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Detector R&D and software

➢ Detector R&D activities rely on many different software (SW) packages

➢ Ranging from commercial Finite Element Analysis tools (usually Windows) to custom made
DAQ systems

➢ And including detector geometry description, digitization, reconstruction, analyses,
distributed computing, …

➢ It is difficult to reach the “one solution fits all needs” → SW ecosystem

➢ But we should try get as close as we can

➢ Why?

➢ Starting software from scratch brings important overhead → inefficient usage of manpower if
every Work Package (WP) develops their own solutions

➢ And R&D/test-beam teams are usually small... 
➢ Code sharing across DRD6 WP's (and across DRD's)

➢ Practical only if we agree in advance on technology choices (consistent framework)
➢ Re-using code (with minimal modification) over e.g. different test-beam campaigns of a WP

➢ Needs a continuously maintained framework  
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DRD Data Persistency

➢ DRD's will produce a lot of valuable data (e.g. test-beams)

➢ These data should be accessible and analyzable by people not directly involved in their
production

➢ DRD's will span over decades

➢ The data should remain readable over long periods of time (target should be “forever”)

➢ Release/versioning scheme, backward compatibility 
➢ But the technology choice has to be made 'today'

➢ Does not mean it can/will not evolve

➢ A good candidate for DRD6 software ecosystem should be “modern”, used by a
large community and with good chances to be maintained over the long run

➢ Key4hep would be a natural choice to develop (most) DRD6 software

➢ Win-win situation

➢ Key4hep already meets a lot of DRD6 needs (profit from existing component)
➢ Seamlessly port DRD6 developments (e.g. from test beams) to the more general future

collider Full Sim studies (already using Key4hep)
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Key4hep Philosophy

➢ Key4hep is a software framework serving (and developed by) the future collider
community

➢ Key4hep guiding principles

➢ Interoperability: what is developed by some should be useable by others (with minimal
modifications)

➢ Versatility: covers a large spectrum of needs (serves diverse facilities and detectors)

➢ Flexibility: still under active development (nothing is frozen), targets “the future” → has to adapt
to evolving needs, detector configurations, etc
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Key4hep Building Blocks

➢ Key4hep building blocks: state of the art software with active user community

➢ Algorithm orchestration framework: Gaudi (LHCb, ATLAS)

➢ Data format for algorithm input/output: edm4hep 

➢ ROOT based, inspired by lcio (used in CALICE) and FCC-edm, built with PODIO (more later)

➢ Detector geometry description: DD4hep (LHCb, CMS, …)

➢ Package manager building the software stack: Spack (1.3k+ contributors)

➢ Interoperability enabled by the compliance to the above (aka being 'Key4hep compliant')

➢ When possible/practical, prefer interfacing existing solutions over starting from scratch

➢ Inspired by LHC solutions and integrates e.g. iLCSoft packages (used in CALICE)

➢ Avoid re-inventing the wheel
➢ Can be used with edm4hep data (converter), as Gaudi algorithms (wrappers)
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Key4hep Releases

➢ With cvmfs mounted, sourcing one script gives you access to the whole Key4hep stack

➢ Plethora of consistently built HEP software packages (ROOT, Geant4, KKMC, Whizard,
PyTorch, …) and future collider user codes e.g. FCC/ILC calos reconstruction chains

➢ Two types of release

➢ Stable releases: built ~twice a year, guaranteed stability, availability on the long run

➢ Nightly releases: built every day, stability not guaranteed, includes greatest and latest versions of
all packages, short-lived

➢ For development purposes

➢ Supported Operating System: AlmaLinux9, Ubuntu 22

➢ Docker images available

➢ A lot of testing functionalities are in place

➢ Building

➢ Running unit tests and/or complete algorithm chains

➢ Physics based validation
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EDM4hep and podio

➢ EDM4hep is the data model of Key4hep

➢  Input/Output of all components

➢ A must to exploit synergies
➢ Full freedom on what is used internally

➢ EDM4hep data model generated by podio

➢ C++ classes and Python bindings automatically generated
from a simple YAML data description

➢ User friendly interface, including relations between collection

➢ Schema evolution: can still read 'old data' with newer versions of EDM4hep (from v1.0 onwards)

T. Madlener
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EDM4hep

➢ Schematic view of the EDM4hep data model (some changes coming with version > 1.0)

