Summary of WP3 Parallel Session

Sehwook Lee (Kyungpook National University) on behalf of WP3 and April 11, 2024

Talks in WP3 Session

09:00 → 10:30	WP3 - Parallel Session 1		♥ 222/R-001 ≥∞∞m ► Join
	09:00	Welcome Speaker: Philipp Roloff (CERN) Image: Comparison of the second s	() 5m
	09:05	Trends, needs and synergies in scintillating materials Speaker: Etiennette Auffray Hillemanns (CERN) Image: DRDcalo_WP3_EAuf	③15m
	09:30	Exploiting Cherenkov in calorimetry Speaker: Nural Akchurin (Texas Tech University (US)) CherenkovCalorime	③ 15m
	09:50	Simulation of optical properties Speaker: Marco Pizzichemi (Universita Milano-Bicocca (IT) and CERN)	③ 15m
11:00 → 12:30	WP3: Para	allel Session 2	♥ 222/R-001 ≥∞∞m ► Join
	11:00	Photosensors for optical calorimetry Speaker: Randy Ruchti (University of Notre Dame (US)) Photosensors for C	③15m
	11:25	WP3 Organization matter Speaker: Gabriella Gaudio (INFN-Pavia) 20240410_WP3_org	() 20m

Overview of WP3 activities

Project Scintillator/WLS		Photodetector	DRDTs	Target			
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters							
HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-			
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-			
Crilin	PbF_2 , $PWO-UF$	SiPMs	6.2, 6.3	$\mu^+\mu^-$			
Task 3.2: Innovative Sampling EM calorimeters							
GRAiNITA	$ZnWO_4, BGO$	SiPMs	6.1, 6.2	e^+e^-			
\mathbf{SpaCal}	GAGG, organic	$\operatorname{MCD-PMTs}, \operatorname{SiPMs}$	6.1, 6.3	e^+e^-/hh			
$\mathbf{RADiCAL}$	LYSO, LuAG	SiPMs	6.1, 6.2, 6.3	e^+e^-/hh			
Task 3.3: (EM+)Hadronic sampling calorimeters							
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-			
$\mathbf{TileCal}$	PEN, PET	SiPMs	6.2, 6.3	e^+e^-/hh			
Task 3.4: Materials							
ScintCal	_	_	6.1, 6.2, 6.3	$e^+e^-/\mu^+\mu^-/hh$			
CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	_	DBD experiment			
	NaMoO, ZnMoO						

10/04/2024

Welcome to the WP3 parallel sessions

Philipp Roloff

- R&D on garnet materials: YAG, LuAG, GAGG, LuGAGG, GYAG, etc.. \Rightarrow Accelerate decay time and preserving radiation hardness
- R&D on exploitation Cherenkov in scintillating materials
 - Improve transmission in UV
 - Investigation of the readout of both signal
- Explore new developments with nanocomposite scintillators R&D on crossluminescence for fast timing calorimeter and time tagger_
- R&D on radiation hard plastic Synergy with DRD4-WP5 => need to work together
- R&D on radiation hard wavelength shifters
- R&D of <u>scintillating glasses or</u> Ceramics E. Auffray, 10/04/2024

Scintillation decay - Pulsed X-Rays

E. Auffray

No major loss of time resolution!

Decay time decrease compensated the Light output reduction => the same photon time-density

R&D on going in different groups for define optimal composition and production

Exploitation of Cherenkov/scintillation in intrinsic scintillating crystals **E. Auffray**

E. Auffray, 10/04/2024

component in BaF₂ by doping \Rightarrow No change in short decay \Rightarrow No impact on time resolution

Development on Scintillating Glasses

- Since some years new developments on glasses within different projects (eg ATTRACT project, EIC R&D)
 - Oxyde and Fluoro glasses
 - Attempt to increase the density and the radiation hardness
 - Progress in production scale

