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What is a parton shower?
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Dipole Showers in a nutshell
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Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm
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Dipole showers 
Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

Δ(v0, v) = exp (−∫
v0

v
dPqq̄(Φ))

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0

Dipole Showers in a nutshell
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At some point, state splits (2→3, i.e. emits 
gluon) at a scale . The kinematic (rapidity 
and azimuth) of the gluon is chosen according to

v1 < v0

v 

Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

dPqq̄(Φ(v1))

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0

Φ = {v, η, φ}

Dipole Showers in a nutshell
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The gluon is part of two dipoles , . 
 
Iterate the above procedure for both dipoles 
independently, using  as starting scale.

(qg) (gq̄)
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v 

Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

At some point, state splits (2→3, i.e. emits 
gluon) at a scale .v1 < v0

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0

Dipole Showers in a nutshell
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➤Dipole showers reproduce the soft QCD 
radiation pattern, exploting the large 
number of colour approximation
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Adding QED and EW interactions in dipole showers: the Vincia solution 

For the inclusion of subleading  corrections 
in a dipole shower see 1202.4496 +1501.00778 
(Deductor), 2011.10054 (PanScales),  
2011.15087 (FHP)

Nc

https://hdl.handle.net/2066/218748
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Adding QED and EW interactions in dipole showers: the Vincia solution 

➤For photon emissions, all 
charged particles contribute 
equally  multipole→

➤Dipole showers reproduce the soft QCD 
radiation pattern, exploting the large 
number of colour approximation

https://hdl.handle.net/2066/218748
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Adding QED and EW interactions in dipole showers: the Vincia solution 

➤Apply a similar factorisation to break the giant QED multipole 
[Verheyen, Skands 2002.04939]

➤VINCIA is a sector shower: phase space available for an 
emission sectorised with  mimicking jet clustering  
[Brooks, Preuss, Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

Θ

➤For photon emissions, all 
charged particles contribute 
equally  multipole→

➤Dipole showers reproduce the soft QCD 
radiation pattern, exploting the large 
number of colour approximation

https://hdl.handle.net/2066/218748
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Adding QED and EW interactions in dipole showers: the Vincia solution 

➤Apply a similar factorisation to break the giant QED multipole …[Verheyen, Skands 2002.04939]

➤VINCIA is a sector shower: phase space available for an emission sectorised [Brooks, Preuss, 
Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

➤… and also include EW splittings [Verheyen, Skands 2002.04939]
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Adding QED and EW interactions in dipole showers: the Vincia solution 

➤Apply a similar factorisation to break the giant QED multipole …[Verheyen, Skands 2002.04939]

➤VINCIA is a sector shower: phase space available for an emission sectorised [Brooks, Preuss, 
Skands 2003.00702; Lopez-Villarejo, Skands 1109.3608]

➤… and also include EW splittings [Verheyen, Skands 2002.04939]

➤EW showers critically are helicity showers 
[1301.0933, Larkoski, Lopez-Villarejo, Skands]

For handling of spin correlations in (QCD) dipole showers, see also 
1807.01955 (Herwig) and 2103.16526, 2111.01161 (PanScales)

https://arxiv.org/pdf/1301.0933
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Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

➤Each parton produced in the hard scattering showers independently

qq̄

g

p̃q

qq̄

g

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

p̃q

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

p̃q

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

Add  with a probability 
given by  the Altarelli-Parisi 
collinear splitting function

k1

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

k1 ∼ z2((1 − z1)p̃q − k⊥,1) + k⊥2

Iterate considering smaller 
emissions angles

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

k1 ∼ z2((1 − z1)p̃q − k⊥,1) + k⊥2

It is straighforward to include QED [since v 7.0 1512.01178],  Electro-Weak [Masoumnia, 
Richardson, 2108.10817; available since v 7.3 2312.05175], BSM [Lee, Masouminia, 
Seymour, Yang, 2312.13125; will be available in v 7.4]

Herwig7 Angular-Orderd generalised shower

Spin correlations 
hep-ph/0110108, 1807.01955  
(based on Collins-Soper ’88)

https://arxiv.org/abs/1512.01178
https://arxiv.org/abs/2108.10817
https://arxiv.org/abs/2312.05175
https://arxiv.org/abs/2312.13125
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Amplitude-level evolution
➤ CVolver =evolve separately amplitude and 

conjugate amplitude: subleading colour, 
spin correlations, Glauber phases taken into 
account 
[ Plätzer, Sjodahl, De Angelis, Forshaw, 
Holguin, see 2210.09178 and refs therein] 
+ EW interactions [Plätzer, Sjodahl 
2204.03258]

https://arxiv.org/pdf/2210.09178
https://arxiv.org/abs/2204.03258
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Amplitude-level evolution

➤ Deductor =density matrix in colour [Nagy, 
Soper 0805.0216, 1202.4496, 1401.6364, 
1501.00778, 1902.02105, 1905.07176, 
1908.11420] to resum “nasty soft & Glauber 
contributions” [and more]

➤ CVolver =evolve separately amplitude and 
conjugate amplitude: subleading colour, 
spin correlations, Glauber phases taken into 
account 
[ Plätzer, Sjodahl, De Angelis, Forshaw, 
Holguin, see 2210.09178 and refs therein] 
+ EW interactions [Plätzer, Sjodahl 
2204.03258]

https://indico.ph.tum.de/event/7096/contributions/5481/attachments/4181/5309/Nagy_Slides.pdf
https://arxiv.org/abs/0805.0216
https://arxiv.org/abs/1202.4496
https://arxiv.org/abs/1401.6364
https://arxiv.org/abs/1501.00778
https://arxiv.org/abs/1902.02105
https://arxiv.org/abs/1905.07176
https://arxiv.org/abs/1908.11420
https://arxiv.org/pdf/2210.09178
https://arxiv.org/abs/2204.03258
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Are current showers good enough?
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Are current showers good enough?

