

Software Ecosystem for DRD6

Brieuc Francois (CERN)

DRD6 Collaboration Meeting

April 11th, 2024

2SW ecosystem for DRD6 Brieuc François

Content

➢ Detector R&D and software

➢ Key4hep Overview

➢ Key4hep for DRD6

➢ What is already available to serve DRD6 needs

➢ Organization

3SW ecosystem for DRD6 Brieuc François

Detector R&D and software

➢ Detector R&D activities rely on many different software (SW) packages

➢ Ranging from commercial Finite Element Analysis tools (usually Windows) to custom made
DAQ systems

➢ And including detector geometry description, digitization, reconstruction, analyses,
distributed computing, …

➢ It is difficult to reach the “one solution fits all needs” → SW ecosystem

➢ But we should try get as close as we can

➢ Why?

➢ Starting software from scratch brings important overhead → inefficient usage of manpower if
every Work Package (WP) develops their own solutions

➢ And R&D/test-beam teams are usually small...
➢ Code sharing across DRD6 WP's (and across DRD's)

➢ Practical only if we agree in advance on technology choices (consistent framework)
➢ Re-using code (with minimal modification) over e.g. different test-beam campaigns of a WP

➢ Needs a continuously maintained framework

4SW ecosystem for DRD6 Brieuc François

DRD Data Persistency

➢ DRD's will produce a lot of valuable data (e.g. test-beams)

➢ These data should be accessible and analyzable by people not directly involved in their
production

➢ DRD's will span over decades

➢ The data should remain readable over long periods of time (target should be “forever”)

➢ Release/versioning scheme, backward compatibility
➢ But the technology choice has to be made 'today'

➢ Does not mean it can/will not evolve

➢ A good candidate for DRD6 software ecosystem should be “modern”, used by a
large community and with good chances to be maintained over the long run

➢ Key4hep would be a natural choice to develop (most) DRD6 software

➢ Win-win situation

➢ Key4hep already meets a lot of DRD6 needs (profit from existing component)
➢ Seamlessly port DRD6 developments (e.g. from test beams) to the more general future

collider Full Sim studies (already using Key4hep)

Key4hep Overview

➢ Δθη
ΦμΩ

6SW ecosystem for DRD6 Brieuc François

Key4hep Philosophy

➢ Key4hep is a software framework serving (and developed by) the future collider
community

➢ Key4hep guiding principles

➢ Interoperability: what is developed by some should be useable by others (with minimal
modifications)

➢ Versatility: covers a large spectrum of needs (serves diverse facilities and detectors)

➢ Flexibility: still under active development (nothing is frozen), targets “the future” → has to adapt
to evolving needs, detector configurations, etc

7SW ecosystem for DRD6 Brieuc François

Key4hep Building Blocks

➢ Key4hep building blocks: state of the art software with active user community

➢ Algorithm orchestration framework: Gaudi (LHCb, ATLAS)

➢ Data format for algorithm input/output: edm4hep

➢ ROOT based, inspired by lcio (used in CALICE) and FCC-edm, built with PODIO (more later)

➢ Detector geometry description: DD4hep (LHCb, CMS, …)

➢ Package manager building the software stack: Spack (1.3k+ contributors)

➢ Interoperability enabled by the compliance to the above (aka being 'Key4hep compliant')

➢ When possible/practical, prefer interfacing existing solutions over starting from scratch

➢ Inspired by LHC solutions and integrates e.g. iLCSoft packages (used in CALICE)

➢ Avoid re-inventing the wheel
➢ Can be used with edm4hep data (converter), as Gaudi algorithms (wrappers)

8SW ecosystem for DRD6 Brieuc François

Key4hep Releases

➢ With cvmfs mounted, sourcing one script gives you access to the whole Key4hep stack

➢ Plethora of consistently built HEP software packages (ROOT, Geant4, KKMC, Whizard,
PyTorch, …) and future collider user codes e.g. FCC/ILC calos reconstruction chains