➢ Easy to extend to complete the data model if needed

➢ First user defined extension for development → upstream to main edm4hep once finalized
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DD4hep

➢ DD4hep: generic detector geometry implementation framework supporting the
full life cycle of the experiment

➢ Conceptualization, optimization, construction and operations

➢ Whole detector description from a single source of information
➢ Geometry, materials, readout, alignment, calibration, …
➢ Accessible from simulation, visualization, reconstruction and analysis

➢ Now a community standard: CMS, LHCb, EIC, ILC, CEPC, FCC, … 
➢ Convenient factorization enables the plug and play approach

➢ C++ for generic geometry structure construction (where complexity hides)
➢ Very simple XML configuration for detector specific implementations (dimensions,

materials, readout granularity, etc)
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Implementing Detector Geometries

➢ Implementing the detector geometry description in DD4hep
➢ DD4hep detector examples: from simple shape based to complex geometries
➢ Many future collider detector geometries available in k4geo, useful to take inspiration

➢ Full sub-detectors (Si-W, Noble Liquid, Dual-Readout, TileCal, …) and test-beam
prototypes (CALICE)

➢ Many experts happy to provide support! 

➢ Some studies require more than a calorimeter
➢ How is my sub-detector performing in a full detector concept? 
➢ How to optimize my sub-detector based on high level quantities?

➢ In DD4hep, a sub-detector can be plugged in an existing full detector concept with
minimal work (varies depending on how the det. concept was implemented) 

➢ E.g. ALLEGRO ECAL plugged in CLD to start ParticleFlow developments

➢ Many available in k4geo: ALLEGRO, CLIC, CLD, IDEA, ILD, SiD, … 

➢ DD4hep provides tools to visualize the detector, handle detector condition data
(DDCond), alignment (DDAlign), … 

➢ Still under active development, can integrate potential uncovered DRD6 need 

https://github.com/AIDASoft/DD4hep/tree/master/examples
https://github.com/key4hep/k4geo
https://github.com/key4hep/k4geo
https://dd4hep.web.cern.ch/dd4hep/usermanuals/DDCondManual/DDCondManual.pdf
https://dd4hep.web.cern.ch/dd4hep/usermanuals/DDAlignManual/DDAlignManual.pdf
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Simulation

➢ Recommended way to interact with Geant4: ddsim (part of DD4hep)

➢ Supports many generator output formats: stdhep, hepmc, hepevt

➢ Several particle guns available (including Geant4 GPS)

➢ Passes Gen level particles to Geant4, taking into account e.g. charged particle with macroscopic
displacement that have to be curved due to magnetic fields (not accessible to generators)

➢ Highly configurable: PhysicsList, SensitiveActions, rangeCut, …

➢ Command line interface or (better) configured with a Python steering file
➢ ddsim -h and ddsim –dumpSteeringFile for more details

➢ Produces two edm4hep collections per calorimeter readout

➢ SimCalorimeterHit with energy per readout cell, linked to CaloHitContribution being
single energy deposits inside the cell (only the latter has time information)  

➢ Get linking between CaloHitContribution and MCParticle out of the box
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Digitization

➢ Software digitizers are Gaudi algorithms receiving edm4hep::SimCalorimeterHit (or
edm4hep::RawCalorimeterHit/TimeSeries) and outputting edm4hep::CalorimeterHit

➢ A lot of similarities across calorimeter technologies → can share common generic algorithms

➢ Several (simple) digitization algorithms already available in Key4hep

➢ ALLEGRO: CreateCaloCells

➢ Cell calibration (sampling fraction), noise, zero suppression (planning a more detailed version)
➢ Used both for Noble Liquid ECAL and the TileCal HCAL (quite generic) 

➢ ILCSoft digitization: DDCaloDigi (lcio data format based)

➢ Used e.g. for CLD ECAL and HCAL with edm4hep format through wrappers/converters
➢  Detailed Dual-readout digitization: DigiSiPM based on SimSiPM (full waveform)

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CreateCaloCells.h
https://github.com/iLCSoft/DDMarlinPandora/blob/master/include/DDCaloDigi.h
https://github.com/HEP-FCC/dual-readout/blob/master/DRdigi/include/DigiSiPM.h
https://github.com/EdoPro98/SimSiPM
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Reconstruction Algorithms

