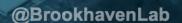
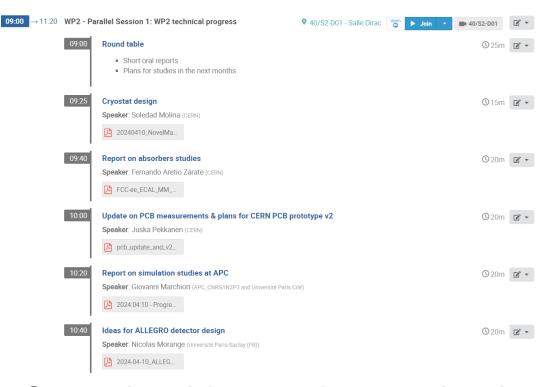


WP2 Parallel Session Summary


Marc-André Pleier

DRD6 Collaboration Meeting, CERN, April 11, 2024



Overview of WP2 Sessions

Indico: technical session

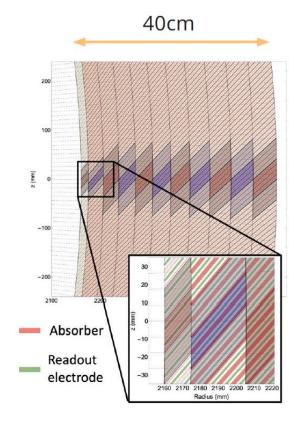
open IB session

Selection bias and any mistakes → me; praise for progress → authors!

WP2 technical progress

Brief Recap

Nicolas Morange

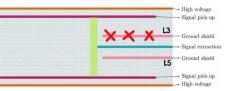


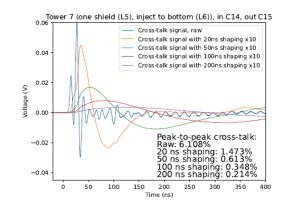
Design driven by the solution used for electrodes

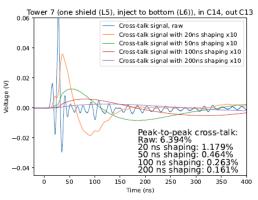
- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta\theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta\phi$ = 8 mrad, 12 longitudinal layers

Copper electrodes: lots of flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation!





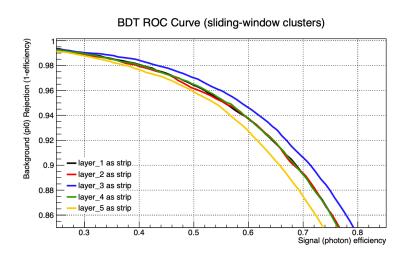

PCB Measurements & Plans

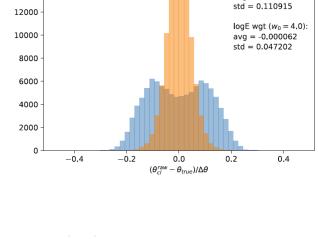
Juska Pekkanen

- Study of cross-talk between cells:
 - Bottom-side to top-side
 - Within the strip layer
 - Across neighbors
- Understand cross-talk impact of having only one vs. two ground shields for signal lines
 - Roughly x2 worse topbottom than with 2 shields
 - 6-layer PCB easier to manufacture vs. 7-layer
- Cross-talk specifications to be determined from physics performance
- Next prototype PCB under development with updated geometry

- Injecting to "bottom" side of tower 7 through a hole in the absorber
- Readout from the back inject to cell 14
- Readout from C15 (top) and C13 (bottom)
- Cross-talk down to 0.16-0.21% with 200 ns shaping
- Raw cross-talk higher, but after shaping lower
- Injecting to side closer to shield yields slightly lower x-talk
 - As ~expected..?