➢ Two types of release

➢ Stable releases: built ~twice a year, guaranteed stability, availability on the long run

➢ Nightly releases: built every day, stability not guaranteed, includes greatest and latest versions of
all packages, short-lived

➢ For development purposes

➢ Supported Operating System: AlmaLinux9, Ubuntu 22

➢ Docker images available

➢ A lot of testing functionalities are in place

➢ Building

➢ Running unit tests and/or complete algorithm chains

➢ Physics based validation

9SW ecosystem for DRD6 Brieuc François

EDM4hep and podio

➢ EDM4hep is the data model of Key4hep

➢ Input/Output of all components

➢ A must to exploit synergies
➢ Full freedom on what is used internally

➢ EDM4hep data model generated by podio

➢ C++ classes and Python bindings automatically generated
from a simple YAML data description

➢ User friendly interface, including relations between collection

➢ Schema evolution: can still read 'old data' with newer versions of EDM4hep (from v1.0 onwards)

T. Madlener

10SW ecosystem for DRD6 Brieuc François

EDM4hep

➢ Schematic view of the EDM4hep data model (some changes coming with version > 1.0)

➢ Easy to extend to complete the data model if needed

➢ First user defined extension for development → upstream to main edm4hep once finalized

11SW ecosystem for DRD6 Brieuc François

DD4hep

➢ DD4hep: generic detector geometry implementation framework supporting the
full life cycle of the experiment

➢ Conceptualization, optimization, construction and operations

➢ Whole detector description from a single source of information
➢ Geometry, materials, readout, alignment, calibration, …
➢ Accessible from simulation, visualization, reconstruction and analysis

➢ Now a community standard: CMS, LHCb, EIC, ILC, CEPC, FCC, …
➢ Convenient factorization enables the plug and play approach

➢ C++ for generic geometry structure construction (where complexity hides)
➢ Very simple XML configuration for detector specific implementations (dimensions,

materials, readout granularity, etc)

Key4hep for DRD6

➢ Δθη
ΦμΩ

13SW ecosystem for DRD6 Brieuc François

Implementing Detector Geometries

➢ Implementing the detector geometry description in DD4hep
➢ DD4hep detector examples: from simple shape based to complex geometries
➢ Many future collider detector geometries available in k4geo, useful to take inspiration

➢ Full sub-detectors (Si-W, Noble Liquid, Dual-Readout, TileCal, …) and test-beam
prototypes (CALICE)

➢ Many experts happy to provide support!

➢ Some studies require more than a calorimeter
➢ How is my sub-detector performing in a full detector concept?
➢ How to optimize my sub-detector based on high level quantities?

➢ In DD4hep, a sub-detector can be plugged in an existing full detector concept with
minimal work (varies depending on how the det. concept was implemented)

➢ E.g. ALLEGRO ECAL plugged in CLD to start ParticleFlow developments

➢ Many available in k4geo: ALLEGRO, CLIC, CLD, IDEA, ILD, SiD, …

➢ DD4hep provides tools to visualize the detector, handle detector condition data
(DDCond), alignment (DDAlign), …

➢ Still under active development, can integrate potential uncovered DRD6 need

https://github.com/AIDASoft/DD4hep/tree/master/examples
https://github.com/key4hep/k4geo
https://github.com/key4hep/k4geo
https://dd4hep.web.cern.ch/dd4hep/usermanuals/DDCondManual/DDCondManual.pdf
https://dd4hep.web.cern.ch/dd4hep/usermanuals/DDAlignManual/DDAlignManual.pdf

14SW ecosystem for DRD6 Brieuc François

Simulation

➢ Recommended way to interact with Geant4: ddsim (part of DD4hep)

➢ Supports many generator output formats: stdhep, hepmc, hepevt

➢ Several particle guns available (including Geant4 GPS)

➢ Passes Gen level particles to Geant4, taking into account e.g. charged particle with macroscopic
displacement that have to be curved due to magnetic fields (not accessible to generators)

