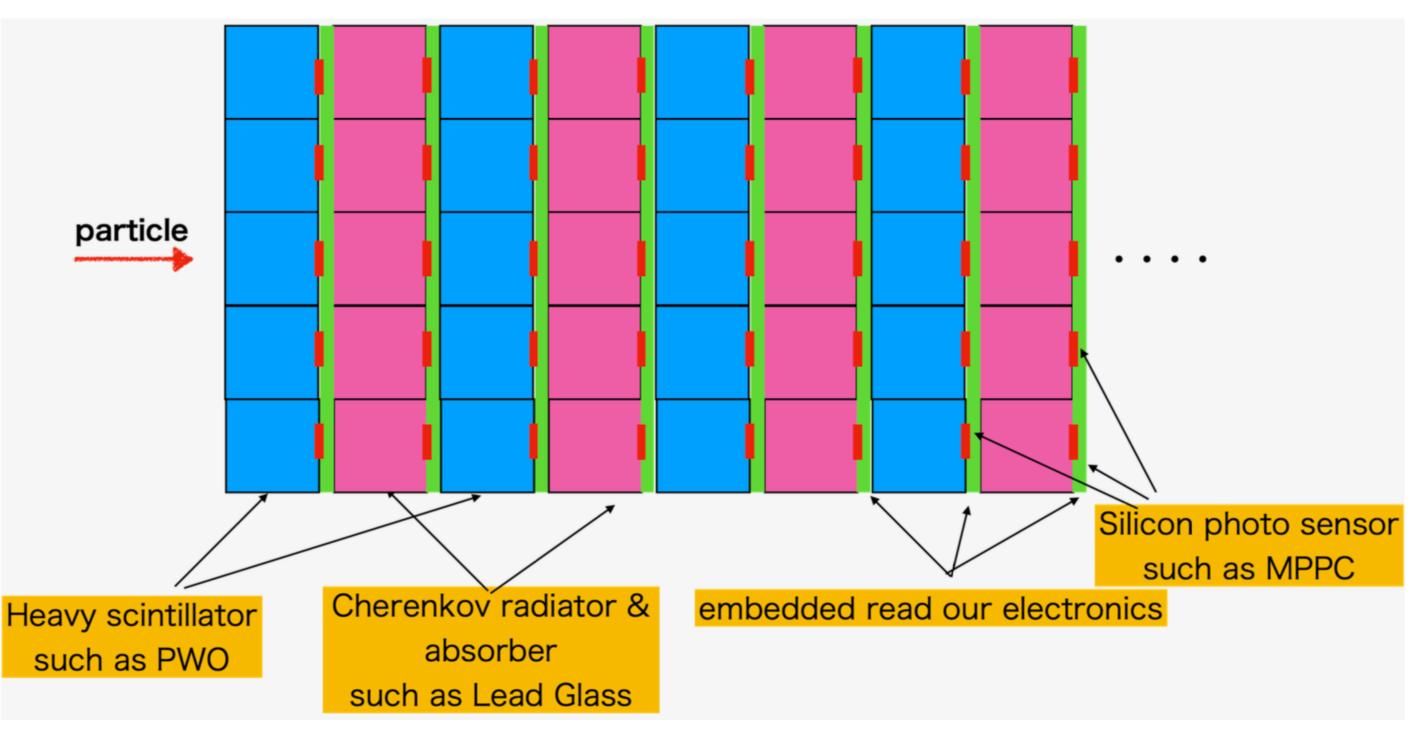
Beykent, U Iowa, NIU, INFN; ANL, Fairfield U, U Tokyo, Fermilab, Shinshu U, U Kansas

- Primary experimental context: REDTOP
- 5D shower measurement, disentangling the neutron component of the shower. Technologies:
 - High-density glass as Cherenkov Medium (and absorber)
 - Plastic scintillator tiles
- RPCs with cm² pad readout
- Key R&D goals
 - optimization of the construction technique in terms of:
 - light yield, RPC efficiency, timing resolution, and cost
 - Test layers in 2024, small-scale prototype 2025
 - Larger-scale prototype 2026-2027
- Plans to use ultrafast ASICs for RPC readout Source (DRD7) may need discussion

Initial focus on optical materials and RPCs: Track 3 as home?

WP1 Introduction - DRD6 Collaboration Meeting, April 2024

• Extension of ADRIANO2 (fully active granular dual readout calorimeter) to three readout modes to achieve


Double Readout Sandwich Calorimeter Shinshu U

- Primary experimental context: Higgs Factories
- A concept for an (almost) fully active hadron calorimeter
 - Alternating layers of heavy scintillator (PWO) and Cherenkov medium (lead glass) Each read out by embedded SiPMs
- Currently studied in simulations only on the system level, studies of individual prototype cells in progress
- Goal: construction of up to 5 layers in 2024, a 20 layer prototype in 2026

Initial focus on optical materials and RPCs: Track 3 as home?

WP1 Introduction - DRD6 Collaboration Meeting, April 2024

Calorimeter ASICs OMEGA, AGH Krakow, CEA IRFU

- calorimeters. Not just Track 1, but clearly highly relevant here.
 - Builds on the experience in CALICE
- The goal is to develop ASICs than can serve most different input elements in use in DRD6: Silicon, gas detectors, scintillators (crystals, tiles, fibers -> SiPM readout), liquid Argon
 - current state-of-the-art

NB: Proponents (and project-specific developments) in part also included in other input proposals.

Not in Track 1, but as a transversal activity!

• An overarching proposal for the further development of the ASIC family currently in use in highly granular

• A central goal: reduction of power consumption by ~ 1 order of magnitude compared to HGCROC as

Frank Simon (<u>frank.simon@kit.edu</u>)