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The 2020 update of the European Strategy for Particle 
Physics (EUSUPP) encourages feasibility studies for new 
large, long-term projects which will once again push our 
technological skills to their limits. 
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1 – A Challenging
Future



But humanity faces 
unprecedented global 
challenges

Resources must be devoted 
to seek solutions through 
applied science innovations

rather than investing in 
fundamental research. 
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→Ensuring the maximum 
exploitation of any resources 
spent on fundamental research is 
a moral imperative
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2 – Differentiable 
Optimization of 
Experiment Design 
and the MODE 
Project
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Outstanding Problems in Fundamental Science

• Formulating new theories of Nature

• Extracting sufficient statistics from high-D data 

• Ensuring complete control of our type-1 error rates 

• Explore higher energy / higher intensity frontiers, ensuring we do not miss 
new physics

The above are all data analysis tasks. Looking forward, we must look into our

design problems, as time from blueprint to commissioning is O(20) years!

In market-driven human activities, co-design of hardware and software is

already happening. In HEP we still haven’t started doing it systematically
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Toward End-to-End Optimization: 
The Status Quo in HEP

In the past 50+ years the design of new particle 
detectors leveraged cutting-edge technologies,

yet a few crucial underlying global paradigms 
of experimental design have remained mostly 
unchallenged across decades: 

• “Track first, destroy later”

• Redundancy and robustness of detection systems

• Symmetrical layouts

→ No guarantee of optimality! 

Those choices do not directly maximize a high-level 
utility function, such as the highest discovery reach 
for a physical process, or measurement precision
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Above: a present-day detector (CMS)
Below: a 30-years-old detector for LEP
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Putting a Pipeline Together
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If the simulation
can be bypassed by 
a differentiable
surrogate, we
remove the 
stochasticity of the 
physics and 
strongly simplify
the problem

x z or S ζ = R(z) L=NN(ζ)

θ

ν
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Putting a Pipeline Together / 2
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The model must
include a model of 
the absolute state-
of-the-art (or even
extrapolated future 
performance!) of 
reconstruction and 
inference to avoid
any misalignment



Putting a Pipeline Together / 3
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Backpropagation
of the gradient of 
the objective
function then
allows to find
optimal
parameters θ→
obtain end-to-end 
optimality of the 
instrument
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Active Projects: a Pot-Pourri
The target of MODE is to design a scalable, versatile architecture that can provide end-to-
end optimization of particle detectors, proving it on a number of different applications

Idea: if we “solve” a few problems we may construct a library of solutions and exploit the 
universality of the underlying architecture and its modularity, re-using modeling efforts

Initial study cases: 

- MUonE detector → completed and published

- LHCb EM calorimeter optimization → preliminary results out

- Muon tomography detector optimization → preliminary results out, submitted to journal

- Muon collider EM calorimeter → in progress

- Optimization of detectors for air Cherenkov showers (SWGO) → Preliminary results out, ongoing

- Hybrid calorimeter design integrating tracking layers → started

plus many more envisioned
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3 – Optimization of 
Future Calorimeters

Below: the HGCAL calorimeter for the 
CMS upgrade
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A necessary question: Hybridization

In an impending AI revolution, the design of calorimeters is crying to be 
rethought.

Standard setup in particle detectors: lightweight tracker → dense calorimeter

Why abrupt change of density? 

«Because nuclear interactions…»

16Distance from center
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A necessary question: 
Hybridization / 2

Regardless of the extractability of particle-ID information from the patterns of energy 
depositions, the design of calorimeters is crying to be rethought.

Standard setup in particle detectors: lightweight tracker → dense calorimeter

Why abrupt change of density? 

Historically: allow measurement of charged particle parameters undisturbed by 
nuclear interactions

But today/tomorrow we (will) have AI reconstruction... 

Plan: Investigate coupled system of tracker and calorimeter, slowly vary density in z 
from step function to smoother transition, study effect on extractable information

→Requires high-perf. reconstruction of nuclear interactions in pattern recognition step

→Likely (almost guaranteed) to discover new ways / overcome standing paradigm
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Why abrupt change of density? 
«Because nuclear interactions…»

Above: a totally out of context neutrino 
interaction. Behold the enormous amount
of information a single interaction bears!