➢ Highly configurable: PhysicsList, SensitiveActions, rangeCut, …

➢ Command line interface or (better) configured with a Python steering file
➢ ddsim -h and ddsim –dumpSteeringFile for more details

➢ Produces two edm4hep collections per calorimeter readout

➢ SimCalorimeterHit with energy per readout cell, linked to CaloHitContribution being
single energy deposits inside the cell (only the latter has time information)

➢ Get linking between CaloHitContribution and MCParticle out of the box

15SW ecosystem for DRD6 Brieuc François

Digitization

➢ Software digitizers are Gaudi algorithms receiving edm4hep::SimCalorimeterHit (or
edm4hep::RawCalorimeterHit/TimeSeries) and outputting edm4hep::CalorimeterHit

➢ A lot of similarities across calorimeter technologies → can share common generic algorithms

➢ Several (simple) digitization algorithms already available in Key4hep

➢ ALLEGRO: CreateCaloCells

➢ Cell calibration (sampling fraction), noise, zero suppression (planning a more detailed version)
➢ Used both for Noble Liquid ECAL and the TileCal HCAL (quite generic)

➢ ILCSoft digitization: DDCaloDigi (lcio data format based)

➢ Used e.g. for CLD ECAL and HCAL with edm4hep format through wrappers/converters
➢ Detailed Dual-readout digitization: DigiSiPM based on SimSiPM (full waveform)

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CreateCaloCells.h
https://github.com/iLCSoft/DDMarlinPandora/blob/master/include/DDCaloDigi.h
https://github.com/HEP-FCC/dual-readout/blob/master/DRdigi/include/DigiSiPM.h
https://github.com/EdoPro98/SimSiPM

16SW ecosystem for DRD6 Brieuc François

Reconstruction Algorithms

➢ Three calo clustering algorithms available in Key4hep

➢ CreateCaloClustersSlidingWindow

➢ Simple sliding window with fixed size (ALLEGRO E/HCAL)
➢ CaloTopoCluster

➢ Find seeds and iteratively collects cells in several
steps of S/N thresholds (ALLEGRO E/HCAL)

➢ k4CLUE (originates from CMS)

➢ Fast, energy-density based algorithm. Already
applied on LAr, CLD and CLIC ECALs

➢ Only 2D clustering for now (per longitudinal layer)
➢ k4Clue3D on its way

➢ Particle Flow: PandoraPFA available through
Wrappers/Converters

➢ Used in CLD, and CLD with LAr ECAL

➢ k4PandoraPFA under development

2311.03089

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CreateCaloClustersSlidingWindow.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CaloTopoCluster.h
https://github.com/key4hep/k4Clue
https://arxiv.org/abs/2311.03089

17SW ecosystem for DRD6 Brieuc François

Online Software & Data Preservation

➢ People developing online software solutions may not need (nor want) the full Key4hep stack

➢ “Low level” code with little dependencies, lose requirements in terms of e.g Operating System,
should be possible to run it without internet connection (no cvmfs)

➢ More details in Gerald's and Andreas' talks

➢ Encouraging DRD(6) collaborators to use a common framework for online software
development would still be highly beneficial (e.g. EUDAQ)

➢ Not re-inventing the wheel, share code and expertise, …
➢ Data preservation?

➢ After/during data taking, translate EUDAQ
produced data into edm4hep format

➢ Schema evolution guarantees to be able to
read these data on the long run

Experiment RAW Data
edm4hep

object
EUDAQ

Key4hep
Unpacker

https://indico.cern.ch/event/1368231/timetable/#35-lesson-from-calice-software
https://indico.cern.ch/event/1368231/timetable/#25-dqm-for-eudaq2
https://github.com/eudaq/eudaq

18SW ecosystem for DRD6 Brieuc François

Online/Offline Software Compatibility

➢ How to guarantee synchronization between data frame format definition (EUDAQ) and
the unpacker (Key4hep)?

