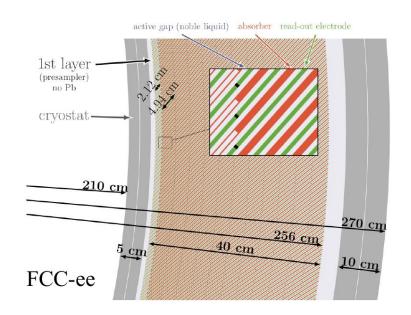
WP2: Liquified Noble Gases Calorimeters

Nicolas Morange, IJCLab

DRD6 Collaboration Meeting, 09/04/2024



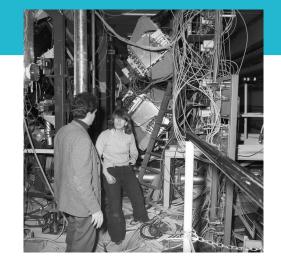
Laboratoire de Physique des 2 Infinis

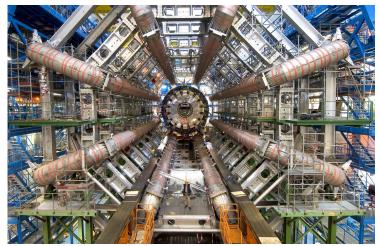
WP2: a One-Project Work Package

WP2 == ALLEGRO Ecal

- R&D for next generation liquified noble gas calo started as (only ?) viable solution for FCC-hh detector
 - Goal: high-granularity (~ ATLAS ×10) for good PFlow reconstruction in high pile-up environment
- Switched to an R&D project towards an e⁺e⁻ Higgs factory detector
 - Same basic concept
 - e⁺e⁻ environment allows for significant design optimisations towards ultimate noble liquid calo performance

Noble liquid based Ecal


- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr


• An appealing option for FCC-ee

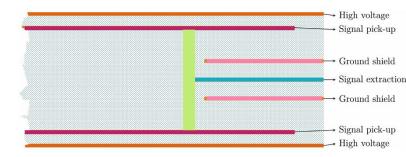
- Good energy resolution
- High(-ish) granularity achievable
- Linearity, uniformity, long-term stability
- Easy to calibrate

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

Granularity of Noble Liquid Calorimeters

- Calo design:
 - granularity of the calorimeter
 ⇔ granularity of the electrodes

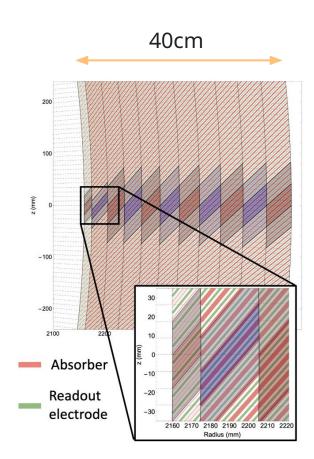

• ATLAS: copper/kapton electrode

- traces to read out middle cells take real estate on back layer
- cannot really increase granularity
- FCC-ee requirements
 - High jet energy resolution needed
 - Particle flow algorithms take advantage of much finer granularity

• Solution for Noble Liquid calo for FCC

• Multi-layer PCB to route signals inside

Allegro Ecal Barrel Design


Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta \theta = 10$ (2.5) mrad for regular (strip) cells, $\Delta \phi = 8$ mrad,

12 longitudinal layers

Copper electrodes: lots of flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation !

Main goals of the project

• Develop the calo design

- Study design solutions for endcaps
- Study general performance in simulation, in combination with some HCAL concept
- Optimize granularity
- Build a first prototype and measure performance in testbeam
 - Need to design and optimize electrodes, absorbers
 - Readout electronics
 - Can then be refined to test further developments / new ideas

4 Main Tasks

- 1. General design and expected performance
- 2. Readout electrodes
- 3. Readout electronics
- 4. Mechanical studies and prototype

Participating institutes

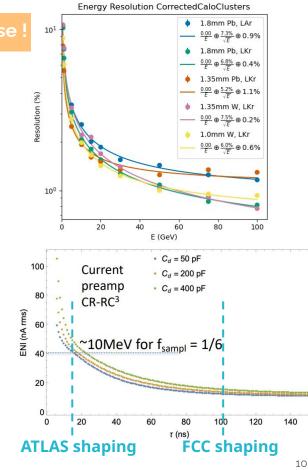
New partners are always welcome !