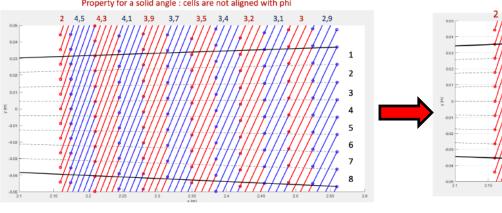
X-talk from bottom - the "new case"

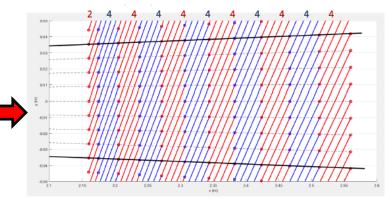




Simulation Studies

- ALLEGRO ECAL barrel full simulation
- π/γ discrimination BDT based on shower shape
 - Test performance of different detector designs
- ECAL cluster layer barycentre calculation with log(E) weights
 - Improved θ position resolution
- Updated geometry with cell corners projective in φ
- Event display
- MVA-based e/γ energy calibration

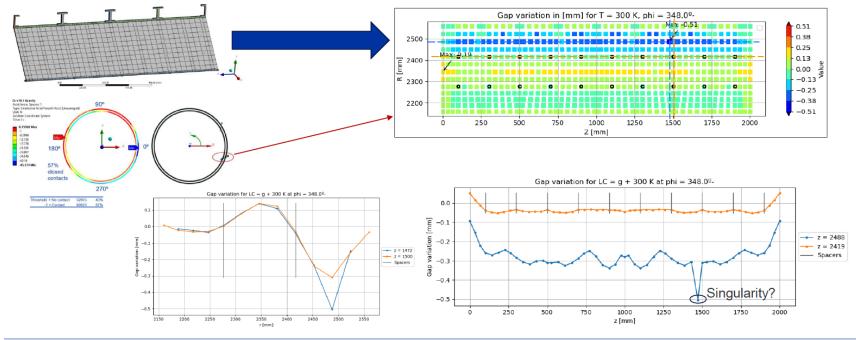

16000


Layer 4

Giovanni Marchiori

logE wgt

avg = -0.000585


LAr Gap Analysis

Fernando Aretio Zárate

- LAr gap calculated in FE model between PCB and absorber
- Understand impact of thermal and gravitational load on LAr gap (deformations)
- FE model precision needs to be better understood
- Results will help e.g. optimization of spacer placement

Gap variation in the simulation of a third barrel

- When gravity is applied, the maximum gap reduction is 0.51mm.
- These results are under study, as can appear some singularities due to several reasons (see Conclusions).

Cryostat design

Soledad Molina

Results:

5.1

6.64

6.59

5.1

15.9

8.2

2.7

OWC OCC

Wall Configuration Sandwich

Skin Th. [mm]

(Optimal) Total Th. [mm]

Material Budget X/X0

Buckling Safety Factor

SF Core Failure

Equivalent Stress [Pa] 6.20E+07

Shear YZ top skin [Pa] 4.39E+05 Shear XZ top skin [Pa] 4.39E+05

Shear YZ bottom skin [Pa] 4.39E+05

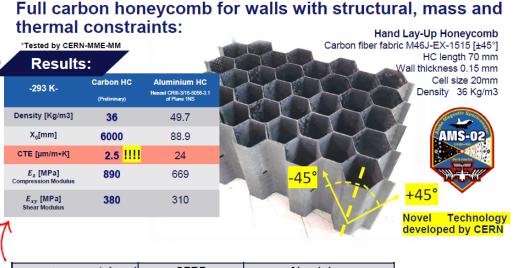
Shear XZ bottom skin [Pa] 4.39E+05

Max. total def. [mm]

Max. vertical def. [mm]

Min. Failure Safety Factor

Optimal


with FEA

Minimise dead material in front calorimeter

Four nested cylinders:

Outer Warm Cylinder (OWC)

- Outer Cold Cylinder (OCC)
- Inner Cold cylinder (ICC)
- Inner Warm Cylinder (IWC)
- Use sandwich of CF and honeycomb: Carbon Composite Cryostat
- Compare with Aluminum
- First large-scale prototype under test
 - l=1m, $\emptyset = 30cm$, 5mm wall
 - Long term leak-tightness
 - Production without autoclave