➢ Include EUDAQ in Key4hep (releases ensure compatibility and reproducibility)

➢ Does not mean EUDAQ users need Key4hep
➢ Or factor the packer/unpacker out of EUDAQ, as a library living in Key4hep

➢ Library depends on edm4hep but is free from EUDAQ dependencies (packer only
manipulates low-level objects)

➢ Interface this 'external' library to EUDAQ

Key4hep

EUDAQ

Experiment RAW Data
edm4hep

object
EUDAQ

Key4hep
Unpacker

Packer and
edm4hep unpacker

library

https://github.com/eudaq/eudaq

19SW ecosystem for DRD6 Brieuc François

Further Topics

Further topics that could not be covered in details
➢ Porting test-beam data to Geant4 validation: benefits to the whole HEP community and more

➢ See Lorenzo's talk

➢ Machine learning
➢ PyTorch available in Key4hep

➢ Training can potentially be done outside of Key4hep
➢ Models from any other machine learning framework (e.g. TensorFlow) can be evaluated inside

Key4hep through the ONNX interface

➢ Cluster correction
➢ Several Key4hep Gaudi algorithms already exists: upstream/downstream energy correction, MVA

based calibration (Noble Liquid ECAL)

➢ Flat Tree Producer + Analyses: having common DRD6 tools is also important here
➢ FCCAnalyses available in Key4hep: RDataFrame based analysis tools of edm4hep events
➢ A “caloNtupleizer” is already there and can be extended or used as example

➢ Produces a plain root tree easy to manipulate for analysis
➢ Plain C++ version ongoing
➢ Performance plotter to be written

https://indico.cern.ch/event/1368231/timetable/#36-geant4-geant-val-drd6
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py

Organization

➢ Δθη
ΦμΩ

21SW ecosystem for DRD6 Brieuc François

Code Organization

➢ Key4hep has a highly factorized structure

➢ Many “task oriented” GitHub repositories

➢ Minimizes frictions between independent developments

➢ The DRD6 needs being quite specific, it may be interesting to investigate different
approaches

➢ E.g. having one repository hosting all the components needed for a given test-beam

➢ While the code should be 'Key4hep compliant' maybe not everything must be
included in Key4hep (i.e. made available with the stack environment)

➢ Included in Key4hep ↔ can harm the stack if not properly maintained

➢ Possible approach

➢ Having “common/generic core components” needed for DRD6 activities inside
Key4hep, leave specific applications being 'only' Key4hep compliant

➢ Still need to maintain “user” code, but won't harm Key4hep if not

22SW ecosystem for DRD6 Brieuc François

Getting Everyone Onboard

➢ Following “common software policies” and writing generic code with
documentation is clearly beneficial at the collaboration level but may be seen as
adding overhead on individuals

➢ Community effort: how do we get everyone onboard?

➢ Lower the 'barriers to entry' as mush as we can

➢ Hide the complexity for the end users

➢ Github repository template including dependencies/testing/etc

➢ Ready to be used to start a new project: k4-project-template
➢ May want a DRD6 specific version (e.g. adding the DD4hep dependency, …)

➢ The added value of the centrally available tools must overcome the potential
overhead of using the common framework

➢ Will need some 'pioneering' work

➢ If transversal working group activities is on a best effort basis, it has to be somehow
rewarded

https://github.com/key4hep/k4-project-template

23SW ecosystem for DRD6 Brieuc François

Useful Resource

➢ Useful Resource

➢ Full Sim with Key4hep tutorial

➢ FCC Full Sim webpage

➢ Key4hep tutorials

➢ Bi-weekly FCC Full Sim working meeting, announced on the FCC-PED-
SoftwareAndComputing-Full-Simulation e-group

➢ Key4hep/edm4hep working meetings, announced on the key4hep-sw e-group

https://hep-fcc.github.io/fcc-tutorials/master/full-detector-simulations/FCCeeGeneralOverview/FCCeeGeneralOverview.html
https://fcc-ee-detector-full-sim.docs.cern.ch/
https://key4hep.github.io/key4hep-doc/setup-and-getting-started/README.html
https://indico.cern.ch/category/16938/
https://indico.cern.ch/category/11461/