What does good shower mean?
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4 Event selection and jet substructure extraction
Jets with pT > 700 GeV and |y| < 1.7 are selected for the measurement. For such a rapidity
selection requirement, both AK4 and AK8 jets are fully contained in the tracker acceptance. To
construct the primary Lund jet plane, we follow the prescription described in Section 1. The
anti-kT jet constituents are reclustered using the CA algorithm. While the original anti-kT jet is
clustered using neutral and charged particle-flow candidates, the Lund jet plane is calculated
using only its charged-particle constituents. Due to the approximate isospin symmetry of the
strong force, the salient features of the substructure of the jet do not depend on the electric
charge of the final-state hadrons. Although the charged-particle jet substructure is not infrared
and collinear safe, this choice does not affect the comparison to theoretical calculations of the
primary Lund jet plane density [12]. For the measurement of the Lund jet plane, the charged-
particle constituents are required to have pT > 1 GeV to further suppress the contributions
of residual pileup particles and to avoid the decrease in track reconstruction efficiency below
1 GeV. In Fig. 3, we show two distinct slices of the primary Lund jet plane density measured in
data. The detector-level predictions of HERWIG7 CH3 and PYTHIA8 CP5 are shown in the same
panel. Their detector-level predictions envelop the measured distribution.
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Figure 3: Detector-level distributions of data and Monte Carlo simulated events generated with
PYTHIA8 CP5 and HERWIG7 CH3. The lower panels show the ratio of the predictions with
respect to the data. Only statistical uncertainties are included here.

➤ showers do an amazing job on 
many observables for LHC 

➤ various places see 10–30% 
discrepancies between 
showers and data 

➤ A lot of work is required to 
reach the percent precision 
target!

Lund Plane

HERWIG7 CH3

PYTHIA8 CP5

detector level

Are current showers good enough?

23
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Logarithmically-accurate Parton Showers

1 TeV

10 GeV

energy
scale

1 GeV

100 GeV

hadronisation

shower

hard process

parton

PanScales 
project

PanScales 
project[ ]

π Κ π ρ p . . . . . Κ π π Κ π π

timeZ'

=1 GeVΛ

10 GeV

100 GeV

=1 TeVQ

L = ln
Q
Λ

≫ 1

PARTON SHOWERS = energy degradation via an iterated sequence of 
softer and softer emissions

simple algorithm to include the dominant radiative corrections at 
all orders for any observable! 

LL = leading logsΣ(O < e−L) = exp (−LgLL(β0αsL) + …)

24
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Σ(O < e−L) = exp (−LgLL(β0αsL) + gNLL(β0αsL) + …)

Logarithmically-accurate Parton Showers

1 TeV

10 GeV

energy
scale

1 GeV

100 GeV

hadronisation
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hard process

parton

PanScales 
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project[ ]
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timeZ'

=1 GeVΛ

10 GeV

100 GeV

=1 TeVQ

L = ln
Q
Λ

≫ 1

PARTON SHOWERS = energy degradation via an iterated sequence of 
softer and softer emissions

simple algorithm to include the dominant radiative corrections at 
all orders for any observable! 

For : 
Next-to-Leading Logarithms needed for quantitative predictions!

Q ∼ 50 − 10000 GeV, β0αsL ∼ 0.3 − 0.5

??

25



PSR2024Silvia Ferrario Ravasio

Σ(O < e−L) = exp (−LgLL(β0αsL) + gNLL(β0αsL) + αsgNNLL(β0αsL) + …)

Logarithmically-accurate Parton Showers
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≫ 1

PARTON SHOWERS = energy degradation via an iterated sequence of 
softer and softer emissions

simple algorithm to include the dominant radiative corrections at 
all orders for any observable! 

For : 
Next-to-Next-to-Leading Logs needed for %-level precision!

Q ∼ 50 − 10000 GeV, β0αsL ∼ 0.3 − 0.5

?? ??
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Dissecting the parton shower emission probability
Starting from a  system, what is the splitting probability? e+e− → Z* → qq̄

d𝒫ĩ j̃→ijk ∼
dv2

v2
dη̄

dφ
2π

Pĩ, j̃→i,j,k(v, η̄, φ)

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19

p̃i

p̃j

pi

pj

pk
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Dissecting the parton shower emission probability
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Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
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I Squared amplitudes obtained from recursive chain of emissions.
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I evolution variable E defining order of

emissions.
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Matrix element for 
emitting a parton  
from a parton  (or )

k
i j
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Dissecting the parton shower emission probability
Starting from a  system, what is the splitting probability? e+e− → Z* → qq̄

d𝒫ĩ j̃→ijk ∼
dv2

v2
dη̄

dφ
2π

Pĩ, j̃→i,j,k(v, η̄, φ)

