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Rationale for ADRIANO3 e

Neutron fluctuation of a hadronic shower responsible for
up-to 20% of the energy measurement uncertainties

o A triple readout calorimeter extends the event-by-event energy
compensation of the dual-readout technique by measuring the
neutron component of the shower

High-granularity helps in disentangling overlapping
showers in a high-multiplicity event (e.g. hadron colliders)

. A small-tile a-la CMS has enough granularity for events with ~103
particles

Fast timing (<50 psec) provides:
« TOF of slow particles
 Disentangling of triggers in a high-collision rate accelerator

« Discriminating low energy electrons vs pions (the showers start at different
depths)



The ADRIANO3 Technique e

High-granularity, triple-readout
electromagnetic and hadronic calorimeter
with fast timing

Performance goals:

« EM energy resolution: 6(E)/E ~ 3%/ E
. Hadronic energy resolution: 6(E)/E < 25%/ E

 Timing resolution: <50 psec

Relatively low cost



ADRIANO3 Active Components

Cerenkov radiator: 3x3x2 cm? lead-glass tiles
(typical size)

Scintillator component: 3x3x 0.5 cm?
scintillating tiles (typical size)

Neutron component: 10x10x1 cm® doped RPC
Tiles readout: on-tile sipm

RPC readout: pads



ADRIANO3 Lead Glass Tiles

0 Mostly sensitive to the EM
component of a hadronic
shower

0 Prompt Cerenkov signal from
small tile has a single-channel
timing resolution of 80 ps (for

> ~20 pe) — See T1604 test
beam

0 Active absorber for
electromagnetic showers




ADRIANOS3 Scintillating Tiles

Sensitive to all charged
component of a hadronic
shower

Also sensitive to neutrons
thanks to high-H> content (too
thin for high efficiency
detection)

Inherits from CMS HGC with
SiPM-on-tile readout

Tile wrapping replaced with
tile coating




ADRIANO3 Thin Gd-Doped
Glass RPC

0 Sensitive to all the ionizing
particles of the shower

0 Capable of sustaining a
particle rate up to 2
kHz/cm? (see, high n CMS
muon detectors)

0 Timing resolution of a few
hundred psec per layer is
achievable

0 Glass doping with Gd
would increase the triple-

readout capability of
ADRIANO3



ADRIANOS3 Perspectives e

Lead-glass and scintillating
components R&D in T1604
Collaboration

Thin-glass RPC R&D in
T1041 Collaboration

Effort merged in a newly
formed collaboration

Under construction: 12 cm x 12 cm x 13 triple-layer prototype
Integrate 2-3 hybrid RPCs at the first stage
Goal is to test it at Fermilab in Winter 2025

ADRIANQOS project still not funded: piggy-back on 1041 and
1604 activities

Planning to respond to a DOE solicitation in Fall 2024



ADRIANO2 Highlights

ing resolution

) € vs S used as PID at low energy experiments and for energy
compensation at high energy




Tested Configurations over 3-years

Three sizes
—  3x3x1 cm?®, 3x3x2 cm?, 3x3x3 cm?
Six glasses:
— SF57-HHT, ZF2, ZF6, ZF7, JGS1, HZPK7
Three surface finish
— Cut ground, sandblasted, polished
Ten surface coating
—BaSOq, Teflon, Kevlar, Al sputtering , Al paint, ESR2000, Ag sputtering , Mo ALD, W ALD
Two sensor interfaces
— Dimple, no-dimple
Three single sensors
— HamamatsuS13360, S14160 , Broadcom S466P014M (6x6 mm?)
Two quadruple-sensors in active ganged mode

— Hamamatsu 514160 (3x3 mm?), S14160 (4x4 mm?) S14160 (6x6 mm?), Broadcom
S466P014M (6x6 mm?)

Total: 75 tiles tested
Energy resolution predicted (EM)< 2%/N(E)

Timing resolution: ~80 psec/cell

10
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ADRIANOZ2 R&D in T1604 Collaboration

e« Currently in the beam at Fermilab: 7 layer, ~5Xo, 64 cells
prototype, with Sampic & petiroc readout (CAEN DT5550W)
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Thin-glass R&D in T1041 Collaboration

Inherits from the CALICE Digital Hadron Calorimeter 60 GeV n+

1
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¢
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K D) o Niisd! 1

Description
Hadronic sampling calorimeter

Designed for future electron-positron collider (ILC)
54 active layers (~1 m?)

