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LARGE LOGARITHMS IN LHC JET PROCESSES

Perturbative expansion includes “super-leading” logarithms:
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formally larger than O(1)
J. R. Forshaw, A. Kyrieleis, M. H. Seymour (2006)

gap: 
 Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
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Really, a double logarithmic series starting at 3-loop order:
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GLAUBER PHASES BREAK COLOR COHERENCE
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Super-leading logarithms 

▸ Breakdown of color coherence due to                                                 
initial-state soft gluon (Glauber) exchange                                                

▸ Soft anomalous dimension: 

where  if particles  and  are both in initial or final state 

▸ Imaginary part (only at hadron colliders):

sij > 0 i j

Neubert Part B2 EFT2

candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+
X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.

2

<latexit sha1_base64="/HjGmEqfMridYf5DybsdyG+DLL0=">AAAB/HicbVDLSgMxFL3js9bXaJdugkWoWMqMiros6MJlBfuAzlAyaaYNzWSGJCOUoeKfuHGhiFs/xJ1/Y/pYaOuBC4dz7r25OUHCmdKO820tLa+srq3nNvKbW9s7u/befkPFqSS0TmIey1aAFeVM0LpmmtNWIimOAk6bweB67DcfqFQsFvd6mFA/wj3BQkawNlLHLpwgr1zyurFWx17ZC8LMHXXsolNxJkCLxJ2RIsxQ69hfZgFJIyo04Viptusk2s+w1IxwOsp7qaIJJgPco21DBY6o8rPJ8SN0ZJQuCmNpSmg0UX9PZDhSahgFpjPCuq/mvbH4n9dOdXjlZ0wkqaaCTB8KU450jMZJoC6TlGg+NAQTycytiPSxxESbvPImBHf+y4ukcVpxLypnd+fF6s3TNI4cHMAhlMCFS6jCLdSgDgSG8Ayv8GY9Wi/Wu/UxbV2yZhEW4A+szx/LSZQC</latexit>

+(. . . )1

Neubert Part B2 EFT2

In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation

3
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Structure of the cross section 

▸ Super-leading logarithms (SLLs):  

▸ Introduce two parameters, numerically O(1): 

▸ Including multiple Glauber insertions:

THE GLAUBER SERIES
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8.1 Glauber series

We have seen that the leading-logarithmic corrections to the cross sections for non-global

observables at hadron colliders form a series of the form
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, (8.1)

with L ⇠ ln(Q/Q0) � 1. It requires two insertions of Glauber phases to obtain a double-

logarithmic series, which therefore starts at three-loop order in perturbation theory. It

is possible to generalize the color traces in (4.6) by including a higher (even) number

of insertions of the Glauber operator V
G. This generates additional double-logarithmic

contributions at higher orders. Defining the variables

w =
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⇡
L
2
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2
, (8.2)

we can write the leading logarithms in the presence of an arbitrary number of Glauber

insertions in the form
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(8.3)

For realistic values of parameters, such as Q = 1TeV and Q0 = 25GeV, the quantities

w ⇡ 1.4 and w⇡ ⇡ 1.0 both take values of O(1) for our default choice µ̄ =
p
QQ0, and

hence the infinite set of terms involving these parameters is expected to give e↵ects which

can be as large as the one-loop prefactor. In other words, the imaginary part of the cusp

logarithm can be numerically of similar order as the real part. Referring to both the real

and imaginary parts as logarithmic terms, we see that the double-logarithmic behavior of

the sum of SLLs starts at three-loop order (n = 0, ` = 1). We refer to the expression

shown in the second line of the above result as the “Glauber series”. We leave a detailed

analysis of the higher-order terms in w⇡ for later work.