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19

p̃i

p̃j

pi

pj

pk

Evolution variable: 
emissions are ordered  
Q > v1 > v2 > … > Λ

Matrix element for 
emitting a parton  
from a parton  (or )

k
i j
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Dissecting the parton shower emission probability
Starting from a  system, what is the splitting probability? e+e− → Z* → qq̄

d𝒫ĩ j̃→ijk ∼
dv2

v2
dη̄

dφ
2π

Pĩ, j̃→i,j,k(v, η̄, φ)

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19

p̃i

p̃j

pi

pj

pk

Evolution variable: 
emissions are ordered  
Q > v1 > v2 > … > Λ

Matrix element for 
emitting a parton  
from a parton  (or )

k
i j

Kinematic mapping: 
how to reshuffle the 
momenta of  and  after 
the emission takes place

i j
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Dissecting the parton shower emission probability
Starting from a  system, what is the splitting probability? e+e− → Z* → qq̄

d𝒫ĩ j̃→ijk ∼
dv2

v2
dη̄

dφ
2π

Pĩ, j̃→i,j,k(v, η̄, φ)

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19

p̃i

p̃j

pi

pj

pk

Evolution variable: 
emissions are ordered  
Q > v1 > v2 > … > Λ

Matrix element for 
emitting a parton  
from a parton  (or )

k
i j

Kinematic mapping: 
how to reshuffle the 
momenta of  and  after 
the emission takes place

i j

Their inteplay 
determines the 
shower logarithmic 
accuracy
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How to build a logarithmically-accurate parton shower?
➤ The Lund plane: diagnostic 

tools for resummation and 
parton showers

ln kt /Q
y

32
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➤ The Lund plane: diagnostic 
tools for resummation and 
parton showers

ln kt /Q
yHard 

emissions

Collinear

Soft

Soft-Collinear

How to build a logarithmically-accurate parton shower?

33
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How to build a LL parton shower?
➤ The Lund plane: diagnostic 

tools for resummation and 
parton showers

ln kt /Q
y

➤ At Leading Logarithmic 
accuracy we only care about 
soft-collinear emissions very 
separated between each others

1

2

3

LO soft splitting 
function

dPi =
αs(kt)

π
2CF

z
dz d ln kt

One-loop QCD coupling 
constant at μR = kt

34
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How to build a LL parton shower?
➤ The Lund plane: diagnostic 

tools for resummation and 
parton showers

ln kt /Q
y

➤ At Leading Logarithmic 
accuracy we only care about 
soft-collinear emissions very 
separated between each others

1

2

3

LO soft splitting 
function

dPi =
αs(kt)

π
2CF

z
dz d ln kt

One-loop QCD coupling 
constant at μR = kt

This tells us what matrix 
element should we use to 
generate a new emission 

35
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How to build a LL parton shower?
➤ The Lund plane: diagnostic 

tools for resummation and 
parton showers

ln kt /Q
y

➤ At Leading Logarithmic 
accuracy we only care about 
soft-collinear emissions very 
separated between each others

1

2

3

LO soft splitting 
function

dPi =
αs(kt)

π
2CF

z
dz d ln kt

One-loop QCD coupling 
constant at μR = kt

This constrains the kinematic mapping 
 and the ordering variable choice: 

emissions well separated in rapidity and 
transverse momentum are independent 
from each other

Φn → Φn+1

36
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How to build a NLL parton shower?
ln kt /Q

y
At NLL accuracy:

➤ The rate for soft-collinear 
emissions must be correct at NLO 

 

➤ Emissions separated in just one 
direction in the Lund plane enter at 
this order

dPi =
αs(kt)

π (1+
αs(kt)

2π
K1) 2CF

z
dz d ln kt

37
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How to build a NLL parton shower?
ln kt /Q

y
At NLL accuracy:

➤ The rate for soft-collinear 
emissions must be correct at NLO 

 

➤ We need to include soft and collinear 
contributions at LO 

 

➤ Emissions separated in just one 
direction in the Lund plane enter at 
this order

dPi =
αs(kt)

π (1+
αs(kt)

2π
K1) 2CF

z
dz d ln kt

dPi =
αs(kt)

π
P(z) dz d ln kt

38
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How to build a NLL parton shower?
ln kt /Q

y
At NLL accuracy:

This tells us what matrix 
element we ned to use to 
generate a new emission 

➤ The rate for soft-collinear 
emissions must be correct at NLO 

 

➤ We need to include soft and collinear 
contributions at LO 

 

➤ Emissions separated in just one 
direction in the Lund plane enter at 
this order

dPi =
αs(kt)

π (1+
αs(kt)

2π
K1) 2CF

z
dz d ln kt

dPi =
αs(kt)

π
P(z) dz d ln kt

Catani, Marchesini, Webber ‘91

39
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How to build a NLL parton shower?
ln kt /Q

y
At NLL accuracy:

➤ The rate for soft-collinear 
emissions must be correct at NLO 

 

➤ We need to include soft and collinear 
contributions at LO 

 

➤ Emissions separated in just one 
direction in the Lund plane enter at 
this order

dPi =
αs(kt)

π (1+
αs(kt)

2π
K1) 2CF

z
dz d ln kt

dPi =
αs(kt)

π
P(z) dz d ln kt
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How to build a NLL parton shower?
ln kt /Q

y
At NLL accuracy:

