Geant4, geant-val & DRD6

Lorenzo Pezzotti, CERN EP-SFT on behalf of the Geant4 Group at CERN

DRD6 Collaboration Meeting @CERN

9-11/4/2024

Geant4, in a nutshell

- Geant4 is the mainly used toolkit for calorimetry simulation in HEP
 - For instance: at CALOR2022 every simulation result relied on detailed Geant4-based simulations (with only one exception for a space science application)
 - Geant4 is currently supporting all the big LHC Experiments in their Run3 productions and FCC for its detectors design
 - The main LHC experiments currently use the Geant4-recommended Physics List FTFP_BERT, eventually with mild variants (e.g. ATLAS adopts FTFP_BERT_ATL)
- Generating particles showers in calorimeters is still the most challenging simulation task:
 - Several hadronic physics models are adopted within a single Physics List with often overlapping ranges of applicability
 - Still the most computationally heavy tasks in HEP
- DRD6 is the most natural DRD Collaboration for a tight collaboration with the Geant4 Team @CERN

Geant4 development is divided in two macro areas: SW R&D and Physics Development/Validation

SW R&D

- 1. Improve, optimize and modernize the existing Geant4 code to gain in performance for the detailed simulation
- 2. Trade precision for performance using fast simulation techniques both with parameterizations and with ML methods
- *3. Investigate the use of accelerators such as GPUs*

Physics Development/Validation

- 1. Improve existing physics models and provide alternative ones (Geant4 has multiple models for the same physics process)
- 2. Continuous physics validation on experimental benchmarks with geant-val (e.g. calorimetry test-beams)
- 3. Support users choices on physics modeling and speed up solutions
- We believe DRD6 will play a crucial role for Geant4 physics validation by creating new benchmarks and setting new requirements

Geant4 validation over calorimeter beam tests

- Often Experiments publish test-beam results and comparison with old Geant4 releases
 - Their benchmarks are not systematically tested over the years/sw-releases
 - This makes their findings hardly useful for Geant4 physics modeling development

Geant4 validation over calorimeter beam tests

- Often Experiments publish test-beam results and comparison with old Geant4 releases
 - Their benchmarks are not systematically tested over the years/sw-releases
 - This makes their findings hardly useful for Geant4 physics modeling development
- Porting test-beam simulations from experiments framework to geant-val allows us to:
 - Study real calorimetric cases within a Geant4-only environment
 - Test new Geant4 releases over real experimental data before the release is exposed to the public
 - Ensure systematic regression testing and Physics Lists' comparison according to our needs
 - Validate internal changes in the Geant4 physics models as soon as needed
 - Ensure code and data preservation over long time scales

From experiments to geant-val, a winding road

Geant-val - geant-val.cern.ch

Geant-val is the Geant4 validation and testing suite

It contains ~40 Geant4 tests over several research fields (nuclear physics, HEP, biomedical, ...).

- For the developers, it allows to:
 - Create multiple jobs over beam * energies, particle types, physics lists, ..., and automatically submit them on HTCondor(Ixplus)
 - Encapsulate variables in json files to • later perform the analysis
- For the HEP Community, it allows to:
 - Deploy results on a common data-base and fetch the information via a web interface

Seant Validation Portal

HGCALTB

	Template +				
1	HGCALTB *		CEE pion response Beam: pi-		
	Layout groups		1.4		
	Hadronic G4MSBG EM		1.3		
ster	FastSim Thin Target Aux		1.2		
Orime	Use markers	se	1.1		
C.S.	Reference:	lods	1		
ct the	Select one	Re	0.9		
Sele	Version		0.8	•	•
	11.2 ×		0.7		
Jersio.	Show reference releases		•		
Gh	Physics List/Model		0.6	50 100	150
Physics List	FTFP_BERT ×]1	11.2 FTFP_BERT, GE	EANT4	
Exp. data	Reference data				servable: CEE pio
			0.45		am particle: pi- am energy: MULTI
	Submit		0.4	Та	rget: CMS-HGCAL

Examples from calorimeters taking data as we speak

ATLAS Tile Calorimeter beam test

ATLAS TileCal:

- ✤ Mostly used to reconstruct hadronic jets in the range | η | < 1.7 thanks to 3 cylinders containing 64 modules each</p>
- Measure light in scintillating tiles immersed in iron Readout is grouped in pseudo projective cells with each layer readout by two PMTs
- Each barrel consists of 11 tile rows grouped in 3 longitudinal layers
- TileCal beam test:
 - 2 Long Barrel Modules and 1 Extended Barrel module are regularly exposed to the SPS particle beams
 - The 2017 beam test studied the calorimeter response and resolution for π^+ , p and k^+ in the energy range 16-30 GeV
 - ✤ Cherenkov auxiliaries used to tag π^+ , p and k⁺

Hadronic response - π^+ , k^+ , p

- It was possible to disentangle contributions from π^+ , k^+ and p in the ATLAS TileCal:
 - ✤ Visible difference in the response to p and π^+ : it is due to the baryon number conservation law for which high f_{em} processes (e.g. $\pi^+ + n \rightarrow \pi^0 + p$) are prohibited for p-induced events
 - Overall good description from FTFP_BERT of these effects