24SW ecosystem for DRD6 Brieuc François

Summary

➢ DRD6 has important software needs

➢ Using a common software ecosystem will allow us to leverage synergies

➢ Across DRD's, across DRD6 WP's and across WP phases

➢ Data persistency must be a central consideration (valuable datasets will be produced)

➢ Key4hep is a very good candidate to be the common software base for (most) DRD6 activities

➢ Wide (and growing) adoption by the Future Collider Community (but built with LHC experience)

➢ Already meets most DRD6 needs (except for online software, likely not integrated in Key4hep, but
for which we should still have common standards)

➢ Under active development: can be adapted/complemented if needed

➢ The Key4hep team warmly welcomes new contributors

➢ Good opportunity for the DRD6 Transversal Software Working Group!

➢ Next important step: agree on the set of software tools that we want to set as standards

Thanks to the Key4hep team for the useful
feedback and discussions!

Additional material

➢ Δθη
ΦμΩ

26SW ecosystem for DRD6 Brieuc François

The Detector Zoo

CLD

IDEA

ALLEGRO CRD's

ILD
like

Full-silicon

4th CEPC concept

27SW ecosystem for DRD6 Brieuc François

Dual Readout Digitization

➢ Going through the full waveform with SimSiPM

28SW ecosystem for DRD6 Brieuc François

Detector description (I)

➢ Factorized Detector Building (DD4HEP)
➢ C++ detector factory: handles the generic geometry structure

➢ Cryostat cylinder, inclined plates, …
➢ XML file with specific detector parameters

➢ Inner/Outer radius, materials, inclination, …
➢ Allows you to study different scenarios with minimal work

➢ Detector segmentation based on DD4HEP Readouts
➢ Readout cells differ in general from physical cells

➢ E.g. having high sampling frequency improves energy resolution
→ phi granularity higher than what physics requires

➢ Flexibility choice: do the time consuming Geant4 simulation with
atomic granularity, then apply (possibly several) cell
recombinations with RedoSegmentation

➢ Caveats
➢ The same cell recombination scheme is applied to the whole

calorimeter
➢ One would like to have smaller cells for e.g. the strip layer

➢ The cell position assignment would benefit from a refactoring

k4SimGeant4FCCDetectors
(DD4HEP)

https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCChhECalInclined/src/ECalBarrelInclined_geo.cpp
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml#L60-L75
https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetComponents/src/RedoSegmentation.h

29SW ecosystem for DRD6 Brieuc François

Detector description (II)

➢ Accurate FCC-ee detector description

➢ 1536 absorber plates: 100 μm Steel sheet +
100 μm glue + 1.8 mm Lead

➢ 2 x 1.2 mm sensitive LAr gap (widening
towards high radius) + 1.2 mm PCB

➢ Typical readout cells size

➢ θ x Φ x r ~ 2 (0.5 strip) x 1.8 x 3 cm3

➢ Cryostat + space reserved for services (filled with LAr)

➢ 40 cm depth sensitive area, ~23 X
0
 including the cryostat

➢ So far, only the Barrel ECAL has been implemented for the
FCC-ee geometry

➢ Currently working on Endcap LAr ECAL implementation

materials.xml

k4SimGeant4FCCDetectors
(DD4HEP)

https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml
https://github.com/HEP-FCC/FCCDetectors/blob/main/Detector/DetCommon/compact/materials.xml#L204-L221
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/FCCDetectors

30SW ecosystem for DRD6 Brieuc François

Sampling Fraction

➢ In a Sampling Calorimeter, only a fraction of the particle energy is measured

➢ One scales each cell energy to account for energy deposited in absorber and PCB

➢ Modified detector config with the absorbers set as sensitive (XML)

➢ SamplingFractionInLayers stores the energy ratio
(active/passive) per event and per longitudinal layer

➢ SF = mean of Gaussian fit of the active/passive energy ratio

➢ Propagate results to CalibrateInLayersTool

➢ Fully automatized procedure (with control plots)