Constrains kinematic mapping  and 
ordering variable: emissions well separated in 
rapidity are independent from each other, even if 
they have similar transverse momentum

Φn → Φn+1

➤ The rate for soft-collinear 
emissions must be correct at NLO 

 

➤ We need to include soft and collinear 
contributions at LO 

 

➤ Emissions separated in just one 
direction in the Lund plane enter at 
this order

dPi =
αs(kt)

π (1+
αs(kt)

2π
K1) 2CF

z
dz d ln kt

dPi =
αs(kt)

π
P(z) dz d ln kt
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Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Designed to achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

ATLAS, 7 TeV
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 of the Z at LHCp⊥ 2 recoil 
schemes that 
achieve NLL 
accuracy for 
global event 
shapes 
(difference can be 
used to estimate 
shower 
uncertainties)

[Bewick, SFR, Richardson, Seymour; 
1904.11866, 2107.04051]

https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
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Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Designed to achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

BUT

➤ Matching with fixed-order calculations beyond 
NLO is painful (and not available) 

➤ Non-global logarithms are not correctly 
described [Banfi, Corcella, Dagupta hep-ph/
0612282 ]

https://arxiv.org/abs/hep-ph/0612282
https://arxiv.org/abs/hep-ph/0612282


PSR2024Silvia Ferrario Ravasio 44

Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Designed to achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

≈ →

➤ Dipole showers are the more popular alternative to 
angular-ordered showers 
                                 [Gustafson, Pettersson ’88]

Dipole shower (Pythia, Sherpa, Herwig)

BUT

➤ Matching with fixed-order calculations beyond 
NLO is painful (and not available) 

➤ Non-global logarithms are not correctly 
described [Banfi, Corcella, Dagupta hep-ph/
0612282 ]

➤ Matching beyond NLO and multi-jet merging 
much simpler as hardest emissions come first 

➤ Azimuthal dependendece of soft emission 
necessary for non-global logs

BUT THEY ARE NOT YET (N)NLL! 

https://arxiv.org/abs/hep-ph/0612282
https://arxiv.org/abs/hep-ph/0612282
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Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Designed to achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

≈ →

➤ Dipole showers are the more popular alternative to 
angular-ordered showers 
                                 [Gustafson, Pettersson ’88]

Dipole shower (Pythia, Sherpa, Herwig)

BUT

➤ Matching with fixed-order calculations beyond 
NLO is painful (and not available) 

➤ Non-global logarithms are not correctly 
described [Banfi, Corcella, Dagupta hep-ph/
0612282 ]

➤ Matching beyond NLO and multi-jet merging 
much simpler as hardest emissions come first 

➤ Azimuthal dependendece of soft emission 
necessary for non-global logs

Steady progresses in building (N)NLL

https://arxiv.org/abs/hep-ph/0612282
https://arxiv.org/abs/hep-ph/0612282
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

Why are “standard” dipole showers not NLL?

q
q̄

1
2

1st emission

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Transverse-momentum 
ordering

https://arxiv.org/abs/1805.09327
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salamq
q̄

1
2

The  or  recoilq q̄

1st emission

1st emission recoils 
⃗kt1 → ⃗kt1 − ⃗kt2

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Who takes the  
recoil of the new 

emission?

k⊥Transverse-momentum 
ordering

Why are “standard” dipole showers not NLL?

https://arxiv.org/abs/1805.09327
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salamq
q̄

1
2

The  or  recoilq q̄

1st emission

1st emission recoils 
⃗kt1 → ⃗kt1 − ⃗kt2

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

 For  but ,  the 1st emission is affected by the 2nd: NLL 
is not OK!

|η1 − η2 | ≫ 1 kt,1 ∼ kt,2

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Who takes the  
recoil of the new 

emission?

k⊥Transverse-momentum 
ordering

Why are “standard” dipole showers not NLL?

https://arxiv.org/abs/1805.09327
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Building a NLL shower

Deductor by Nagy & Soper 0912.4534

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

PanScales (local variant), Dasgupta et al. 
2002.11114

+angles in the event frame

Local recoil

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2002.11114
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Building a NLL shower

Deductor by Nagy & Soper 0912.4534

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

PanScales (local variant), Dasgupta et al. 
2002.11114

Global recoil:  is redistributed among all 
the partons in the event (mainly the hardest)

k⊥

PanScales (global variant), Dasgupta et al. 
2002.11114
Forshaw, Holguin, and Plätzer 2003.06400
Alaric by Herren et al. 2208.06057
Apollo by Preuss 2403.19452+angles in the event frame

Local recoil

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2403.19452
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Status of NLL PanScales showers

colour singletpp →

q q̄
p

V

p p p

q
p

Q

ℓ

q′

ℓ′

p

Dasgupta, Dreyer, Hamilton, 
Monni, Salam, Soyez, 
2002.11114

van Beekveld, SFR, Soto-Ontoso, 
Salam, Soyez, Verheyen, 2205.02237, 
+ Hamilton 2207.09467 

van Beekveld, SFR, 
 2305.08645 

e+e− → j1j2 DIS & VBF

51

➤ PanScales is the first shower with general NLL accuracy for
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Status of NLL PanScales showers

colour singletpp →

q q̄
p

V

p p p

q
p

Q

ℓ

q′

ℓ′

p

Dasgupta, Dreyer, Hamilton, 
Monni, Salam, Soyez, 
2002.11114

van Beekveld, SFR, Soto-Ontoso, 
Salam, Soyez, Verheyen, 2205.02237, 
+ Hamilton 2207.09467 

van Beekveld, SFR, 
 2305.08645 

e+e− → j1j2 DIS & VBF

52

➤ PanScales is the first shower with general NLL accuracy for

…with subleading colour (Hamilton, 
Medves, Salam, Scyboz, Soyez 2011.10054) and 
spin correlations (Karlberg, Salam, Scyboz, 
Verheyen 2103.16526, + Hamilton 2111.01161)
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Alaric highlights