Max-Planck-Institut für Physik

Work Package 2 Organization

- Have setup an Institute Board (IB)
- Following an election process, Marc-Andre Pleier (BNL) has been elected IB Chair, and N.M. is WP2 Leader
- More details on the organization will be discussed tomorrow in the WP2 2nd parallel session

Please join the WP2 parallel session if you are curious about the project !


And now for the fun part !

Energy resolution: design options and noise

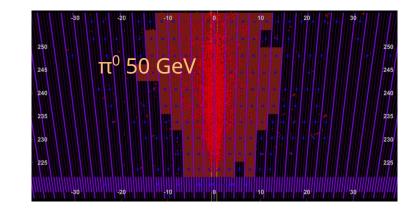
- Constant term
 - Hermeticity, low dead material, uniformity
- Sampling term: improve sampling fraction
 - Optimise gap size, sampling fraction, active and passive material
 - Explore LAr \Rightarrow LKr, Pb \Rightarrow W
 - between 5% and 7.5%
- Noise term: readout electronics
 - Want: measurement of 200 MeV photons, S/N>5 for MIPs
 - Longer shaping time wrt ATLAS (200 ns) helps a lot
 - Cold frontend electronics in the cryostat would provide noiseless readout

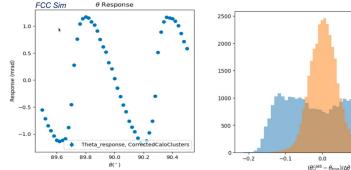
$$N\sim C_d\sqrt{rac{4kT}{g_m au_p}}$$

PID/PFlow: granularity optimisation

2023: important groundwork. ⇒ 2024: granularity optimisation studies possible

• Flexible geometry implemented in Full sim


- Can study EM shower shapes
- Benchmark: photon / π^0 separation
- Ongoing: implementation of cross-talk effects


Calibrations of reconstruction

- Simple MVA energy regression of EM clusters
- Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)

Particle Flow on its way

- Using Pandora toolbox
- For technical reasons, pioneered in detector sim with Allegro Ecal + CLD Tracker
- Hope for first results in 2024 !

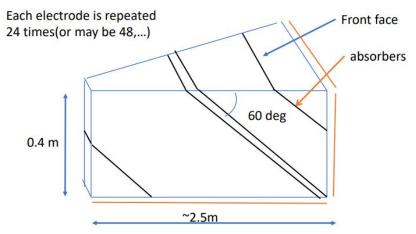
DRD6 Collaboration Meeting, 09/04/2024

0.2

0.1

corrected

= 0.00555


Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel: very preliminary ideas !

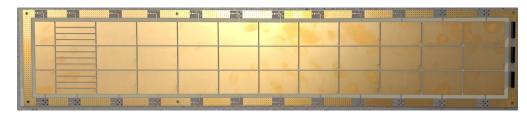
- "Turbine" design
 - More similar to barrel design
 - o Symmetric in φ
 - Issue: increase in the size of the Noble liquid gaps
 - Need to stack several cylinders

- XY / Pie wedge designs
 - Less symmetry in φ
 - Increase of LAr gaps under control
 - Many types of electrodes to draw and produce

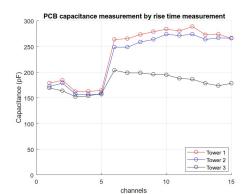
Electrodes prototypes

Explore tradeoffs: max granularity / capacitance (noise) / cross-talk

First large-scale prototype at CERN

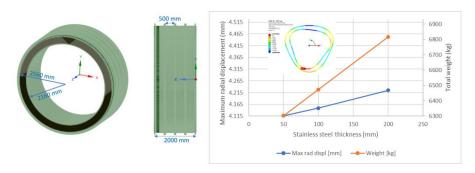

- Explore many options for grounding, for shields
- First layers readout at the front
- Few per-mille cross-talk achievable with long shaping

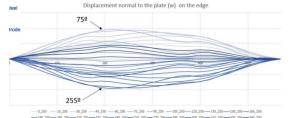
• Next prototype at IJCLab


- All layers readout at the back
 - Best for material budget, worse for noise and cross-talk

