

DRD6 WP4 electronics and DAQ

Ch. de LA TAILLE DRD6 11 April 2024

Organization for Micro-Electronics desiGn and Applications

DRD6 (calorimetry) readout schemes

6

Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM, timing via CAENFERS, AARDVARC-v3, DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4		
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch. Lower occupancy, slower speed
 - Allows better granularity or LAr operation
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Extend to MCPs (PID) or HRPPD. First tests with EIC calo/PID
- Several other ASICs R/Os also developed in DRD6 and it is good !
 FLAME/FLAXE, FATIC...
 - Waveform samplers : commercial or specific (e.g. SPIDER)
 - DECAL

mega

Example : HGCROC (CMS HGCAL)

Overall chip divided in two symmetrical parts

- Each half is made of:
 - 39 channels: 36 channels, 2 common-mode, 1 calibration
 - Bandgap, voltage reference close to the edge
 - Bias, ADC reference, Master TDC in the middle
 - Main digital block and 3 differential outputs (2x Trigger, 1x Data)

Measurements

- Charge
 - ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range defined by preamplifier gain
 - TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps)
 - ADC: 0.16 fC binning. TOT: 2.5 fC binning
- Time
 - TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps)

Two data flows

- DAQ path
 - 512 depth DRAM (CERN), circular buffer
 - Store the ADC, TOT and TOA data
 - 2 DAQ 1.28 Gbps links (CLPS)
- Trigger path
 - Sum of 4 (9) channels, linearization, compression over 7 bits
 - 4 Trigger 1.28 Gbps links (CLPS)

Control

Fast commands.

$Q_{MIP}/Cd \sim 3 \text{ fC}/30 \text{ pF} = 100 \text{ }\mu\text{V}$

I2C protocol for slow control

Ancillary blocks

- Bandgap (CERN)
- 10-bits DAC for reference setting
- 11-bits Calibration DAC for characterization and calibration
- PLL (IRFU)
- Adjustable phase for mixed domain

CdLT DRD6 meeting 11 apr 2024

Performance

channels

Zoom on timing

- ~2.5 ns time walk, 13 ps jitter for Q>100fC at Cd = 47 pF
- Fits also well MCPs for PID (ex HRPPD 1000 ch MCP)

H2GCROC: SiPM version current conveyor

mega

- Current conveyor (Heidelberg design) to adapt to Si version
- Dynamic range : 50 fC 300 pC
- 2 typical gains
 - Low gain (Physics mode): 44 fC/ADC gain, 50 fC noise (1.25 ADCu)
 - High gain (Calibration mode): 10 fC/ADC gain, 20 fC noise (2 ADCu)
- **o** Measurements in backup slides

HGCROC : ADC and TOT

- ADC range 0 200 fC
- TOT range 200 fC 10 pC
- Non-linear inter-region
- 200 ns dead time
- Not well adapted to SiPM version
- => go to dynamic gain switching

Chips for EIC : electron-ion collider at BNL

- PID and calorimeters
 - EICROC for AC-LGAD roman pots
 - H(2)GCROC for calorimeters
 - « Event driven » DAQ

Detector	Channels				
Group	MAPS	AC/DC-LGAD	SiPM/PMT	MPGD	
Tracking	32 B			100k	
Calorimeters	50M		67k		
Far Forward	300M	2.3M	500		
Far Backward		1.8M	700		
PID		3M-50M	600k		
TOTAL	32 B	7.1M-54M	670k	100k	
ASIC	ITS-3	EICROC FCFD HPsOC ASROC FAST	Discrete/COTS HGCROC3 AL COR-E IC	SALSA	

CdLT DRD6 meeting 11 apr 2024

CALOROC1 (Q3 2024)