➤ The anti-collinear component is conserved globally 
in the map: the colour partner is not used as recoiler 
(as in Deductor and FHP)               

➤ Separate soft from collinear evolution e.g. 

 

(similar proposal by Nagy and Soper in 2204.05631) 

Pq→qg

CF
=

2z
1 − z

+ 1 − z

NLL shower for  in 2208.06057  
[Herren, Höche, Krauss, Reichelt,  Shönherr]

e+e−

NLL shower similar to LL

https://arxiv.org/abs/2204.05631
https://arxiv.org/abs/2208.06057
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Alaric highlights

➤ The anti-collinear component is conserved globally 
in the map: the colour partner is not used as recoiler 
(as in Deductor and FHP)               

➤ Separate soft from collinear evolution e.g. 

 

(similar proposal by Nagy and Soper in 2204.05631) 

Pq→qg

CF
=

2z
1 − z

+ 1 − z

NLL shower for  in 2208.06057  
[Herren, Höche, Krauss, Reichelt,  Shönherr]

e+e−

Sh
e

r
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M
C
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e

r
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M
C

ALEPH data
Eur.Phys.J. C35 (2004) 457

Alaric
Dire
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With mass effects 2307.00728 [Assi, Höche]
➤ Local  conservation for collinear evolutionk⊥

NLL shower similar to LL

Mild improvement in the tail

https://arxiv.org/abs/2204.05631
https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2307.00728
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Alaric highlights

➤ The anti-collinear component is conserved globally 
in the map: the colour partner is not used as recoiler 
(as in Deductor and FHP)               

➤ Separate soft from collinear evolution e.g. 

 

(similar proposal by Nagy and Soper in 2204.05631) 

Pq→qg

CF
=

2z
1 − z

+ 1 − z

NLL shower for  in 2208.06057  
[Herren, Höche, Krauss, Reichelt,  Shönherr]

e+e−

With mass effects 2307.00728 [Assi, Höche]
➤ Local  conservation for collinear evolutionk⊥

 colliders and multi-jet merging 2404.14360 
[Höche, Krauss, Reichelt]

pp

➤ Global  conservation for ISRk⊥
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https://arxiv.org/abs/2204.05631
https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2307.00728
https://arxiv.org/abs/2404.14360
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LEP: when is NLL important?

=91 GeVs =10 TeVs

SHERPA

DEDUCTOR

NLL/LL 
discrepancies at 

larger scales

τ = 1 − T

NLL shower
LL shower
NLL analytic
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The 
(Panscales) 

route to 
NNLL

57

R I N G B E R G 2 0 2 4

  

NNLLNNLL

NNLLNNLL

Start here: Start here: 

NLL showerNLL shower

Match without Match without 

breaking NLLbreaking NLL

Include double-soft Include double-soft 

real emissions...real emissions...

...and associated ...and associated 

virtuals!virtuals!

Compute triple-Compute triple-

collinear ingredientscollinear ingredients

Are we there yet?Are we there yet?EXPECTATIONEXPECTATION

Slide 2/27 — Alexander Karlberg — NNLL parton showers

Figure from
 A

lexander Karlberg
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Matching and Logarithmic Accuracy

ΣNLO = ΣLO(1 + αsΔNLO + …)

Figure 9: Thrust (left), Cambridge ln y23 (middle) and SoftDrop ln kt/Q (right) distri-

butions, unmatched (red) and matched (blue). They are obtained with a LL shower (our

PanScales implementation of the Pythia 8 shower (PSPythia 8, top row)) and two NLL

showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.

Recall that since this shower is LL rather than NLL we do not include the scale compen-

sation terms of Eq. (5.1) when varying the renormalisation scale (neither in the shower

– 25 –

NLL parton shower

correctly matched

[H
am

ilton, Karlberg, Salam
, Scyboz, Verheyen, 2301.09645]

➤NLO matching is necessary for NNLL accuracy Z → qq̄

ΣNNLL = exp (LgLL(αsL) + gNLL(αsL) + αsgNNLL(αsL))

58

https://arxiv.org/abs/2301.09645
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Matching and Logarithmic Accuracy

ΣNLO = ΣLO(1 + αsΔNLO + …)

Figure 9: Thrust (left), Cambridge ln y23 (middle) and SoftDrop ln kt/Q (right) distri-

butions, unmatched (red) and matched (blue). They are obtained with a LL shower (our

PanScales implementation of the Pythia 8 shower (PSPythia 8, top row)) and two NLL

showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.