Fluorophosphate AFO glasses Timing resolution with mip

R&D for Organic Scintillators

Organic glasses developed in Sendai National lab

From L. Q Nguyen et al., NIMA 1036 (2022) 166835

Polyethylene Naphtalate(PEN)

E. Auffray

350 400 450 500 550

P. Conde Muino et al., arXiv:2312.14790v1

Polysiloxane materials

See also A. Boyarintsev NIMA 930, 2019, 180–184 A. Quaranta et al. NIM B, 268, Issue 19, 2010, Pages 3155-3159 Wavelenght, nm

Courtesy A Boyarintsev, ISMA, Kharkiv

	•	- i
	0.9	[a.
	0.8	sity
PEN Transmittance	0.7	nter
PEN Rad Damage 2022	0.6	ion I
Transmittance	0.5	nissi
PEN Emission	0.4	ш
	0.3	
	0.2	
	0.1	
	0	
Wavelength [nm]		

- PEN Transmittance

Start with an Example : BSO Six distinct features distinguish Cherenkov radiation from

scintillation:

- Emission/wavelength spectrum (1/ λ^2 vs scintillator specific) 2.
- MeV)
- 4. Timing (Prompt vs ~several ns)
- 5. Polarization (linearly polarized vs unpolarized)
- 6. Cherenkov light is feeble (scintillation is often not)

1. Directionality (Cherenkov cone, $\theta_c = \cos^{-1} (1/\beta n(\lambda), vs$ isotropic emission) 3. Cherenkov threshold (T=(γ -1)mc², for n=2 electrons:~80 keV, protons: ~140

Cherenkov Radiation and Polarization - I

Number of tracks and optical photons

When optical photons are involved, the number of particles to propagate through the geometry greatly increases

- Homogeneous **PWO crystal** (120x120x250 mm³) hit by a single **1 GeV electron**:
 - On the left, only em shower particles \rightarrow **2.5k tracks**
 - On the right, adding optical photons \rightarrow 100k tracks

Remember that PWO has a low light yield (100 Ph/MeV), typical scintillators have in the order of 10kPh/MeV marco.pizzichemi@cern.ch

Speedup strategies

At least to my knowledge, the main strategies to reduce computation time with Geant4 fall into 3 categories

Parameterization

Skipping the optical photon propagation entirely, reproducing the effects in a parameterized way

- Can be very CPU-efficient
- Applicability is highly
- application dependent Can result in loss of information

Ray tracing on GPU

Moving the ray tracing classes of Geant4 on GPU

- Few physics processes need to be implemented on GPU
- Little data transfer CPU-GPU
- Minimal communication between threads
- Can benefit from available efficient algorithms and hardware (NVIDIA CUDA, NVIDIA OptiX)

Rendering technologies on GPU

Performing the propagation of optical photons outside Geant4, using rendering technologies

- Active development, often used in animated movies
- Can be performed on GPUs as well

CPU time and optical photons

Simple test performed with Geant4.11 on 2 different configurations, on local PC

- Homogeneous PWO crystal (120x120x250 mm³):
 - No optical photons
- → **0.06s** per GeV of primary electron
- With optical photons
- → **3.2s** per GeV of primary electron
- About **50x slower** with optical photons
 - 1 crystal 120x120x250 mm³
 - PWO light yield 100 Ph/MeV
- **SpaCal** module made of W and Polystyrene (120x120x200 mm³):
 - No optical photons
- → **0.25s** per GeV of primary electron → 633s per GeV of primary electron
- About **2500x slower** with optical photons

With optical photons

- 5184 crystals, each 1x1x200 mm³
- Sampling fraction about 5%
- Polystyrene light yield 10000 Ph/MeV

M. Pizzichemi

Opticks in Geant4

- Opticks is an open-source project that accelerates optical photon **simulation in Geant4** by:
 - Translating the Geant4 geometry to NVIDIA OptiX without approximation
 - Implementing the Geant4 optical processes on the GPU
 - Integrating NVIDIA GPU ray tracing
- Geant4 handles on CPU all particles but optical photons
- Information on Cherenkov and Scintillation photons stored
- Generation and tracing of optical photons is **offloaded to Opticks** and performed on GPU