DRD6 Collaboration Meeting, 09/04/2024

- Use of connectors for easier measurements
- New shielding ideas
- Development of system for automated measurements

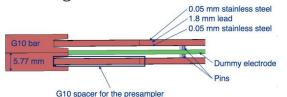

13


Mechanical studies

Simulation studies

• Model the full barrel

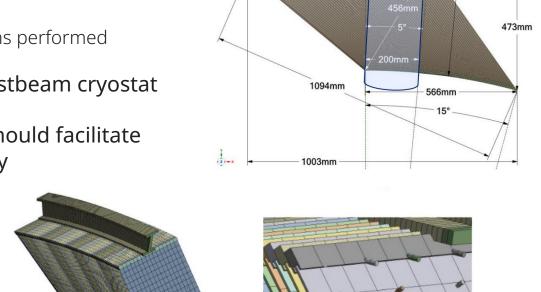
- Define support structures, spacers
- Study thickness of steel sheet
- Simulations in warm and in cold



Absorbers prototypes

• First feasibility prototypes

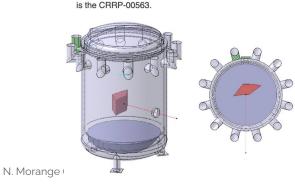
- Verify assumed rigidity
- Thermo-mechanical tests in liquid nitrogen

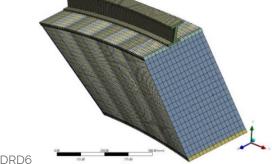


DRD6 Collaboration Meeting, 09/04/2

Towards a testbeam module

Plan to produce test module in the next four years


- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility


675mm

Detection zone

400mm

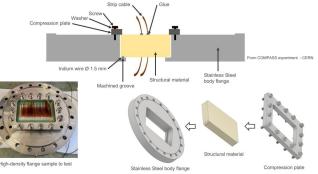
The cryostat available to make the test beam

Conclusions

- WP2 is a one-project work package
- Goals of ALLEGRO Ecal R&D well defined
- Exciting studies going on / starting
- Internal organization of the work package being defined

Supplementary Material

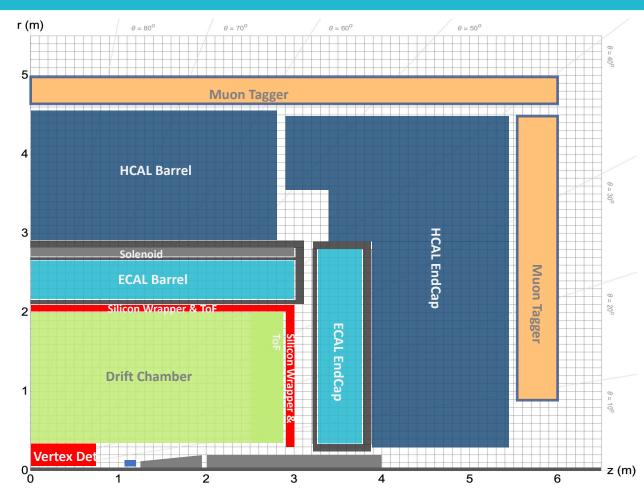
Cryostat and feedthroughs


Low mass cryostats

- Minimise dead material in front
 - Use of sandwiches with carbon fiber
 + Al honeycomb
 - Synergy with progress in aerospace
- CERN R&D: address CFRP/Metal interfaces
- Promises for "transparent" cryostats: few % of X₀ !

High-density feedthroughs

- Aim for ~ ×5 density and ~ ×2 area wrt ATLAS
- Successful R&D on connector-less feedthroughs at CERN
 - 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
 - Leak tests and pressure tests at 300 K and 77 K



DRD6 Collaboration Meeting, 09/04/2024

Allegro detector concept

A Lepton coLlider Experiment with Granular Read-Out

- Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like?
- Drift Chamber (±2.5m active)
- Silicon Wrapper + ToF:
 - MAPS or DMAPS possibly with timing layer (LGAD)
- Solenoid B=2T, sharing cryostat with ECAL, outside ECAL
- High Granularity ECAL:
 - Noble liquid + Pb or W
- High Granularity HCAL / Iron Yoke:
 - Scintillator + Iron
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside
- Muon Tagger:
 - Drift chambers, RPC, MicroMegas