

DRD6 WP4 electronics and DAQ

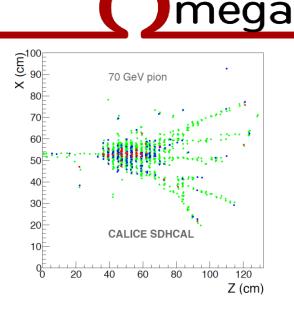
Ch. de LA TAILLE DRD6 9 April 2024

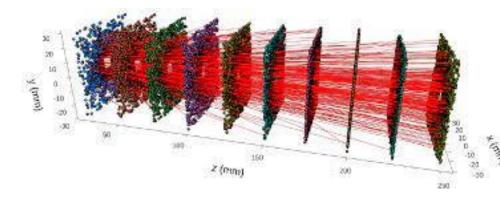
Organization for Micro-Electronics desiGn and Applications

- Goals
 - Produce ASICs and DAQ for prototypes (sizeable quantities...)
 - Avoid parallel developments but encourage communications between groups
 - Optimize commonalities (readout format, interfaces, inter-operability)
 - Organize common ASIC fabrication (share engineering run to minimize costs)
- Close communication with other DRDs
 - DRD3 : MAPS for digital calorimetry
 - DRD4 : photodetectors
 - DRD7 : electronics (ADCs, TDCs...)
- Strong interplay detector/electronics
 - Noise, granularity, timing, power dissipation, data bandwidth....
 - Detector R&D vs/with Electronics R&D

eqa

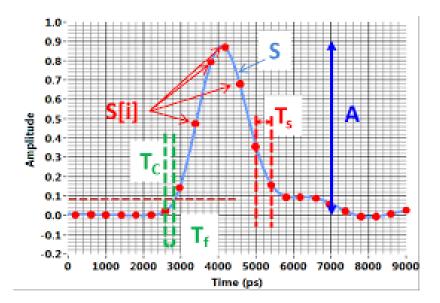
DRD6 (calorimetry) readout schemes

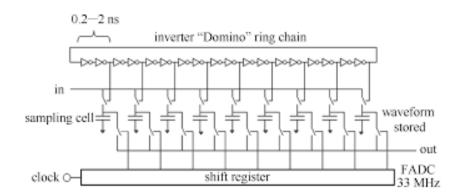



Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM,timing via CAENFERS, AARDVARC-v3,DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

- On-detector embedded electronics, low-power multi-channel ASICs
 - CALICE SKI/SPI/HARDROC, FLAME, CMS HGCROC, FCC LAr, FATIC...
 - Challenges : #channels, low power, digital noise, data reduction
- Off-detector electronics : fiber/crystal readout
 - Wavefrom samplers : DRS, Nalu AARD, LHCb spider...
 - Challenges : low power, data reduction
- Digital calorimetry : MAPs, RPCs...
 - DECAL, ALICE FOCAL, CALICE SDHCAL
 - MAPS for em CAL : eg ALPIDE ASIC for FOCAL, DECAL...
 - Challenges : #channels, low power, data reduction

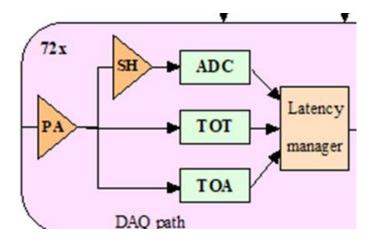
Digital calorimetry

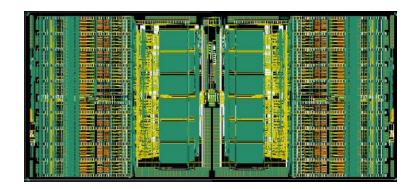

- Hadronic : e.g. CALICE RPCs or µmegas
 - ~1 cm² pixels, low occupancy, ~1 mW/cm² (unpulsed)
 - Performance improvement with semi-digital architecture
 - Timing capability can be added
- Electromagnetic : e.g. DECAL, ALICE FOCAL...
 - Based on ALPIDE : (30µm)² pixels, high occupancy, ~ few 100 mW/cm², slow
 - To be compared with embedded electronics ~10 mW/cm²
 - Most power in digital processing => would benefit a lot from ≤ 28 nm node
 - Semi-digital and/or larger pixels could be an interesting study
- Upcoming R&D
 - Power reduction, dead area minimization
 - Coping with high occupancy, managing data bandwidth



Waveform sampling

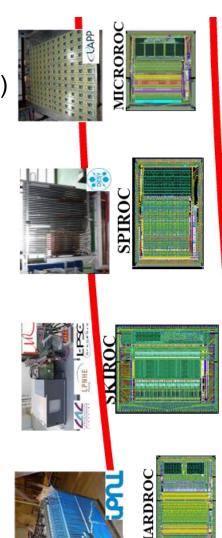
- Switched capacitor arrays (DRS4, Nalu, SPIDER...)
 - Pulse shape analysis
 - High accurcay timing, digital CFD
 - Sizeable power to provide GHz BW on large capacitance
 - large data volume
- Often used in off-detector electronics
 - Space and cooling available
 - Small/medium size detector readout and/or characterization
 - See LHCb calorimeter upgrade
- Upcoming R&D
 - Power reduction, Front-end integration
 - Data bandwitdth
 - Time walk correction, potentially best for ps accuracy


nega



Embedded ASICs

- Pioneered with CALICE R&D (SKIROC, SPIROC..)
- Multi-channel charge/time readout
 - Fast preamp
 - Full dynamic range. Possible extension with ToT
 - Fast path for time measurement (ToA)
 - High speed discriminator and TDC
 - Time walk correction with ADC (or ToT)
 - Slow path for charge measurement
 - ~10 bit ADC ~40 MHz
 - Low power for on-detector implementation (~10 mW/ch) e.g. CMS HGCAL
- Upcoming R&D
 - Power reduction,
 - Auto-trigger, Data-driven readout



DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch. Lower occupancy, slower speed
 - Allows better granularity or LAr operation
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Extend to MCPs (PID) or HRPPD. First tests with EIC calo/PID
- Several other ASICs R/Os also developed in DRD6 and it is good !
 FLAME/FLAXE, FATIC...
 - Waveform samplers : commercial or specific (e.g. SPIDER)
 - DECAL

- Go over the electronics and DAQ requirements/wishes from the different participants
 - See what exists and what needs R&D
 - See what's covered internally and what can be provided by DRD6 developments
- Gather the community of « calorimeter electronics developers »
 - Share expertise and experimental results
 - Address specificities of calorimetry
 - Share fabrication (engineering) runs to equip prototypes