8.2 Systematics of the double-logarithmic approximation

It is a di�cult open problem to understand the systematics of the resummation of large

double-logarithmic terms for non-global hadron-collider observables. The RG evolution

equation (2.11) is of the Sudakov type, meaning that the anomalous dimension �
H contains

“cusp terms”, accompanied by one power of the logarithm ln(µ2
/µ

2
h
) and proportional

to the cusp anomalous dimension �cusp(↵s), as well as “ordinary terms” without such a

logarithmic enhancement. The complication is, of course, that in our case each term in the

anomalous dimension is an operator in color space as well as in the infinite space of parton

multiplicities. Consequently, the path-ordered exponential (2.15) does not give rise to an

exponential in the usual sense.
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fact that the color algebra simplifies drastically for initial-state partons in the fundamental
representation, this resummation including arbitrarily many Glauber phases in addition to
the SLLs has been achieved in [?] for quark-initiated processes. The generalized “Glauber
series” is an alternating series of the form

�SLL+G
⇠

↵s L

⇡Nc

1X

`=1

1X

n=0

c`,n w
`

⇡
wn+` , (1.2)

with c`,n ⇠ (�1)n+`. Phenomenologically, the net e↵ects of the higher Glauber corrections
turn out to be small in this case. Based on the corresponding results of the SLLs in [?],
however, one would expect larger corrections from the Glauber series if gluons are present
in the initial state. As they transform in the adjoint representation, the color algebra is
much more involved and the operator basis of [?,?] must be extended.

To be precise, recall the factorization formula for the gap-between-jets cross section for
a 2 ! M wide-angle jet event at hadron colliders [?,?,?]

�2!M(Q0) =

Z
dx1

Z
dx2

1X

m=2+M

hHm({n}, s, x1, x2, µ)⌦Wm({n}, Q0, x1, x2, µ)i . (1.3)

Here, the hard functionsHm describe the underlying partonic 1+2 ! 3+· · ·+m scattering,
and Wm are the soft-collinear low-energy matrix elements.1 For the details on the notation
and the following discussion, we refer to [?,?,?].

To perform the resummation, one exploits the RG equations for the hard functions
whose formal solution can be expressed in terms of the path-ordered exponential

U({n}, s, µh, µ) = P exp

Z
µh

µ

dµ0

µ0 �
H({n}, s, µ0)

�
. (1.4)

Its action is defined through a series expansion which schematically reads

H(µh) ?U(µh, µ)

= H(µh) +

Z
µh

µ

dµ0

µ0 H(µh) ? �
H(µ0) +

Z
µh

µ

dµ0

µ0

Z
µh

µ0

dµ00

µ00 H(µh) ? �
H(µ00) ? �H(µ0) + . . . .

(1.5)

The one-loop anomalous dimension �H can be found e.g. in (2.13) of [?]. By now it is known
up to two-loop order for lepton colliders [?]. The successive application of �H leads to the
appearance of color traces with increasing complexity. When working to leading-logarithmic
accuracy, two major simplifications can be exploited in the analysis.

First, as discussed in Section 3 of [?], the one-loop result of the anomalous dimension
�H can be expressed as �H = �S + �C , where only the soft part

�S =
↵s

4⇡

⇣
V

G + �+ �c ln
µ2

µ2
h

⌘
(1.6)

1Here and in the following, we employ the color-space formalism [?].
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

red: Glauber (Coulomb) 
blue: gluons emitted along beams 
green: soft gluons between jets

Loss of color coherence from initial-
state Coulomb interactions

▸ Weird “super-leading logarithms” 
▸ Breakdown of collinear factorization? 
▸ Phenomenological consequences?

Today: Exact (semi-analytic) results for all double-logarithmic         
and π2-enhanced contributions to the cross section in           

RG-improved perturbation theory!
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard
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p
 �

,
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�2!M (Q,Q0) =
X

a,b=q,q̄,g
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
(i)
↵̄↵ �̄

↵̄

i (tn̄i)�
↵

i (0) =

✓
n̄/
i

2

◆

↵̄↵

�̄
↵̄

i (tn̄i)�
↵

i (0) = �̄i(tn̄i)
n̄/
i

2
�i(0) ,

P
(i)
↵̄↵A

↵̄

?c
(tn̄i)A

↵

?c
(0) = (�g↵̄↵)(�i@t)A

↵̄

?c
(tn̄i)A

↵

?c
(0) = i@tA

µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,

(2)
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�2!M (Q,Q0) =
X

a,b=q,q̄,g

Z
dx1dx2

1X

m=2+M
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low scale

operator in color space and in the 
infinite space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

high scale
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Evaluate factorization theorem at low scale  