Asking for More to Calorimeters: Particle ID

Charged pions, kaons, and protons constitute
the bulk of the hadrons flowing into a hadron
calorimeter

Being able to distinguish them would bring in 
very large gains:

- to flavour tagging (killer app: H→ss at a 
future collider, where you need to tag the 
fast kaon from s hadronization)

- to energy reconstruction (improved
through particle flow techniques)

- to boosted-jet tagging (from improved
inner structure reconstruction of jet cores)

- and more
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Asking for More to Calorimeters: Particle ID

Charged pions, kaons, and protons constitute
the bulk of the hadrons flowing into a hadron
calorimeter

Being able to distinguish them would bring in 
very large gains:

- to flavour tagging (killer app: H→ss at a 
future collider, where you need to tag the 
fast kaon from s hadronization)

- to energy reconstruction (improved
through particle flow techniques)

- to boosted-jet tagging (from improved
inner structure reconstruction of jet cores)

- and more

But can it be done?
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What Information Are We After?
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What Information Are We After?
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Physical facts:

• Protons are larger than pions and kaons, in fact the nuclear interaction 
cross sections of protons, pions, kaons are significantly different

→Harder to exploit than it looks,

but it can be done

• Ionization power is also different (we only used this in tracking so far)

→ if we have sufficient granularity we can single out the ionization of 
each particle, at least away from the bulk of the shower

• Kaons contain one unit of strangeness, pions (and protons) do not

→ the daughters in nuclear collisions are different
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Physical facts:

• Protons are larger than pions and kaons, in fact the nuclear
interaction cross sections of protons, pions, kaons are significantly
different

→this should be «easy» to exploit

• Ionization power is also different (we only used this in tracking so far)

→if we have sufficient granularity we can single out the ionization of 
each particle, at least away from the bulk of the shower

→This information can then be used by ML tools

• Kaons contain one unit of strangeness, pions (and protons) do not

→ the daughters in nuclear collisions are different



What Information Are We After?
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Physical facts:

• Protons are larger than pions and kaons, in fact the nuclear
interaction cross sections of protons, pions, kaons are significantly
different

→this should be «easy» to exploit

• Ionization power is also different (we only used this in tracking so 
far)

→ if we have sufficient granularity we can single out the ionization
of each particle, at least away from the bulk of the shower

• Kaons contain one unit of strangeness, pions (and protons) do not

→ the daughters in nuclear collisions are different

E.g.: Charge exchange
(pions do it, kaons don’t)

25



Research Questions and a Money Plot

(1) What are the ultimate particle ID capabilities 
of a granular hadron calorimeter, assuming no 
limit on size Δx of readout cells?

(2) How does particle ID capability degrade as Δx 
is increased, and for what value Δxcrit does it get 
lost in conceivable setups?

(3) By how much would that information 
improve the performance of hadronic jet 
reconstruction in specific benchmarks of interest 
(e.g., H->bb, H→ss)? 

(4) How much further gain is possible by 
exploiting timing information? Δxcrit

T. Dorigo, DRD6 CM, April 10 2024 26
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Research Questions / 2

(1) What are the ultimate particle ID capabilities 
of a granular hadron calorimeter, assuming no 
limit on size Δx of readout cells?

(2) How does particle ID capability degrade as Δx 
is increased, and for what value Δxcrit does it get 
lost in conceivable setups?

(3) By how much would that information 
improve the performance of hadronic jet 
reconstruction in specific benchmarks of interest 
(e.g., H->bb, H→ss)? 

(4) How much further gain is possible by 
exploiting timing information? 
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Research Questions: timing

(1) What are the ultimate particle ID capabilities 
of a granular hadron calorimeter, assuming no 
limit on size Δx of readout cells?

(2) How does particle ID capability degrade as Δx 
is increased, and for what value Δxcrit does it get 
lost in conceivable setups?

(3) By how much would that information 
improve the performance of hadronic jet 
reconstruction in specific benchmarks of interest 
(e.g., H->bb, H→ss)? 

(4) How much further gain is possible by 
exploiting timing information? 
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But can we afford mm-size cells?

Costly/unfeasible to have multi-million cell calorimeters. But is it also 
overkill, or are we limiting ourselves?