➢ Three calo clustering algorithms available in Key4hep

➢ CreateCaloClustersSlidingWindow

➢ Simple sliding window with fixed size (ALLEGRO E/HCAL)
➢ CaloTopoCluster

➢ Find seeds and iteratively collects cells in several
steps of S/N thresholds (ALLEGRO E/HCAL)

➢ k4CLUE (originates from CMS)

➢ Fast, energy-density based algorithm. Already
applied on LAr, CLD and CLIC ECALs

➢ Only 2D clustering for now (per longitudinal layer)
➢ k4Clue3D on its way

➢ Particle Flow: PandoraPFA available through
Wrappers/Converters

➢ Used in CLD, and CLD with LAr ECAL

➢ k4PandoraPFA under development

2311.03089

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CreateCaloClustersSlidingWindow.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CaloTopoCluster.h
https://github.com/key4hep/k4Clue
https://arxiv.org/abs/2311.03089
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Online Software & Data Preservation

➢ People developing online software solutions may not need (nor want) the full Key4hep stack

➢ “Low level” code with little dependencies, lose requirements in terms of e.g Operating System,
should be possible to run it without internet connection (no cvmfs)

➢ More details in Gerald's and Andreas' talks

➢ Encouraging DRD(6) collaborators to use a common framework for online software
development would still be highly beneficial (e.g. EUDAQ)

➢ Not re-inventing the wheel, share code and expertise, …
➢ Data preservation?

➢ After/during data taking, translate EUDAQ
produced data into edm4hep format

➢ Schema evolution guarantees to be able to
read these data on the long run

Experiment RAW Data
edm4hep

object
EUDAQ

Key4hep 
Unpacker

https://indico.cern.ch/event/1368231/timetable/#35-lesson-from-calice-software
https://indico.cern.ch/event/1368231/timetable/#25-dqm-for-eudaq2
https://github.com/eudaq/eudaq


  

18SW ecosystem for DRD6 Brieuc François

Online/Offline Software Compatibility

➢ How to guarantee synchronization between data frame format definition (EUDAQ) and
the unpacker (Key4hep)?

➢ Include EUDAQ in Key4hep (releases ensure compatibility and reproducibility)

➢ Does not mean EUDAQ users need Key4hep
➢ Or factor the packer/unpacker out of EUDAQ, as a library living in Key4hep

➢ Library depends on edm4hep but is free from EUDAQ dependencies (packer only
manipulates low-level objects)  

➢ Interface this 'external' library to EUDAQ

Key4hep

EUDAQ

Experiment RAW Data
edm4hep

object
EUDAQ

Key4hep 
Unpacker

Packer and 
edm4hep unpacker 

library 

https://github.com/eudaq/eudaq
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Further Topics

Further topics that could not be covered in details
➢ Porting test-beam data to Geant4 validation: benefits to the whole HEP community and more

➢ See Lorenzo's talk

➢ Machine learning
➢ PyTorch available in Key4hep

➢ Training can potentially be done outside of Key4hep 
➢ Models from any other machine learning framework (e.g. TensorFlow) can be evaluated inside

Key4hep through the ONNX interface

➢ Cluster correction
➢ Several Key4hep Gaudi algorithms already exists: upstream/downstream energy correction, MVA

based calibration (Noble Liquid ECAL)

➢ Flat Tree Producer + Analyses: having common DRD6 tools is also important here
➢ FCCAnalyses available in Key4hep: RDataFrame based analysis tools of edm4hep events
➢ A “caloNtupleizer” is already there and can be extended or used as example

➢ Produces a plain root tree easy to manipulate for analysis
➢ Plain C++ version ongoing
➢ Performance plotter to be written

https://indico.cern.ch/event/1368231/timetable/#36-geant4-geant-val-drd6
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py
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Code Organization

➢ Key4hep has a highly factorized structure

➢ Many “task oriented” GitHub repositories

➢ Minimizes frictions between independent developments

➢ The DRD6 needs being quite specific, it may be interesting to investigate different
approaches

➢ E.g. having one repository hosting all the components needed for a given test-beam

➢ While the code should be 'Key4hep compliant' maybe not everything must be
included in Key4hep (i.e. made available with the stack environment)

➢ Included in Key4hep ↔ can harm the stack if not properly maintained

➢ Possible approach

➢ Having “common/generic core components” needed for DRD6 activities inside
Key4hep, leave specific applications being 'only' Key4hep compliant

➢ Still need to maintain “user” code, but won't harm Key4hep if not
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Getting Everyone Onboard

➢ Following “common software policies” and writing generic code with
documentation is clearly beneficial at the collaboration level but may be seen as
adding overhead on individuals

➢ Community effort: how do we get everyone onboard?