▸ Low-energy matrix element: 

▸ Hard-scattering functions: 

▸ Expanding the solution in a power series generates arbitrarily high 
parton multiplicities starting from the  Born process

μs ∼ Q0

2 → M

ab
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X
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�
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X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)
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X
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µ

2Ei
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X
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Ci ln
µ
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µ

2Ei
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X
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Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)fa/p(x1) fb/p(x2)1+O(↵s)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
ab

m
({n}, Q, µs) =

X

lm

H
ab

l
({n}, Q,Q)P exp

"Z
Q

µs

dµ

µ
�H({n}, Q, µ)

#

lm

(1)
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Evaluate factorization theorem at low scale  

▸ Anomalous-dimension matrix: 

▸ Action on hard functions:

μs ∼ Q0

approach and reflects the intrinsic complexity of the problem at hand. The evolution equa-

tions shows that higher-multiplicity hard functions mix with lower-multiplicity functions

under scale evolution. At one-loop order, and written in the space of particle-multiplicities,

the anomalous-dimension matrix takes the form

�
H({n}, s, µ) =

↵s

4⇡

0

BBBBBB@

V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s) , (2.13)

where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.

The virtual-correction matrix elements Vm on the diagonal leave the number of partons

unchanged, while the real-emission operators Rm map a hard function with m partons onto

one with (m + 1) partons.3 With each higher order in perturbation theory an additional

o↵-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal

remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural

scale µh ⇠ Q ⇠
p
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
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(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).
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where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.
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Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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where:

RESUMMATION OF SUPER-LEADING LOGARITHMS
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�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .
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� = �+ V

G + �c ln
µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1

soft emission  
(collinear div. subtracted)

collinear emission

Glauber phase

Figure 6. Action of the cusp operator Rc
1 and the virtual piece V

G on a hard function Hm. The
operator Rc

1 adds an additional final-state leg (dashed blue line) along the direction of the incoming
parton 1.

entry, H2!M ⌘ (H2+M , 0, 0, . . . ). We also combine the real and virtual pieces of the soft

anomalous dimension into the matrix notation

�
c =

X

i=1,2

�
cusp
0

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡�cusp0 (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij � 4
X

(ij)

Ti,L � Tj,R W
k

ij ⇥hard(nk) .

(4.1)

As in (2.11) and (2.15), these are matrices in multiplicity space that multiply the hard

function from the right and the order of the matrices determines the order in which they

act on the hard function. At the same time, they contain color matrices that can act on

the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of

the hard function on the left or on the right. The vector nk in (4.1) corresponds to the

direction of the emitted gluon. Each emission generates a new vector and in a product of

anomalous dimensions we will label the vectors with an index nk`
with ` = 0, 1, . . . , where

` = 0 is the last emission, ` = 1 the second to last, and so on.

Three properties of the di↵erent components of the anomalous dimension (4.1) greatly

simplify our calculations. Color coherence, the fact that the sum of the soft emissions o↵

two collinear partons has the same e↵ect as a single soft emission o↵ the parent parton,

implies that

H�
c
� = H��

c
, (4.2)

in other words they commute when multiplying a hard function H

[�c
,�] = 0. (4.3)

To derive this relation, we note that the contributions Rm and Vm only depend on the

sum of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q

ik + Tj,L · Tk,RW
q

jk = (Ti,L + Tj,L) · Tk,RW
q

ik , (4.4)
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for the collinear-emission operator �c and the Glauber operator V G are [18]4

�c =
X

i=1,2

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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Properties: 

• color coherence without Glauber phases: 

• collinear safety: 