Figure 1. Cutaway OpenGL rendering of millions of simulated optical photons from a 200 GeV nuon crossing the JUNO liquid scintillator. Each line corresponds to a single photon with line colenting the polarization direction. Primary particles are simulated by Geant4, scintillation and Cherenkov "gensteps" are uploaded to the GPU and photons are generated, propagated and visualized all on the GPU. Representations of some of the many thousands of photomultiplier tubes that instrument the liquid scintillator are visible. The acrylic vessel that contains the liquid scintillator is not shown.

ation framework with Opticks: GPU accelerated opti

- Primarily developed for simulation of the JUNO detector
 - Demonstrated **speedup factor up to 1500x** using a single NVIDIA Quadro RTX 8000 GPU compared to a single threaded Geant4 simulation
- Example using Opticks is **available in Geant4.11**:
 - **CaTS**: Calorimeter and Tracking Simulation
 - Demonstrated speedup of a factor about 200x

Photosensor types under current use/investigation

Detector	Photosensor	Light Detection	Measurement	Photosensor options - examples	
	Locations in Detectors		Objectives	R. Ru	
EM Calorimetry	Crystal faces	ScintillationCherenkov	Energy Timing Position	SiPM arrays: HPK S14160/S14161 SiPM: HPK HDR2 SiPM: FBK NUV-HD SiPM: FBK RGB	
	 Ends of scintillating waveshifting fibers and capillaries 	 Scintillation Waveshifter Cherenkov 	Energy Timing Position Sampling at strategic depths	PMT: R12421 MCD-MT: R7600U-20 SiPM: HPK HDR2	
Hadron Calorimetry	On scintillator tiles	 Scintillation 	Energy Timing Position	SIPM: HPK HDR2	
	 At ends of fibers 	 Scintillation Cherenkov 	Energy Timing Position	SiPM arrays of selected pixel dimensions MCP-PMT: PLANACON XP85112, PLANACON XP85012	

FBK SiPM development for RADiCAL (arXiv:2203.12806) for fast timing, avoid saturation

Format to reduce boundary regions between SiPM pixels

SiPMs

SiPMs

Pulse from a FBK SiPM with $5\mu m$ pixels. Horizonal scale division is 2.5ns.

DRD6 WP3 - Photosensors for Calorimetry - 10.Apr.24

11

MCP-PMT for DRCAL

XP85012 (Cherenkov)

Haeun Jang (Yonsei Univ) 2023 KPS Fall Meeting Objective: To use timing to locate shower depth

SiPM signals and front electronics/DAQ **R. Ruchti**

DRD6 WP3 - Photosensors for Calorimetry - 10.Apr.24

MCD-PMT for LHCb

Using: R7600U-20, ~20psec time resolution Using: R12421 , 10%/sqrt(E) constant term for beam angle θx , $\theta y = 3^{\circ}$

Some characteristics of R7600U-20 MCD PMT

TIME (2 ns/div) Benefit: Fast, effient, room temperature.

WAVELENGTH (nm)

DRD6 WP3 - Photosensors for calorithetry - 10.Apr.24

14

17

WP3 coordinator election

- To be done soon after the Collaboration Workshop Nominations:
 - The nomination is open to the whole community, as individuals, groups or projects. \bigcirc Self-nominations are also allowed
 - Mail will be sent around with information with detailed procedure 0
- Short-list
 - The search committee verifies availability of nominees to stand for election \bigcirc A meeting will be organised for candidates presentation and Q&A session 0
- Election
 - Electronic vote will be put in place \bigcirc
 - 1 project = 1 vote 0

Summary

- R&D groups in WP3 introduced the achievements and ongoing studies.
- Efforts for further development will continue to satisfy the requirement for future experiments.
- Stay tuned to WP3 studies for more interesting results!