Recall that since this shower is LL rather than NLL we do not include the scale compen-

sation terms of Eq. (5.1) when varying the renormalisation scale (neither in the shower

– 25 –

NLL parton shower

wrongly-matched

correctly matched

[H
am

ilton, Karlberg, Salam
, Scyboz, Verheyen, 2301.09645]

➤NLO matching is necessary for NNLL accuracy 

➤But it could instead downgrade the 
NLL accuracy of the shower

Z → qq̄

ΣNNLL = exp (LgLL(αsL) + gNLL(αsL) + αsgNNLL(αsL))

59

for standard dipole showers with observables such as the thrust. Below, when we summarise

matched shower results together with their logarithmic accuracy, we will use the notation

NLL, to remind the reader that the formal NLL accuracy has been lost. One subtlety,

however, is that the di↵erence between Eqs. (3.6b) and (3.4b) is always of relative order

↵s. This has the consequence that in numerical NLL tests with ↵s ! 0 for fixed ↵sL, this

di↵erence would mimic a NNLL term, i.e. NLL accuracy would appear to be preserved

despite the presence of spurious super-leading logarithms.

There are, nevertheless, observables that see a larger relative e↵ect. One example

is the invariant mass or transverse momentum of the first SoftDrop splitting when using

�SD = 0 [47, 48]. The special characteristic of this observable is that it is not a standard

global event shape, and its resummation does not have double-logarithmic terms, i.e. it

starts from g2 in Eq. (1.1). In the fixed-coupling approximation that we have e↵ectively

used in this section, the SD cross section has the following single-logarithmic structure,

⌃SD(L) = e↵̄cL , (3.12)

where c is a constant that depends on SoftDrop’s zcut parameter, which we take to be

small. Using the same strategy as above, one can explore how Eq. (3.12) is modified in

HEG/shower combinations with a hard-collinear mismatch. Keeping �ps = 0 for simplicity,

one finds

⌃SD(L) = e↵̄cL�↵̄� + e�↵̄L
2
(1� e�↵̄�) , (3.13)

where the coe�cient � that parameterises the impact of the HEG/shower contour mis-

match now depends on zcut. As with Eq. (3.11), this generates spurious ↵n
sL

2n�2 terms. If

we examine the derivative of ⌃SD (as we will do below in our phenomenology plots),

@L⌃SD(L) = ↵̄c e↵̄cL�↵̄�
� 2↵̄Le�↵̄L

2
(1� e�↵̄�) , (3.14)

we observe that there is a region, L ⇠ 1/
p
↵s, where the second term is suppressed relative

to the first only by
p
↵s. Thus in this region, the impact of the HEG/shower mismatch is

parametrically larger than the relative O (↵s) correction seen in Eq. (3.6b).

3.2 Additional subtleties for gluon splitting

The purpose of this section is to discuss an issue that can arise even when we have a

HEG/shower combination whose kinematic contours (for a fixed value of the evolution

variable) are aligned not just in the soft-collinear region, but for any single-emission phase-

space point that is soft and/or collinear. The issue is connected with the fact that the

g ! gg splitting function

1

2!
Pgg(⇣) = CA

✓
⇣

1� ⇣
+

1� ⇣

⇣
+ ⇣(1� ⇣)

◆
, (3.15)

has two soft divergences, one for ⇣ ! 0 and the other for ⇣ ! 1. This is a consequence of

the inherent symmetry ⇣ $ (1 � ⇣), which stems from the fact that g ! gg corresponds

to splitting to two identical particles (hence also the 1/2! factor). However, dipole showers

break this symmetry, through the concept of an emitting particle (the “emitter”) and a

– 12 –

e.g. Soft Drop

https://arxiv.org/abs/2301.09645
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showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.
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for standard dipole showers with observables such as the thrust. Below, when we summarise

matched shower results together with their logarithmic accuracy, we will use the notation

NLL, to remind the reader that the formal NLL accuracy has been lost. One subtlety,

however, is that the di↵erence between Eqs. (3.6b) and (3.4b) is always of relative order

↵s. This has the consequence that in numerical NLL tests with ↵s ! 0 for fixed ↵sL, this

di↵erence would mimic a NNLL term, i.e. NLL accuracy would appear to be preserved

despite the presence of spurious super-leading logarithms.

There are, nevertheless, observables that see a larger relative e↵ect. One example

is the invariant mass or transverse momentum of the first SoftDrop splitting when using

�SD = 0 [47, 48]. The special characteristic of this observable is that it is not a standard

global event shape, and its resummation does not have double-logarithmic terms, i.e. it

starts from g2 in Eq. (1.1). In the fixed-coupling approximation that we have e↵ectively

used in this section, the SD cross section has the following single-logarithmic structure,

⌃SD(L) = e↵̄cL , (3.12)

where c is a constant that depends on SoftDrop’s zcut parameter, which we take to be

small. Using the same strategy as above, one can explore how Eq. (3.12) is modified in

HEG/shower combinations with a hard-collinear mismatch. Keeping �ps = 0 for simplicity,

one finds
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(1� e�↵̄�) , (3.13)

where the coe�cient � that parameterises the impact of the HEG/shower contour mis-

match now depends on zcut. As with Eq. (3.11), this generates spurious ↵n
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2n�2 terms. If

we examine the derivative of ⌃SD (as we will do below in our phenomenology plots),
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2
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we observe that there is a region, L ⇠ 1/
p
↵s, where the second term is suppressed relative

to the first only by
p
↵s. Thus in this region, the impact of the HEG/shower mismatch is

parametrically larger than the relative O (↵s) correction seen in Eq. (3.6b).

