

ScintGlassHCAL: heavy glass tiles and steel hadronic section

Yong Liu (IHEP) for the ScintGlassHCAL team DRD6 Collaboration Meeting at CERN Apr. 10, 2024

ScintGlassHCAL overview

- ScintGlassHCAL: PFA-oriented sampling hadron calorimeter
 - A variant option of CALICE-AHCAL: scintillator-SiPM, steel
 - Sensitive layer: dense and bright *scintillating glass* tiles
 - Aim to further improve hadron energy resolution, which is a major factor for precison jet energy measurements

"SiPM-on-Tile" design for

CALICE-AHCAL

ScintGlassHCAL overview

- ScintGlassHCAL: PFA-oriented sampling hadron calorimeter
 - A variant option of CALICE-AHCAL: scintillator-SiPM, steel
 - Sensitive layer: dense and bright *scintillating glass* tiles (cost effective)
 - Aim to further improve hadron energy resolution (high sampling ratio, low threshold)
- Simulation: to understand potentials and to formulate design specifications
 - Performance with single hadrons
 - PFA performance with jets
 - Optical photon simulation: response uniformity across tile area
- Hardware activities: glass production and measurements
 - Synthesizing scintillating glass samples: aim to meet specs
 - Measurements of small-scale glass samples: density, light yield, transmission, ...
 - Cosmic and beam tests of large glass tiles: MIP response

Simulation studies: hadron performance

- Improvements of hadronic energy resolution
 - Glass density and thickness, energy threshold
- Targets for scintillating glass R&D
 - Density: 6 g/cc
 - Thickness: 10mm
 - Intrinsic light yield: 1000 photons/MeV

Stochastic term [%]

Constant term [%]

12

14

10

- Categorize components of hadronic showers: "non-compensation"
 - Total energy deposition: non-Gaussian distributions

 \rightarrow Dominate the large constant term (>5%)

- Further improvements to hadronic energy resolution
 - Hadronic showers: EM core (compact) + purely hadronic component (sparse)
 - Software compensation: determine weights based on energy density for EM/hadronic parts

- ScintGlass HCAL option
 - Unequal response to EM/had. (e/h>1)
- Preliminary simulation studies
 - Software compensation shows a significant improvement in energy resolution

SC techniques applied in H1, ATLAS, CALICE-AHCAL, CMS-HGCAL; PandoraPFA

Jet performance: BMR vs. glass density/thickness

Peng Hu (IHEP)

- BMR will be improved with higher density and thicker tiles
 - Guidance for the design glass tile: plateau regions ($\geq 5g/cm^3$, ~15 mm)
- Technical limitations from glass production
 - Generally thicker or more dense tiles \rightarrow lower light yield

Jet performance: BMR vs. transverse granularity

Peng Hu (IHEP)

- BMR improved with finer transverse granularity
 - Granularity of ~10x10mm: pattern recognition issue with dramatically more #hits
- Optimal BMR has reached 3.4%
 - Could be further improved by optimization of PFA parameters (goal: BMR ~3%)

Glass materials R&D: Glass Scintillator Collaboration

- GS collaboration (since 2021): R&D of large-area, high-performance glass materials
 - For nuclear and particle physics
 - IHEP as the leading institution, with 11 members (3 institutes in CAS, 5 universities, 3 corporations)
- Welcome wider collaboration from academia and industry: Sen Qian (<u>qians@ihep.ac.cn</u>)

Brief summary of glass R&D

- Steady progress made: R&D based on five glass systems
- Promising performance of best glass samples
 - Close to the goals: i.e. 6 g/cc, 1000 photons/MeV, 100 ns
- For high-density scintillating glass, samples from GS collaboration currently take the lead in light yield

2023 CERN beam test in 2023

- 11 scintillator glass tiles (first batch in large scale) successfully tested
 - Parasitic runs with CALICE scintillator-calorimeter prototypes at PS-T09 in May 2023
- Motivation: use muon beam to measure MIP response of each glass tile

Glass tiles wrapped with Teflon and black tapes

Two glass tiles re-wrapped with ESR

2023 CERN beam test in 2023

ScintGlassHCAL

- Steady progress made in simulation studies, glass production and characterisations
- Preliminary results are promising, yet still more to be better understood and explored
- Synergies expected with other subtasks and transverse work areas

Task/Subtask	Sensitive Material/ Absorber		DF	2DTs	Target Application	Current Status	
Task 1.2: Hadron	ic section	with optica	l tiles				
Subtask 1.2.1: AHCAL	Scintillati Steel	ng plastic ti	les/ 6.2		e^+e^- collider central detector	Prototype for finalising R&D for Specification for C of timing for PFA	LC, C and needed
Subtask 1.2.2: ScintGlassHCAL	Heavy gla Steel	ass tiles/	6.2		e^+e^- collider central detector	Material studies and specifications for prototypes	
		Milestone	Deliverable	Descriptio	n		Due date
Task 1.2: Hadroni	c section w	ith optical t	iles				
Subtask 1.2.1: AHCAL M1.7 M1.8		Concept for contin First layer with co D1.7 EM prototype den D1.8 Full-size layer and D1.9 Engineering protot		continuous readout with continuous readout pe demonstrating system aspects ver and multi-layer demonstrator g prototype		2024 2025 2026 >2026 >2026 >2026	
Subtask 1.2.2: ScintGl	assHCAL	M1.9	D1.10 D1.11	cm-scale t 15-layer E 40-layer p	iles EM module rototype		2024 2025 >2026

Planning

ScintGlassHCAL: "uncharted territory for dense glass + imaging calorimetry"

- Major items for future R&D in next years
 - In-depth simulation studies
 - Performance, HCAL specifications, PFA optimisations
 - HCAL unit design optimisations
 - Response uniformity, readout scheme, photo-sensors
 - Readout electronics
 - e.g. multi-channel front-end chip (analog + digital) for SiPM readout
 - Glass mass production
 - scalable, cost effective, quality assurance & control
 - Developments of prototypes from small to large scale at several stages
 - To evaluate performance and validate simulation; to address challenges in system integration
 - And try to identify "additional, still unknown, R&D challenges"

Thank you!

Backup

GS-HCAL simulation setup

- **GS-HCAL** geometry
 - Refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
 - Replace plastic scintillator with glass scintillator
- Glass scintillator material ٠
 - Composition: Gd-B-Si-Ge-F-Ce³⁺
 - Nuclear interaction length: 23.83 cm •
 - MIP response: 7 MeV/cm
- **GS-HCAL** nominal parameters •

Total number of layers	40		
Total nuclear interaction length	5λ		
Glass tile size	40×40×10 mm ³		
Glass density	6 g/cm ³		
Readout threshold	0.1 MIP		

Blass

mm

- Adapted from CEPC baseline detector
 - ScintGlass-Steel HCAL + Si-W ECAL
- Higgs benchmark with two gluon jets (at 240 GeV)
- Physics performance evaluation
 - Boson Mass Resolution (BMR): resolution of the Higgs invariant mass
 - Full simulation + PFA reconstruction by Arbor

Total number of layers	40
Total nuclear interaction length	6 λ
Glass density	6 g/cm ³
Energy threshold	0.1 MIP