- SiPM readout calorimetry : CMS H2GCROC with EIC readout (200 MHz clock and fast commands) •
 - SiPM from 500 pF to 2.5 nF (or 10 nF)
 - ~5-10 mW/channel
- 2 versions : conservative and exploratory
 - Conservative : uses H2GCROC (ADC, TOT) as it is and replaces the backend ____
 - Exploratory : new analog part (dynamic gain switching).
 - Pin to pin compatible
 - Backend « à la HKROC » : auto-triggered, zero-suppressed
 - 40 MHz internal clocking (ADC, TDCs)
- Channel number tbd : 32 (HKROC) or 64 (HGCROC)
- should also fit DRD6 Si / SiPM calorimeters

CALOROC1A (also 2024)

Omega

- Variant with new analog part
- Dynamic gain switching
- Study of current conveyor and voltage amplifiers « à la spiroc »
- Study low power ADCs (clock gating)

AGH in DRD6 WP4

Marek Idzik for AGH-UST

CdLT DRD6 meeting 11 apr 2024

Objectives

▹ Main goal

Cooperation with WP4 partners in designing the best possible front-end ASIC(s) for applications in calorimetry

> Additional goal – depending on manpower resources

> Improvement of already developed front-end ASICs for calorimetry

Cooperation with WP4 partners

Developing key functional blocks and integrating it together
 with partners into complete front-end ASIC(s)

Blocks: fast ADCs of different resolutions (10-12 bits), fully differential amplifiers, serializers&transmitters, ...

Common request – ultra-low power to achieve ~mW per complete front-end channel

Fechnologies: presently CMOS 130/65 nm, later on CMOS28nm

Cooperation with WP4 partners Example work on extension of 10-bit ADC

• To decrease power consumption even further, we are introducing additional comparison with threshold, in order to make full conversion only for signal (and not for noise)

- -If Signal (>Vth) 11 comparisons are done instead of 10
- -If NO signal 2 comparisons are done and ADC is reset
- The result is that ADC is slightly slower, but
- -Estimated power for low occupancy ~ one third of the current one CdLT DRD6 meeting 11 apr 2024
- Work in progress..

Control signals

Asynchronous,

♥ _D

dynamic

logic

Dynamic

comparator

Improvement of existing front-end ASICs for calorimetry

> Works on variations of FLAME/FLAXE ASICs

•FLAME/FLAXE are a 32-channel chips CMOS 130nm comprising analog front-end and fast ultra-low power 10-bit ADC in each channel. FLAME has two high speed (5.2Gb/s) serialisers&transmitters, while FLAXE is intended for low trigger rate. _{CdLT} DRD6 meeting 11 apr 2024

Micro-RWELL Frontend Electronic

Giuseppe de Robertis, Luigi Longo for the micro-RWELL LHCb group Bari, LNF, Roma2

Istituto Nazionale di Fisica Nucleare

Electronic chain

Front End Board

- 4 x FATIC2
- 128 channels

MOSAIC DAQ board + FMC adapter - Up to 4 FEB

FATIC2 architecture

Features:

- Technology: TSMC 130 nm
- 32 channels
 - Programmable polarity, gain and peaking time
 - Charge and time measurement
 - Time measurement using 100 ps TDC
- Calibration, Bias and Monitoring
 - Charge injection calibration
 - Programmable biases (currents and voltages)
 - Monitoring ADC (12 bit SAR)
- 320 Mbps serial link, LpGBT compatible
- Power supply 1.2 V
- Radiation hardness: up to 100 Mrad

Channel block diagram

Preamplifier features:

- CSA operation mode
- Input signal polarity: positive & negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- ✓ Measures the arrival time of the input signal
- ✓ Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- ✓ Acknowledgment of the input signal
- ✓ Charge measurement: dynamic range > 50 fC, programmable charge resolution

Charge distribution

Cosmic ray tests

Typical run lenght: 24 – 48 hours

Operative condition:

