April 10, 2024

DRD6 Subtask 1.1.3 - DECAL

Jim Brau, Oregon Nigel Watson, Birmingham

> on behalf of MAPS ECal efforts (DECAL and SLAC/Oregon)

0

UNIVERSITY OF OREGON

Research partially supported by the U.S. Department of Energy

"Performance of the electromagnetic pixel calorimeter prototype Epical-2", JINST 18 (2023) 01, P01038; "The SiD Digital ECal Based on Monolithic Active Pixel Sensors", 10.3390/instruments6040051, Instruments, 6, 51 (2022); TWEPP 2023 (<u>https://indico.cern.ch/event/1255624/contributions/</u>5443776/)

Main R&D Topics

- * Development of a CMOS MAPS-based DECAL sensor optimised for calorimetry.
 - This implies, in particular, the reduction of the power consumption from around 10mW / cm², as of today, by at least an order of magnitude.
- Sensor size and stitching technologies have to be developed in order to equip a surface of around 2000 m².
- * The selected sensors and technology will have to be validated by beam-test prototypes.

The Two Projects

DECAL prototype reality: EPICAL-2

Layer cable

laver cables

NAPA-p1 at SLAC

	Specification	Simulated NAPA-p1	
Time resolution	1 ns-rms	0.4 ns-rms 🗸	
Spatial Resolution	7 μm	7 um 🗸	
Noise	< 30 e-rms	13 e-rms 🗸	
Minimum Threshold	200 e-	~ 80 e- 🗸 🗸	
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle 💙	

The chip was received at SLAC in September 2023

J. Brau - 10 April 2024

Acknowledgement: CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a shared run led by CERN

*Chip cable *ALPIDE SMD flex *mount	 3 mm W / 2 ALPIDE CMOS 3 x 3 cm² active 1M (29.24 x 26.88 μm²) pixels ultra-thin flex cables (LTU Kharkiv) compact design: expect R_M ≈ 11 mm
Spacer 0.5mm Tungsten absorber 3mm	Very successful DESY beam test [JINST 18 (2023) 01, P01038]
	Si/W layer stack

24 layers, each

interface boards

DRD6 Collaboration Meeting

EPICAL-2 resulted from significant effort by many:

a Department of Physics and Technology, University of Bergen, Bergen, Norway b Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands c Research and Production Enterprise "LTU" (RPE LTU), Kharkiv, Ukraine d School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom e Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany f Yonsei University, Seoul, Republic of Korea g Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands h European Organization for Nuclear Research (CERN), Geneva, Switzerland i Department of Physics, University of Oslo, Oslo, Norway

Nikhef

Energy resolution

Multi-shower separation

DRD6 Deliverables and Milestones

Milestone	Description	Due date
M1.3	Requirements for DECAL-specific sensor design established	2024
M1.4	Full evaluation of (ALPIDE-based) EPICAL-2 performance	2025
M1.5	Design for next-generation sensor with DECAL-specific optimisation (with machine-specific options)	2026
Deliverable	Description	Due date
D1.5.	New sensors produced and evaluated in EPICAL-3 prototype	>2026
	US effort led by SLAC is a parallel development, concentrated on the tracking application, with calorimetry as an application. (See next slide)	

J. Brau - 10 April 2024

Proposed US Effort - CPAD RDC9 <u>arXiv:2306.13567</u>

US MAPS ECal development will proceed in parallel with US Tracking Sensor Development Efforts (CPAD RDC3) and ECFA DRD3 to enable large scale production at competitive cost.

- FY23-24: Develop power and signal distribution schemes compatible for cal and tracking, in addition to evaluating first pixel results.
- FY25: Design PCBs with variations for the services balcony at the edge of sensors. Submission for sensors for large prototype active layers. Understand options for alternative foundries.
- FY26: Prototype attachment of sensors to PCB, probably with a conveyor oven so large production is feasible.
- * **FY27:** Build prototype multilayer section with edge cooling and prepare/begin beam test.
- * FY28: Complete beam tests with technical verification.
- FY29-32: Design, construct and test MAPS ECal modules based on final design of sensors and sampling layer configuration.

MAPS ECal Institutes: SLAC, University of Oregon

DRD6 Collaboration Meeting

Future Directions for DECAL

- Si-W DECAL can give excellent particle flow-based calorimetry
 - Not intended for optimal single-particle performance
 - High potential esp. for future e^+e^- , but applicable more widely
 - Ultra-high granularity can benefit physics as well as cost (boosted decays)
- Affordable Si-W calorimeters, sensors ~ CHF/cm² (active areas > 10⁷cm²)
 - Potentially achievable with CMOS MAPS
- Two main strands to project
 - Sensor design optimised for DECAL requirements
 - Calorimetric performance for detectors/testbeams

Sensor design, two (so far) **independent** activities (SLAC/Oregon and UK/Germany)

- Potential for reconfigurable sensor technology: same for outer tracker/preshower/ECAL, e.g.
 - I.Kopsalis et al, NIM A1038 (2022) 166955
 - P.P.Allport et al, Sensors 2022, 22(18) 6848
- Power consumption needs R&D, estimates range ~20-100mW/cm²
 - Dedicated sensor designs, or
 - Brute force mitigation by power pulsing what gains (settling time)? **but** collider-specific
- Requirements
 - Prototype demonstrating concept of digital ECAL, in same CMOS line as CERN et al, can deliver radiation hardness to > 10¹⁵neq/cm²
 - Collaborate to make best use of limited resources in the two activities
- Calo performance
 - Calorimetric performance demonstrated, e.g. <u>JINST 18 (2023) 01, P01038</u>
 - Extending with recorded EPICAL-2 beam data up to 80 GeV / SPS (analysis in progress)
 - Extensive simulation (AllPix2) modelling
 - Benchmarked/validated using data
 - Extend validated model to study benefits for particle / shower separation

Subtask 1.1.3 - DECAL

UK/Germany sensor activity

• Main goals

•

- Resolve identified faults with current DECAL sensor design
- Reduce power consumption (power pulsing or better ideas)
- Other avenues under consideration
 - 3d stack + semi-digital approach
 - Multi-threshold per pixel
 - Increased configurability options
 - Move configurability from the chip to FPGA
 - Simulation
- Starting point for collaboration with SLAC/Oregon, review overlaps/agree on division of fundamental design goals

Subtask 1.1.3 - DECAL

DRD6 Subtask 1.1.3 Institutes

*Germany *DESY *Goethe Universit¨at Frankfurt *Humboldt U. *UK

*Birmingham U.
*Imperial Coll.
*Rutherford
*U. Sussex

*Greece *NTUA

NetherlandsUtrecht U.

*USA*SLAC*U Oregon

The path forward

- * MAPS Digital ECal groups will aim to meet the milestones and deliverables as outlined in this presentation.
- Building on past work:

 1) "Performance of the electromagnetic pixel calorimeter prototype Epical-2", JINST 18 (2023) 01, P01038;
 2) "The SiD Digital ECal Based on Monolithic Active Pixel Sensors", 10.3390/instruments6040051, Instruments, 6, 51 (2022);
 3) TWEPP 2023 (<u>https://indico.cern.ch/event/1255624/contributions/5443776/</u>) to be published in TWEPP 2023 Proceedings.

Thank you for your interest and attention!