➢ Lower the 'barriers to entry' as mush as we can

➢ Hide the complexity for the end users 

➢ Github repository template including dependencies/testing/etc

➢ Ready to be used to start a new project: k4-project-template
➢ May want a DRD6 specific version (e.g. adding the DD4hep dependency, …)

➢ The added value of the centrally available tools must overcome the potential
overhead of using the common framework

➢ Will need some 'pioneering' work

➢ If transversal working group activities is on a best effort basis, it has to be somehow
rewarded 

https://github.com/key4hep/k4-project-template
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Useful Resource

➢ Useful Resource

➢ Full Sim with Key4hep tutorial

➢ FCC Full Sim webpage

➢ Key4hep tutorials

➢ Bi-weekly FCC Full Sim working meeting, announced on the FCC-PED-
SoftwareAndComputing-Full-Simulation e-group

➢ Key4hep/edm4hep working meetings, announced on the key4hep-sw e-group

https://hep-fcc.github.io/fcc-tutorials/master/full-detector-simulations/FCCeeGeneralOverview/FCCeeGeneralOverview.html
https://fcc-ee-detector-full-sim.docs.cern.ch/
https://key4hep.github.io/key4hep-doc/setup-and-getting-started/README.html
https://indico.cern.ch/category/16938/
https://indico.cern.ch/category/11461/
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Summary

➢ DRD6 has important software needs

➢ Using a common software ecosystem will allow us to leverage synergies

➢ Across DRD's, across DRD6 WP's and across WP phases

➢ Data persistency must be a central consideration (valuable datasets will be produced)

➢ Key4hep is a very good candidate to be the common software base for (most) DRD6 activities

➢ Wide (and growing) adoption by the Future Collider Community (but built with LHC experience)

➢ Already meets most DRD6 needs (except for online software, likely not integrated in Key4hep, but
for which we should still have common standards)

➢ Under active development: can be adapted/complemented if needed

➢ The Key4hep team warmly welcomes new contributors

➢ Good opportunity for the DRD6 Transversal Software Working Group!

➢ Next important step: agree on the set of software tools that we want to set as standards 

Thanks to the Key4hep team for the useful
feedback and discussions!
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The Detector Zoo

CLD

IDEA

ALLEGRO CRD's

ILD
like

Full-silicon

4th CEPC concept
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Dual Readout Digitization

➢ Going through the full waveform with SimSiPM 
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Detector description (I)

➢ Factorized Detector Building (DD4HEP)
➢ C++ detector factory: handles the generic geometry structure

➢ Cryostat cylinder, inclined plates, …
➢ XML file with specific detector parameters

➢ Inner/Outer radius, materials, inclination, … 
➢ Allows you to study different scenarios with minimal work

➢ Detector segmentation based on DD4HEP Readouts
➢ Readout cells differ in general from physical cells

➢ E.g. having high sampling frequency improves energy resolution
→ phi granularity higher than what physics requires

➢ Flexibility choice: do the time consuming Geant4 simulation with
atomic granularity, then apply (possibly several) cell
recombinations with RedoSegmentation

➢ Caveats
➢ The same cell recombination scheme is applied to the whole

calorimeter
➢ One would like to have smaller cells for e.g. the strip layer

➢ The cell position assignment would benefit from a refactoring

k4SimGeant4FCCDetectors
(DD4HEP)

https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCChhECalInclined/src/ECalBarrelInclined_geo.cpp
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml#L60-L75
https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetComponents/src/RedoSegmentation.h
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Detector description (II)

➢ Accurate FCC-ee  detector description

➢ 1536 absorber plates: 100 μm Steel sheet +
100 μm glue + 1.8 mm Lead

➢ 2 x 1.2 mm sensitive LAr gap (widening
towards high radius) + 1.2 mm PCB

➢ Typical readout cells size

➢ θ x Φ x r ~ 2 (0.5 strip) x 1.8 x 3 cm3

➢ Cryostat + space reserved for services (filled with LAr)