CFRP		Aluminium			
CFRP		CFRP		Aluminium	
owc	ICC	owc	ICC	owc	ICC
0.026	0.028	0.028	0.032	0.073	0.077
-64%	-64%	-61%	-57%	REF	REF
3.2	3.2	3.2	3.2	3	3
19.5	40	21.5	42	35	58
25.9	46.4	27.9	48.4	41	64
-37%	-28% .	-32%	-24%	REF	REF
	OWC 0.026 -64% 3.2 19.5 25.9	OWC ICC 0.026 0.028 -64% -64% 3.2 3.2 19.5 40 25.9 46.4	CFRP CF OWC ICC OWC 0.026 0.028 0.028 -64% -64% -61% 3.2 3.2 3.2 19.5 40 21.5 25.9 46.4 27.9	CFRP CFRP OWC ICC OWC ICC 0.026 0.028 0.028 0.032 -64% -64% -61% -57% 3.2 3.2 3.2 3.2 19.5 40 21.5 42 25.9 46.4 27.9 48.4	CFRP CFRP Alum OWC ICC OWC ICC OWC 0.026 0.028 0.028 0.032 0.073 -64% -64% -61% -57% REF 3.2 3.2 3.2 3.2 3 19.5 40 21.5 42 35 25.9 46.4 27.9 48.4 41

*CFRP: Carbon Fiber Reinforced Polymer *CTE: Coefficient of Thermal Expansion

Solid Aluminum To calculate Material Budget

R&D Baseline: full-carbon composite design for greater material budget savings

Radiation length X₀[mm] AI = 88.9HM CFRP = 260Honeycomb Al= 6000 Honeycomb CFRP = 12545

2.1

2.38

2.6

5.5

2.38

2.8

4.7

7.3

5.4

4.7

4.8

1.7

Sandwich Shell

Skin 0,45,-45,90]s Core: Honeycomb

Skin 0,45,-45,90]s

Maria Soledad Molina González | Carbon Composite Cryostat

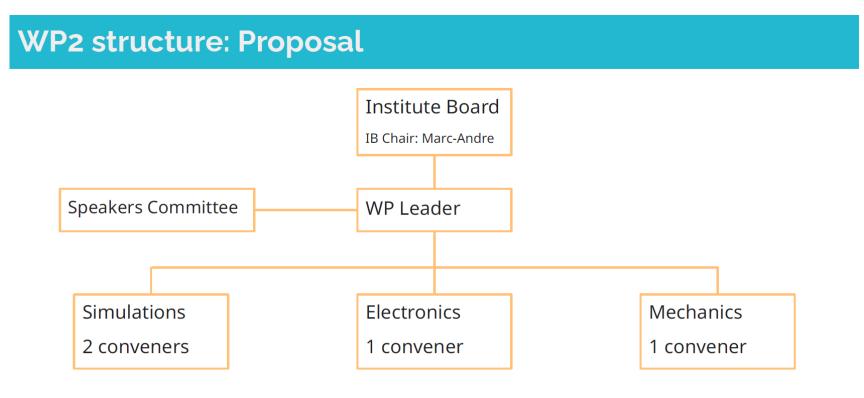
Current Baseline:

Material budget saving

respect to traditional

Profits of Carbon Composite compared to metal

Full carbon composite design offers: 64% savings in Mat Budget, 30% savings in Optimal Thickness, and one order of magnitude lower CTE



WP2 Open IB


Organizational Structure Proposal

Nicolas Morange

Designation of conveners:

- Nominations period to WP leader
- Names selected by WP leader, then endorsed by IB

N. Morange (IJCLab)

Meetings

Monthly meetings: Thursday, 15:00-17:00 CERN time Next three meetings (rest of the year to follow soon):

- May 16: Kickoff Meeting
 - Use first hour of the general meeting, followed by technical updates
 - A few slides with both short- and long-term interests for each institute
 - A template will be provided
- June 20 (yes, during ATLAS week)
- July 11

Activities will schedule additional meetings as needed

 Avoid proliferation of meetings, e.g. hold software technical meetings together with FCC software general meeting

Summary / Outlook

Significant technical progress reported in this meeting, lively discussions

- Regular monthly meetings to start (again) in May
- Central meeting to be augmented by activity meetings going forward
- New efforts welcome and needed!

Initial WP2 leadership team established

- Thank you for your support!
- Nicolas Morange endorsed yesterday by DRD6 CB.

WP2 organizational structure proposed

- Strongly inspired by ATLAS LAr community
- Further feedback and suggestions for activity leaders welcome!