The present

Examples from calorimeters to be installed at the LHC High-Luminosity Upgrade

The 2018 HGCAL test beam

* In CE-H, PCB baseplate with laminated Kapton[™] signal bonds shield bonds backside HV bonds

Three calorimeters involved:

CEE: 28 layers of HGCAL Si pads with 128 ($\simeq 1.1 \text{ cm}^2$) hexagonal cells (26 X_0)

The 2018 HGCAL test beam

Three calorimeters involved:

- CEE: 28 layers of HGCAL Si pads with 128 (\simeq 1.1 cm²) hexagonal cells (26 X_0)
- CHE: 12 layers of HGCAL Si pads, first 9 use 7 sensors in a daisy-like structure (3.4 λ_{int})

The 2018 HGCAL test beam

Three calorimeters involved:

- CEE: 28 layers of HGCAL Si pads with 128 (\simeq 1.1 cm²) hexagonal cells (26 X_0)
- CHE: 12 layers of HGCAL Si pads, first 9 use 7 sensors in a daisy-like structure (3.4 λ_{int})

HGCAL: electromagnetic shower profile

- 300 GeV e^+ longitudinal shower profile as studied in geant-val
 - The differences observed between default em-physics option (FTFP_BERT) and the most precise em-physics option (FTFP_BERT_EMZ) are largely suppressed in recent Geant4 releases
 - ✤ If confirmed it would speed up the HGCAL simulation for em showers by a factor ~2!

The future

Examples from calorimeters prototypes for future e^+e^- colliders

CALICE SiW Calorimeter within G4

- New highly-granular calorimeters for future Higgs factories by CALICE provide unprecedented shower sampling capabilities, thus enabling superior Geant4 validation
- The CALICE SiW calorimeter features:
 - * 30 longitudinal layers (silicon + tungsten) with a total thickness of $24X_0$ ($\simeq 1\lambda$),
 - each silicon layer readout by 36×9 Si-cells,
 - * with an active area of 18×18 cm²

Tagging nuclear breakup events

- Beam tests performed at FNAL in 2008 involving
 2, 4, 6, 8 and 10 GeV π⁻ studying the first development stages of hadronic showers
- ✦ Energy depositions in each cell calibrated in MIP units (extracted with µ[−] runs)
- Events with a single nuclear breakup are tagged as those with:
 - ✤ three consecutive layers measuring > 8 MIP, or

 Starting from the first-interaction layer, it is possible to measure the longitudinal energy (or hit) distributions, as a function of the beam energy, regardless of the depth of the first interaction

CALICE SiW: Iongitudinal energy distributions

10 GeV π^- , exp. data from NIM A794

FTFP_BERT Physics List regression testing 2017-2020

Physics Lists comparison - Geant4.10.7.p03

Lorenzo Pezzotti | Geant4, geant-val & DRD6

The Bucatini Dual-Readout Calorimeter within Geant4

- The latest capillary-tube-based dual-readout prototype features:
 - EM dimensions of $10 \times 10 \times 100 \text{ cm}^3$, $\simeq 90\%$ em containment
 - ✤ 9 towers, each containing 16 × 20 capillaries (160 Cherenkov and 160 Scintillating)
 - Brass capillary tube outer diameter of 2 mm and inner diameter of 1.1 mm. 1-mm-thick fibers.

Prototype rear end

Full prototype - 9 towers

Towards superior Geant4 EM validation

- Superior granularity achieved using a hybrid readout system:
 - 320 SiPMs in the central tower independently read-out using
 - ✤ 5 FEE readout boards, operated in self-trigger mode
 - Surrounding 8 towers read-out by two PMTs per tower providing an independent Cherenkov and Scintillation light readout

Fiber-to-SiPM guiding system

Hamamatsu SiPM: S14160-1315 PS Cell size: $15 \ \mu m$

Front end board housing 64 SiPM

Readout Boards CAEN A5202

10/4/2024

Lorenzo Pezzotti | Geant4, geant-val & DRD6

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- Tested with e^+ beams at CERN-SPS-H8 beam line
 - Summer 2021 and 2023
 - Using e^+ beams with energies 10-125 GeV
- Lateral profile measurement, *i.e.* measuring the average signal carried by a fiber located at a distance *r* from the shower barycenter

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- Tested with e^+ beams at CERN-SPS-H8 beam line
 - Summer 2021 and 2023
 - Using e^+ beams with energies 10-125 GeV
- Lateral profile measurement, *i.e.* measuring the average signal carried by a fiber located at a distance *r* from the shower barycenter
- Achieved millimetric sampling of em showers:
 - The average signal drops by two orders of magnitude over a distance on (only!) 2.5 cm

CERN SPS 20 GeV e^+ - GEANT4

N. Ampilogov et al 2023 JINST 18 P09021

- The Geant4 Group at CERN welcomes the creation of the DRD6 Collaboration and is willing to support new R&D studies on calorimetry
- DRD6 has the potential to facilitate the inclusion of new calorimetry benchmarks in geant-val, and to collect new requirements for Geant4 physics development towards future colliders
- Usually, one member of the Geant4 Group at CERN acts as representative for each of the most important Collaborations (ATLAS, CMS, LHCb, ALICE, ...)
 - We believe it would be mutually beneficial to have a Geant4 representative at the DRD6 Software Working Group as well
- Our involvement in DRD6 might go beyond this as we could actively participate in the creation and organization of the DRD6 SW WG

