HIGHLY COMPACT CALORIMETER, ELECTROMAGNETIC FORWARD SECTION

ADRIAN IRLES

YAN BENHAMMOU

DRD6 COLLABORATION MEETING

NEED FOR COMPACT CALORIMETER

1 mm between W layers

- Compact calorimeter is interesting in :
 - Linear/circular/asymetric collider to measure the luminosity
 - In LUXE, to measure the number of positrons and their energy spectrum in the e- laser interaction

SENSORS AND PROBE STATION

- 90 CALICE sensors received from Hamamatsu.
 320 um thickness, 16x16 pads (5.5x5.5 mm2)
- Labeled and stored in dry cabinet with membrane boxes

Parameter	Rating	Unit
Device type	P+ PIXEL on N substrate	
Chip size	89700 ± 40 x 89700 ± 40	μm
Active area	88480 x 88480	μm
Chip thickness	320±15	μm
Number of PIXELs	256(16 x 16)	ch
PIXEL pitch	5530 x	
PIXEL GAP	10	2027

IV MEASUREMENT

Checked the influence of different parameters: delay between measurements, delay between voltage change,...

System tuned

Up to now, 45 x 256 pads measured with current plateau

CV MEASUREMENT - DEPLETION VOLTAGE

• It is possible to extract the depletion voltage from the CV measurement; the capacitance can be modelized by:

•
$$C_g = A \frac{\varepsilon_{Si}\varepsilon_0}{w} = \begin{cases} A \sqrt{\frac{\varepsilon_{Si}\varepsilon_0 eN_d}{2V}} \text{ for } V < V_d, A: pad area Nd : number of donor, V bias voltage A $\frac{\varepsilon_{Si}\varepsilon_0}{w_m} \text{ for } V > Vd, w_m \text{ max. depletion width} \end{cases}$$$

So if we take the log of Cg, we should obtain two lines. The intersection of these lines is giving the depletion voltage

DONOR DENSITY

It is possible to determine the donor density using the formula : •

$$\frac{1}{C^2} = \frac{2}{\varepsilon e N_d A^2} V$$

Where N_d is the donor density and A is the pad area

donor density

IFIC

- All the sensors will be sent to IFIC to be glued to a flexible PCB
- Several challenges in conductive gluing/hybridization procedure are shared between SiWECAL and the highly compact calo
- IFIC is leading the R&D studies on gluing/hybridization
 - R&D on rigid PCB hybridization in collaboration with IJCLab

Deformation upon reception and after drying for 10 days in dry cabinet and heating for 24 hours at 50°C

Additional drying and humidity cycles 3x72 cycles during nine days at 90% and 30°C

Humidity cycles and PCB upon reception

HYBRIDISATION - UNDERFILL

EPO-TEK® 301-2

Injection of underfill

Requieres re-curing at 80 C

... but remains flexible after curing

A. Thiebault, A. Gallas+ Mechanics Department of IJCLab

HYBRIDISATION: DOUBLE SIDE TAPE

Perforated stencil of thin 250um double tape 3M VHB 5907F

Stencil made at IFIC (laser drill)

One 18x18cm² model completed at IFIC

CONCLUSION

- TAU :
 - We have a working setup to characterize silicon sensors, including analysis and storage : we can test two sensors a day
 - All the pads of the tested sensors have a plateau in the IV plot
 - Using the CV measurement, it is possible to extract the depletion voltage and the donor density. These extracted values are compatible with expectations
 - Design of flexible PCB
- IFIC :
 - R&D on rigid PCB deformation
 - Study of different technologies to glue the sensor to the PCB
 - Creation of a IV-CV measurement facility (probe station)

Good synergy between the two institutes to optimize the testing and gluing of the sensors to the PCB