3.2 Additional subtleties for gluon splitting

The purpose of this section is to discuss an issue that can arise even when we have a

HEG/shower combination whose kinematic contours (for a fixed value of the evolution

variable) are aligned not just in the soft-collinear region, but for any single-emission phase-

space point that is soft and/or collinear. The issue is connected with the fact that the

g ! gg splitting function
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⇣
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, (3.15)

has two soft divergences, one for ⇣ ! 0 and the other for ⇣ ! 1. This is a consequence of

the inherent symmetry ⇣ $ (1 � ⇣), which stems from the fact that g ! gg corresponds

to splitting to two identical particles (hence also the 1/2! factor). However, dipole showers

break this symmetry, through the concept of an emitting particle (the “emitter”) and a

– 12 –

e.g. Soft Drop
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by
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Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
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the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
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could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
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where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
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ds for the full
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.
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Virtual corrections for soft emissions
Parton shower unitarity ensures

=
αs

2π
K1 − ∫ R

fixed “shower 
variables”

VPS

but analytic resummation tells we need the 
integral at fixed rapidity and !kt

KPS
1 = K1 + ΔK(Φ(1)

PS)

R∫
y, p⊥

fixed−
αs

2π
ΔK(Φ(1)

PS) = ∫ R

fixed “shower variables”
 vanishes for large rapidities since 

virtual corrections to soft-collinear 
emissions are OK for NLL showers

ΔK
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.

yPS

Δ
K

(y
PS

)

67

Virtual corrections for soft emissions
Parton shower unitarity ensures

=
αs

2π
K1 − ∫ R

fixed “shower 
variables”

VPS

but analytic resummation tells we need the 
integral at fixed rapidity and !kt

R∫
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2π
ΔK(Φ(1)

PS) = ∫ R

fixed “shower variables”
 vanishes for large rapidities since 

virtual corrections to soft-collinear 
emissions are OK for NLL showers

ΔK

KPS
1 = K1 + ΔK(Φ(1)

PS)

Augmenting the order of the splitting function used is not 
sufficient to achieve superior logarithmic accuracy: one first needs 

to remove the mistakes a shower is making at a given order!
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Non-global observables at “NNLL”

➤ Energy flow in slice between 
two 1 TeV jets 

➤ First time non-global obs is 
known at Next-to-Single 
Logs (at leading ) including 
the full  dependence  

➤ Double-soft reduces 
uncertainty band

Nc
nf

68
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.

S.F.R., Hamilton, Karlberg, 
Salam, Scyboz, Soyez 

2307.11142 

αCMW
s (kt; xR) = αs(xRkt)(1 +

αs(xRkt)
2π

(KCMW+ΔK(Φ))+2αs(xRkt)b0(1 − z)ln xR)Uncertainty here is estimated 
varying the renormalisation scale

https://arxiv.org/abs/2307.11142
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➤ Double-soft “reweighting” for 
neighbouring soft-collinear emsns
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2301.09645 ]
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➤ NLO corrections for soft, large-angle emissons

αeff
s (kt) = αs(kt)(1 +

αs(kt)
2π

(K1+ΔK1))

https://arxiv.org/abs/2301.09645
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Drift in rapidity of an emission when it further branches 

∫ 2CFdηΔK1(η) ∝ ⟨Δy⟩
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➤ Double-soft “reweighting” for 
neighbouring soft-collinear emsns

➤Matching 
[Hamilton et al. 
2301.09645 ]

Catani, Marchesini, 
Webber, ‘91

➤ NLO corrections for soft, large-angle emissons

αeff
s (kt) = αs(kt)(1 +

αs(kt)
2π

(K1+ΔK1))

 correct the shower mistake⇒

Building a NNLL shower

https://arxiv.org/abs/2301.09645
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➤ Double-soft “reweighting” for 
neighbouring soft-collinear emsns

➤Matching 
[Hamilton et al. 
2301.09645 ]

Drift in  of an emission when it further branches ln kt
ΔK2 ∝ β0⟨Δln kt⟩

 correct the shower mistake 
At this accuracy, it is sufficient to get the average

⇒

Banfi, El-Menoufi, 
Monni, 1807.11487

➤ NLO corrections for soft, large-angle emissons

αeff
s (kt) = αs(kt)(1 +

αs(kt)
2π

(K1+ΔK1))
➤ NNLO corrections for soft-collinear emsns 

αeff
s (kt) = αs(kt)(… +

α2
s (kt)
4π2

(K2+ΔK2))

Building a NNLL shower

https://arxiv.org/abs/2301.09645
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➤ Double-soft “reweighting” for 
neighbouring soft-collinear emsns

➤Matching 
[Hamilton et al. 
2301.09645 ]

 correct the shower mistake  
At this accuracy, it is sufficient to get the integral 

right, not the functional form of 

⇒

ΔB2(z)

Drift in  of an emission when it 
further branches 

ln z = ln kt + y

∫ P(z)dzΔB2(z) ∝ − ⟨Δz⟩

➤ NLO corrections for soft, large-angle emissons

αeff
s (kt) = αs(kt)(1 +

αs(kt)
2π

(K1+ΔK1))