Also, in hadron colliders we strive for highest possible collision rate, 
which has three implications:
1 - Cannot afford to save all data

- Not a real issue, most collisions are un-interesting… but still a limitation

2 - Pileup complicates pattern recognition
- LHC challenged to retain performance as luminosity increases

3 - Have trouble using highest-granularity subdetectors for online selection
- Using pixel detectors inside ATLAS/CMS for triggering purposes is problematic
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A new, far-fetched idea

Introduce fast online preprocessing of light signals by nanophotonic devices
embedded in the detector

→ exploit timing structure

→ transmit to back end higher-level primitives 

→ enable smarter triggering 

→ improve information extraction
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Timing with Neuromorphic Computing

Recent developments in nanophotonics: can use arrays of nanowires 
(light receivers/emitters) in micrometric substrates 

→ create neuromorphic network encoding and exploiting time 
structure of photon signals from scintillation/Cherenkov 
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Timing with Neuromorphic Computing

Recent developments in nanophotonics: can use light 
receivers/emitters in micrometric substrates 

→may create neuromorphic network encoding and exploiting time 
structure of photon signals from scintillation/Cherenkov

An avalanche of disruptive advancements:

- No transduction (PMT gone) – photons are the signal AND the 
computation tokens

- On-site fast computing

- Ultra-high energy efficiency

- Natural exploitation of time structure 
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An AI problem to solve (if the rest works)

10x10 matrix of light-sensitive receivers

Block of transparent scintillating crystal

Particle trajectories

Consider a small 

element of scintillating 

material in a calorimeter

(e.g., few cm3)
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Light emission sites

The space-time 

structure of photon 

emission contains 

information on the 

processes locally taking 

place in the cubelet

34

An AI problem to solve (if the rest works)



Photon arrival front at interface 
provide for automatic (but not 
trivial) encoding 

→May try using a 
neuromorphic network to 
reconstruct the topology of 
interactions– or simply 
compress information into 
useful summaries, given 
detected photons emitted 
along the path and their arrival 
times 

Reflective side (increase yield of detectable photons)
35

Spike time-
encoded 

information 
flows to 
neurons



An invitation

Within MODE we created a group that is looking into these matters:

- Particle ID information extraction from high-granularity data

- End-to-end modeling via differentiable programming, for optimization

- Exploitation of neuromorphic computing to reconstruct space-time patterns

- Readout and processing with nanowires

Institutions involved:

- INFN, Padova (Dorigo), RPTU (Gauger), LTU (Sandin), Lund (Mikkelsen), CMU (Lee)

- Projects seeking funding: several

- If you would like to participate, you are more than welcome!
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A Workshop

On September 23-25 we 
will hold the fourth MODE 
workshop in Valencia 
(Spain)

Please consider coming / 
presenting plans for 
detector design 
optimization there! 
https://indico.cern.ch/even
t/1380163/overview
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Summary

• After the paradigm shift of 2012 (AlexNet, Higgs discovery) it is not 
reasonable any longer to do complex multidimensional inference 
without machine learning tools

• The next paradigm shift enabled by AI is the assistance of properly 
interfaced tools in design of complex systems

• We can do more with calorimeters tomorrow, provided that we 
ensure that extractable information is suitably generated 

• Some bold new ideas need to be investigated by considering the issue 
as an end-to-end optimization problem
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Thank you for your time!
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Optimal for What?

The reason why detectors are complex is not only that the 
studied physics is complex: Science is a demanding job. 
Physicists want to study everything and do it better than
their predecessors

CMS has over 4000 members, who use the data for a 
LARGE number of different measurements and searches...

So, what does it mean for a detector to be optimal? 

What loss function do we aim to minimize? 

Does it make sense to speak of an experiment-wide utility 
function?

40

Above: publication time of 1125 articles by 
the CMS collaboration (in blue). 
Below: a small fraction of the CMS members
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Recipe for a Perfect Dinner

We are not alien to confidently taking complex decisions in a multi-objective space. We actually do it routinely... 

Of course, we are not deterred by knowing that the exact form of our optimization target is arbitrary 42T. Dorigo, DRD6 CM, April 10 2024



Recipe for a Perfect Detector

1. Assess your total budget and time-to-completion

2. Model as a steep function the cost of overriding
budget or time

3. Assess the scientific impact of each achievable
scientific results

4. Create a differentiable model of the geometry, the 
components, the information-extraction
procedures, and the utility function

5. Construct a pipeline with those modules, enabling
backpropagation and gradient descent functionality

6. Let the chain rule of differential calculus do the hard 
work for you

43

We will discuss this in more detail below, with a couple of 
examples – but will first discuss the scale of our problems

1, 2

3

4
5

6
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