Resistive Plate Chambers (RPCs) with 1 x 1 cm?2 pads
— ~500,000 readout channels
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Tests at FNAL
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with no absorber in 2011

Tests at CERN
with Tungsten absorber in 2012,
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Tests were also done
with commercial semi-
conductive glass
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nt of Hybrid RPCs

adout where part of the electron
mu nsferred to a thin film of high
seconda n vyield material coated on the
readout pad with the purpose of reducing/removing gas

- flow and enabling the utilization of alternative gases.

Built several 10 cm x 10 cm chambers with single pad
readout.

Coating of Al,O; made with magnetron sputtering.

Coating of TiO, made with airbrushing after dissolving
TiO, in ethanol.

RPCs obtain high efficiency at considerably lower high
voltage settings.

=» RPCs with functional anodes

Cosmic muon response
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r ADRIANO3

al cathodes

e glass of one-glass RPCs with Gd to introduce the neutron
ality.
- T T Region of
106108 | interest for
1.0E403 . hadron
106402 | | calorimetry

LOE+01 |

1.0E+00 |

1.0€-01 |
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1.0E-02 10E-01 1.0E+00 1.0E+01 1.0E402 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07
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Fig. 2. Capture cross section as a function of neutron energy for natural Gd (IRDFF-1.0).

J. Dumazert et. al., “Gadolinium for neutron detection in current nuclear
instrumentation research: A review®, Nucl. Instrum. And Meth. A 882, 53, 2018.

Several R&D points to probe



ADRIANOS3 first customer: the
REDTOP Experiment

https://redtop.fnal.gov and hitps://arxiv.org/abs/2203.07651
dlso https://redtop.fnal.gov/wp-content/uploads/2023/09/REDTOP_LOI_2023-

4.pdf



https://arxiv.org/abs/2203.07651
https://redtop.fnal.gov/wp-content/uploads/2023/09/REDTOP_LOI_2023-4.pdf
https://redtop.fnal.gov/wp-content/uploads/2023/09/REDTOP_LOI_2023-4.pdf

Conclusions

The ADRIANOZQ triple-readout calorimeter
technique has been proposed for the first time

High-granularity, triple-readout, and fast timing
will benefit High-energy (e.g. FCC) as well as
High-Intensity (e.g. REDTOP) experiments

Experience and know-how of T1041 and T1604
are being merged, but new funds are necessary

Gd-doped RPC glass is going to be explored
Plan to apply for DOE funds in 2024
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Efficiency vs Position 4-SiPM
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DHCAL Construction
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ghlights From DHCAL Performance
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RPCs of the DHCAL

e Gas: Tetrafluorethane
G10 board - (R134A) : Isobutane :
Mqur 0 .
Resistive paint #%H Sulfurhexafluoride (SF) .Wlth
1.15mm gas O : Y the following ratios 94.5 : 5.0
Resisti , 1.15 mm glass . 05
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.|II

gasizieosliicn High Voltage: 6.3 kV
(nominal)
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Offers many advantages

Pad multiplicity close to one
— easier to calibrate
Better position resolution
— if smaller pads are desired
Thinner
— 1= tehamber T treadout = 2.4 + ~1.5 mm
— saves on cost
Higher rate capability
— roughly a factor of 2

Status

Built several large chambers

Tests with cosmic rays very successful
— chambers ran for months without problems
Both efficiency and pad multiplicity look good
Good performance in the test beam
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Tests of the First-Generation Hybrid RPCs

We tested the first-generation hybrid RPCs as
well as the standard 1-glass and 2-glass RPCs at
Fermilab test beam. The lateral size of the
chambers was 10 cm x 10 cm, the gas gap was
1.3 mm and the gas mixture was the DHCAL
RPC gas mixture R134A : Isobutane : SFg; 94.5 :
5.0 : 0.5 at 2-3 cc/min flow rate (lower than the
nominal 5 cc/min).

90%

Chambers tested and their

crossing HV:

efficiency

1. 2-glass RPC (8.5 kV)

2. 1-glass RPC (7.5 kV)

3. 500 nm Al,O5 (v1) (6.5 kV)

4. 350 nm AlLO; (v2) (6.5 kV)

5. 1 mg/cm? TiO, (v1) (6.5 kV)

6. 0.5 mg/cm? TiO, (v2) (6.5 kV)
7. 0.15 mg/cm? TiO, (v3) (7.5 kV)

Efficiency (%)

The charge multiplication in the secondary emission

layer is qualitatively validated.
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