➢ Everything defined in a Gaudi config can
be passed as command line argument

➢ Or you can use sed for more permanent usage

➢ In a Noble Liquid calorimeter, the sampling fraction has almost
no dependence on the incident particle energy

➢ No need to apply this procedure to many energy points

k4RecCalorimeter

k4SimGeant4

User Code

https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetStudies/src/components/SamplingFractionInLayers.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CalibrateInLayersTool.h
https://doc.ubuntu-fr.org/sed
https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/HEP-FCC/k4SimGeant4

31SW ecosystem for DRD6 Brieuc François

Upstream/Downstream energy correction

➢ Unmeasured energy deposited in upstream
material: calorimeter supporting structure/cryostat,
magnet, services, …

➢ Always try to minimize calorimeter radial extent +
stochastic nature of shower depth → energy
deposited after the calorimeter

➢ Strong correlation between energy in first(last)
sensitive layer and energy deposited
upstream(downstream) → one can correct for that!

➢ EnergyInCaloLayers → stores energy in various dead
materials and in all the active layers (modified XML)

➢ Centrally available scripts perform the fits

➢ CorrectCaloClusters → applies the correction based
on cluster total energy and energy from first/last layer

➢ Again, fully automatized procedure with
intermediate diagnostic plot production

Juraj Smiesko

k4SimGeant4

k4RecCalorimeter

https://github.com/HEP-FCC/k4SimGeant4/blob/main/Detector/DetStudies/src/components/EnergyInCaloLayers.h
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/CorrectCaloClusters.h
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/k4RecCalorimeter

32SW ecosystem for DRD6 Brieuc François

Noise

➢ Noise depends on many factors
➢ Detector capacitance, signal extraction scheme, front-end electronics, etc...

➢ Estimated outside of the main software framework: Finite Element Method tools (Ansys)
+ analytical implementation (Mathematica)

➢ Stored in a rootfile, per longitudinal layer and as a function of polar angle

➢ Introduced in the simulation by NoiseCaloCellsFromFileTool
➢ Random number from Gaussian whose width is taken from the rootfile (layer/Θ dependent)

➢ Added only after the final readout segmentation step (cell geometry dependance)

➢ Very tricky to fully automatize

k4RecCalorimeter

https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecCalorimeter/src/components/NoiseCaloCellsFromFileTool.h
https://github.com/HEP-FCC/k4RecCalorimeter

33SW ecosystem for DRD6 Brieuc François

Practical workflow example

➢ Little user specific code needed to orchestrate these tools and automatize the sequence

k4RecCalorimeterk4SimGeant4k4Gen

LXPlus HTCondor submission script
➢ Less events per job towards higher energy → 10 energy

points (1 – 200 GeV) with 10 k events takes < 2 hours
➢ Writes all the subsequent shell scripts

FCCAnalyses
 CaloNtupleizer

➢ Outputs plain ROOT n-tuples
➢ Very easy to analyze with simple

macros
➢ Parametrizable object content
➢ Can store multiple objects of the

same type (e.g. Sliding Window
and Topo Clusters)

➢ Can access DD4HEP geometry
information (decode the cellID)

Shell
script

Simple analysis
macro

Outputs

RunCaloSim.py

Shell
script

https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/k4Gen
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py
https://github.com/HEP-FCC/FCCAnalyses/blob/master/examples/FCCee/fullSim/caloNtupleizer/analysis.py
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecFCCeeCalorimeter/tests/options/runCaloSim.py

34SW ecosystem for DRD6 Brieuc François

Performance results

➢ Example of performance results produced recently with FCC-ee LAr ECAL

τ final state categorization confusion matrix
Energy resolution for different absorber and

Noble Liquid material

Moliere Radius comparison between Pb + LAr and W + LKr

➢ Stay tuned, more to come!
➢ Not so far from being able to do a first Full Sim physics analysis (e.g. Axion → ɣɣ once

we have the ECAL endcap)

Mark Waterlaat

Katinka Wandall-Christensen and Mogens Dam

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