➢ 40 cm depth sensitive area, ~23 X
0
 including the cryostat

➢ So far, only the Barrel ECAL has been implemented for the
FCC-ee geometry

➢ Currently working on Endcap LAr ECAL implementation

materials.xml

k4SimGeant4FCCDetectors
(DD4HEP)

https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetCommon/compact/materials.xml#L204-L221
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/FCCDetectors
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Sampling Fraction

➢ In a Sampling Calorimeter, only a fraction of the particle energy is measured

➢ One scales each cell energy to account for energy deposited in absorber and PCB

➢ Modified detector config with the absorbers set as sensitive (XML)

➢ SamplingFractionInLayers stores the energy ratio
(active/passive) per event and per longitudinal layer  

➢ SF = mean of Gaussian fit of the active/passive energy ratio

➢ Propagate results to CalibrateInLayersTool

➢ Fully automatized procedure (with control plots)

➢ Everything defined in a Gaudi config can
be passed as command line argument

➢ Or you can use sed for more permanent usage

➢ In a Noble Liquid calorimeter, the sampling fraction has almost
no dependence on the incident particle energy

➢ No need to apply this procedure to many energy points

k4RecCalorimeter

k4SimGeant4

User Code

https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetStudies/src/components/SamplingFractionInLayers.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CalibrateInLayersTool.h
https://doc.ubuntu-fr.org/sed
https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/HEP-FCC/k4SimGeant4
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Upstream/Downstream energy correction

➢ Unmeasured energy deposited in upstream
material: calorimeter supporting structure/cryostat,
magnet, services, …

➢ Always try to minimize calorimeter radial extent +
stochastic nature of shower depth → energy
deposited after the calorimeter

➢ Strong correlation between energy in first(last)
sensitive layer and energy deposited
upstream(downstream) → one can correct for that!

➢ EnergyInCaloLayers → stores energy in various dead
materials and in all the active layers (modified XML)

➢ Centrally available scripts perform the fits

➢ CorrectCaloClusters → applies the correction based
on cluster total energy and energy from first/last layer

➢ Again, fully automatized procedure with
intermediate diagnostic plot production 

Juraj Smiesko

k4SimGeant4

k4RecCalorimeter

https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetStudies/src/components/EnergyInCaloLayers.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CorrectCaloClusters.h
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/k4RecCalorimeter
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Noise

➢ Noise depends on many factors
➢ Detector capacitance, signal extraction scheme, front-end electronics, etc... 

➢ Estimated outside of the main software framework: Finite Element Method tools (Ansys)
+ analytical implementation (Mathematica)

➢ Stored in a rootfile, per longitudinal layer and as a function of polar angle

➢ Introduced in the simulation by NoiseCaloCellsFromFileTool
➢ Random number from Gaussian whose width is taken from the rootfile (layer/Θ dependent) 

➢ Added only after the final readout segmentation step (cell geometry dependance)

➢ Very tricky to fully automatize

k4RecCalorimeter

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/NoiseCaloCellsFromFileTool.h
https://github.com/HEP-FCC/k4RecCalorimeter
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Practical workflow example

➢ Little user specific code needed to orchestrate these tools and automatize the sequence 

k4RecCalorimeterk4SimGeant4k4Gen

LXPlus HTCondor submission script
➢ Less events per job towards higher energy → 10 energy

points (1 – 200 GeV) with 10 k events takes < 2 hours 
➢ Writes all the subsequent shell scripts

FCCAnalyses
 CaloNtupleizer

➢ Outputs plain ROOT n-tuples
➢ Very easy to analyze with simple

macros
➢ Parametrizable object content
➢ Can store multiple objects of the

same type (e.g. Sliding Window
and Topo Clusters)

➢ Can access DD4HEP geometry
information (decode the cellID)

Shell
script

Simple analysis 
macro

Outputs

RunCaloSim.py

Shell
script

https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/k4Gen
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecFCCeeCalorimeter/tests/options/runCaloSim.py
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Performance results

➢ Example of performance results produced recently with FCC-ee LAr ECAL

τ final state categorization confusion matrix
Energy resolution for different absorber and

Noble Liquid material

Moliere Radius comparison between Pb + LAr and W + LKr 

➢ Stay tuned, more to come!
➢ Not so far from being able to do a first Full Sim physics analysis (e.g. Axion → ɣɣ once

we have the ECAL endcap)

Mark Waterlaat

Katinka Wandall-Christensen and Mogens Dam
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