- μRwell gain voltage 640 V
- Discriminator thresholds 6.5 fC / 6 fC

Time distribution – First Hit

22

DRD6 meeting

1 api 2027

FATIC3 & FATIC4 ASIC

INFN

FATIC3: Mainly a bug fixing plus some features integration

- Channel FSM bug fix
- Trigger data filter moved from FPGA to ASIC
- Increase of transmission speed from 320 to 640 Mbps
- Integrated monitoring ADC and voltage reference IP
- Cut down of power consumption from 500 mW to < 150 mW
- 100 chip production submitted in January 2024 (20 for HCAL R&D)

FATIC4: Performance improvement

- Lower dead time, from ~2 us to ~100 ns
- More digital features to make the chip closer to LHCb needs Submission foreseen for Q4 2024/Q1 2025

Omega

DEFINITION OF THE ASSEMBLY METHOD AND OFMilesto**THE ASIC SPECIFICATIONS FOR A DUAL READ-OUT**Date: 20**CALORIMETER PROTOTYPE**Date: 20

Milestone: MS35

Date: 28/02/2023

Main specifications				
Readout strategy	Charge integration			
Number of channels	32 / 64			
Sensitivity	0.5 p.e. (@ 2 * 10 ⁵ SiPM gain)			
Dynamic Range	0 - 320 pC (i.e. 10000 p.e. @ 2 * 10 ⁵ SiPM Gain)			
Timing resolution	< 50 ps rms (single p.e.)			
Power consumption	< 500 mW			
Main specifications				
Readout strategy	Waveform sampling			
Number of channels	32 / 64			
Sampling frequency (GHz)	5 - 10			
Input Bandwidth (GHz)	> 1			
Buffer length (samples)	> 4k			
Feature extraction	i.e. total charge, ToA, ToT, current-peak time			
Full frame readout	Internal / external trigger (one of the two or both)			

- Goals
 - Produce ASICs and DAQ for prototypes (sizeable quantities...)
 - Avoid parallel developments but encourage communications between groups
 - Optimize commonalities (readout format, interfaces, inter-operability)
 - Organize common ASIC fabrication (share engineering run to minimize costs)
- Close communication with other DRDs
 - DRD3 : MAPS for digital calorimetry
 - DRD4 : photodetectors
 - DRD7 : electronics (ADCs, TDCs...)
- Strong interplay detector/electronics
 - Noise, granularity, timing, power dissipation, data bandwidth....
 - Detector R&D vs/with Electronics R&D

- Go over the electronics and DAQ requirements/wishes from the different participants
 - See what exists and what needs R&D
 - Need essentially sensor capacitance and dynamic range (in fC)
 - See what's covered internally and what can be provided by DRD6 developments
- Gather the community of « calorimeter electronics developers »
 - Share expertise and experimental results
 - Address specificities of calorimetry
 - Share fabrication (engineering) runs to equip prototypes

conclusion

- Importance of joint optimization detector/readout electronics
- Trend to reduce power and data volume
 - Pileup will be less of an issue, better granularity will be appreciated !
 - Low occupancy, auto-trigger, data-driven readout
 - Low power ADCs and TDCs (DRD7 with AGH&CEA)
- Picosecond Timing important R&D area
 - PID and/or calorimetry, several new detectors appearing : need R/O
- Next chips at OMEGA will target EIC, DRD1-4-6-7
 - Calorimetry and timing : CALOROC1 and 1A : Q3 2024
 - Further R&D needed to bring power down to ~1 mW/ch (LAr)
- Technology choice to be addressed in coordination with other design groups
 - Cost sharing for engineering runs

Technology choice for mixed signal ASICs

- TSMC 130nm : mixed signal, cheap
 - Very mature technology with good analog performance
 - 2.5 k€/mm² MPW, 300-350 k€/engineering run (20 wafers C4)
 - Perenity ?
- TSMC 65 nm : mixed signal, main stream
 - ~2-3 times lower power in digital, similar in the analog (compared to 130n)
 - 5 k€/mm², 700-800 k€/ engineering run
- TSMC 28 nm : digital oriented
 - High density integration (pixels)
 - High performance, lower power digital, similar in the analog
 - 10 k€/mm², 1-1.5 M€/ eng run