➤ NLO corrections for collinear emsns 

d𝒫coll ∝ P(z)(1 +
αs

2π (B2(z)+ΔB2(z)))

➤ NNLO corrections for soft-collinear emsns 

αeff
s (kt) = αs(kt)(… +

α2
s (kt)
4π2

(K2+ΔK2))

Dasgupta, El-Menoufi  2109.07496,  
+van Beekveld, Helliwell, Monni 2307.15734,  

++Karlberg 2402.05170  

Building a NNLL shower

https://arxiv.org/abs/2301.09645
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➤ Double-soft “reweighting” for 
neighbouring soft-collinear emsns

➤Matching 
[Hamilton et al. 
2301.09645 ]

 correct the shower mistake  
At this accuracy, it is ufficient to get the integral 

right, not the functional form of 

⇒

ΔB2(z)

Drift in  of an emission when it 
further branches 

ln z = ln kt + y

∫ P(z)dzΔB2(z) ∝ − ⟨Δz⟩

➤ NLO corrections for soft, large-angle emissons

αeff
s (kt) = αs(kt)(1 +

αs(kt)
2π

(K1+ΔK1))

➤ NLO corrections for collinear emsns 

d𝒫coll ∝ P(z)(1 +
αs

2π (B2(z)+ΔB2(z)))

➤ NNLO corrections for soft-collinear emsns 

αeff
s (kt) = αs(kt)(… +

α2
s (kt)
4π2

(K2+ΔK2))

2406.02661
Dasgupta, El-Menoufi  2109.07496,  

+van Beekveld, Helliwell, Monni 2307.15734,  
++Karlberg 2402.05170  

Building a NNLL shower
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NNLL showers vs NLL showers: pheno outlook

Agreement to 
data 

substantially 
better when 
using NNLL 

showers

The PanScales 
collaboration, 
2406.02661
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Conclusions

75

➤Collider phenomenology critically relies on Parton Showers

➤Parton Showers can be considered highly flexible resummation tools

➤The logarithmic accuracy of analytic resummations is (almost always) ahead of the parton 
shower one: precious input to boost current showers 

➤Recent paradigm shift in the shower community with many NLL showers appearing

➤Current focus: getting NLL showers ready for phenomenology (masses, matching, generic 
processes), as well as going beyond NLL

➤QCD showers the current bottleneck at the LHC, but let’s not forget about QED and EW, 
relevant for precise EW measurements and the FCC 

➤Combining fixed order and logarithmic accuracy is still an open issue

➤ In this talk I focused on the semi-classical approach, but amplitude-level evolution (CVolver 
[Forshaw, Plätzer, Sjödahl, Holguin + …], and Deductor [Nagy, Soper]) will certainly offer 
advantages in terms of colour and spin handling, so stay tuned!
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➤ The angular-ordering of QCD emissions ensures that also the soft limit is correct, and 
hence NLL accuracy is achieved 

➤ For QED and EW, the parton branching formalism ensures only collinear (and soft-
collinear) logs are resummed: only LL accuracy is expected

Logarithmic accuracy beyond QCD

๏ QCD: ,             

๏ QED: ,      (DL = double logs)

αs ∼ 0.1 αsL = 𝒪(1) Σ = exp(LgLL(αsL) + gNLL(αsL) + …)

αem ∼ 0.01 αemL2 = 𝒪(1) Σ = fDL(αemL2) + αem fNDL(αemL2) + …

Only colliner ones are included, not soft ones: few % 
mistake for processes without QCD; necessary (but not 
sufficient) e.g. for the FCC-ee 
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➤ Angular-ordering = algorithmic implementation of the QCD coherent branching formalism, 
used for NLL calcultions for global observables (event shapes, many kinematic distributions 
e.g. )                         [Marchesini, Webber ’88; Gieseke, Stephens, Webber hep-ph/0310083] 

➤ Some freedom in the actual implementation (in the soft limit we need to reproduce the 
original kinematic map by Marchesini and Webber to preserve the NLL accuracy) 
                                                    [Bewick, SFR, Richardson, Seymour; 1904.11866, 2107.04051]

p⊥,Z

Log Accuracy of the  Angular-Orderd parton shower

https://arxiv.org/abs/hep-ph/0310083
https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
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➤ The angular-ordering of QCD emissions ensures that also the soft limit is correct, and 
hence NLL accuracy is achieved 

➤ For QED and EW, the parton branching formalism ensures only collinear (and soft-
collinear) logs are resummed: only LL accuracy is expected

Logarithmic accuracy beyond QCD

➤SHERPA: soft QED logs implemented with the YFS formalism [Krauss, Price, Schönherr, 
2203.10948]; one-loop virtual EW Sudakov Logs [Bothmann, Napoletano 2006.14635 ] 

➤PHOTOS:  [Barberio, Was ’94] default tool used in experiments, based on YFS, runned after the 
SMC simulation for QED FSR off leptons

QED and EW logs in other SMC tools

๏ QCD: ,             

๏ QED: ,      (DL = double logs)

αs ∼ 0.1 αsL = 𝒪(1) Σ = exp(LgLL(αsL) + gNLL(αsL) + …)

αem ∼ 0.01 αemL2 = 𝒪(1) Σ = fDL(αemL2) + αem fNDL(αemL2) + …

https://arxiv.org/abs/2203.10948
https://arxiv.org/abs/2006.14635