- On-detector embedded electronics, low-power multi-channel ASICs
 - CALICE SKI/SPI/HARDROC, FLAME, CMS HGCROC, FCC LAr, FATIC...
 - Challenges : #channels, low power, digital noise, data reduction
- Off-detector electronics : fiber/crystal readout
 - Wavefrom samplers : DRS, Nalu AARD, LHCb spider...
 - Challenges : low power, data reduction
- Digital calorimetry : MAPs, RPCs...
 - DECAL, ALICE FOCAL, CALICE SDHCAL
 - MAPS for em CAL : eg ALPIDE ASIC for FOCAL, DECAL...
 - Challenges : #channels, low power, data reduction

Digital calorimetry

- Hadronic : e.g. CALICE RPCs or µmegas
 - ~1 cm² pixels, low occupancy, ~1 mW/cm² (unpulsed)
 - Performance improvement with semi-digital architecture
 - Timing capability can be added
- Electromagnetic : e.g. DECAL, ALICE FOCAL...
 - Based on ALPIDE : (30µm)² pixels, high occupancy, ~ few 100 mW/cm², slow
 - To be compared with embedded electronics ~10 mW/cm²
 - Most power in digital processing => would benefit a lot from ≤ 28 nm node
 - Semi-digital and/or larger pixels could be an interesting study
- Upcoming R&D
 - Power reduction, dead area minimization
 - Coping with high occupancy, managing data bandwidth

Waveform sampling

- Switched capacitor arrays (DRS4, Nalu, SPIDER...)
 - Pulse shape analysis
 - High accurcay timing, digital CFD
 - Sizeable power to provide GHz BW on large capacitance
 - large data volume
- Often used in off-detector electronics
 - Space and cooling available
 - Small/medium size detector readout and/or characterization
 - See LHCb calorimeter upgrade
- Upcoming R&D
 - Power reduction, Front-end integration
 - Data bandwitdth
 - Time walk correction, potentially best for ps accuracy

nega

Embedded ASICs

- Pioneered with CALICE R&D (SKIROC, SPIROC..)
- Multi-channel charge/time readout
 - Fast preamp
 - Full dynamic range. Possible extension with ToT
 - Fast path for time measurement (ToA)
 - High speed discriminator and TDC
 - Time walk correction with ADC (or ToT)
 - Slow path for charge measurement
 - ~10 bit ADC ~40 MHz
 - Low power for on-detector implementation (~10 mW/ch) e.g. CMS HGCAL
- Upcoming R&D
 - Power reduction,
 - Auto-trigger, Data-driven readout

HKROC main features

HKROC is 36 channels: 12 PMTs with High, Medium and Low gain

- □ Large charge measurement with 3 gains (up to 2500 pC)
- □ Integrated timing measurements (25 ps binning)
- □ Readout with high speed links (1,28 Gb/s)
- □ HKROC is a waveform digitizer with auto-trigger

HKROC: waveform digitizer with auto-trigger

- □ HKROC is waveform digitizer working @ 40 MHz
 - Number of charge sampling points from 1 to 7
 - □ Fast channel for precise timing (25 ps binning)
 - □ Charge reconstruction algorithm in FPGA
 - 5% resources of a modern XILINX FPGA

When using 3 gains / PMT (high, medium, low)

- □ Hit rate capability up to 400 kHz / PMT
- □ Increased up to 1 MHz by focusing on high gain
 - Dynamic selectable by the user
- Average values only limited by readout speed

Measurements in backup slides

Normal mode	Supernovae mode	High speed mode
Rate 400 k/chn	~1M /chn	40 M

HKROC can accept consecutive events (separated by ~30 ns)

Internal HKROC memory writing is without dead time Readout speed is only limited by serial link bandwidth (average values above)