• cyclicity of the trace:
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P
(ij)
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P
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s
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⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
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the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
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the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
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anomalous dimension greatly simplify our calculations.
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safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form
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where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,
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i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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⌦
Hm V G ⌦ 1
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i ) ⌦ 1i / hT a
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i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form
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⌦
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where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
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with
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(ij)
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ij ,
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i = 4Ci 1 ,
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�
, (10)
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(ij)
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1

soft emission  
(collinear div. subtracted)

collinear emission

Glauber phase
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where we define the Sudakov operator:
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
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#
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(1)

SCET AND THE GLAUBER SERIES

of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]
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(3.1)
where we have defined the generalized Sudakov operator
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No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define
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(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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scattering processes involving the massive electroweak gauge bosons can be complex even
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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▸ Expand out all terms except the log-enhanced soft-collinear piece: 
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define
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where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,
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where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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The three operators in (2.6) satisfy the identities [18]
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= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]
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, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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No path-ordering is required in this expression since the matrix structure in the exponent
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additional Glauber-operator insertions, where for each factor of V G one encounters a new
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where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,
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where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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Rewrite the evolution kernel for the Glauber series 

▸ Analogous relation holds for higher-order terms in the Glauber series 
(more        factors and additional integrals): 

▸ Structure share similarities with a parton shower, but the Sudakov 
operator and Glauber phases imply a non-trivial operator mixing in 
color space and involve both real and virtual emissions
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G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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Introduce a color basis (closed under applications of      and       ) 

▸ Simplest case of (anti-)quark-initiated scattering processes: 

where   for an initial-state quark (anti-quark), and all 
structures are normalized such that their trace with a hard function is 
at most of  in the large-  limit

σi = − 1 (+1)

O(N0
c ) Nc

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into
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Introduce a color basis (closed under applications of      and       ) 

▸ Simplest case of (anti-)quark-initiated scattering processes:

values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into
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SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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Figure 8. Example diagram for depicting a contribution to the color trace Crn in (5.5) relevant
for M = 2 jet production. The soft wide-angle emission � is shown in green, Glauber terms V

G

with red dotted lines and collinear emissions �
c as dashed blue lines. The diagram shows C4,10

which involves r = 4 emissions (light-blue) before the first Glauber phase and n � r = 6 emissions
after (dark blue). The same color trace also gets contributions, involving Glauber phases in the
conjugate amplitude, and attachments in � to other legs.

The fact that the angular integration is now restricted to the region outside the jets allows

us to replace the subtracted dipoles W
q

ij defined in (4.3) with the original dipoles. Already

at this stage, we observe that all information about the phase-space restrictions on the

direction of the emitted gluon k0 is contained in the angular integrals Jj . If the gluon

is emitted from one of the hard final-state partons present in the Born process, then nj

is equal to the direction of that parton. If instead the gluon is emitted from one of the

collinear gluons emitted by the insertions of �c contained in the definition of the structure

H, then its direction nj is equal to n1 or n2. In this case we encounter the integral

J12 ⌘ J2 = �J1 =

Z
d⌦(nk)

4⇡
W

k

12 ⇥veto(nk) . (7.6)

Overall, there are thus (M + 1) independent kinematic structures Jj for a 2 ! M jet

process.

Given the result (7.4), we will now successively evaluate the e↵ects of the various

insertions of �c and V
G contained in the original structure H in (7.1), working from right

to left.

7.1 First insertions of �
c

We first evaluate the action of the right-most factor of �c in the hard function H in (7.1)

on the result shown above, assuming that (n � r) � 1 (otherwise this step is skipped). We

obtain

⌦
H�

c
V

G
�⌦1

↵
= �256⇡fabc

X

j>2

Jj

X

i=1,2

⌦
H Ci T

a

1 T
b

2 T
c

j �H Ti,L �Ti,R T
a

1 T
b

2 T
c

j

↵
, (7.7)
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M4 M†
4

M4 M†
4

7

Figure 9. Example diagram for depicting a contribution to the color trace Crn, as Figure 8. The
example diagram depicted here involves an attachment to a final-state collinear parton and maps
on the operators Si, while the diagram in Figure 8 contributes to O

(j)
i .

Master formula for the color traces

At this point, we obtain the final result

Crn = �256⇡
2 (4Nc)

n�r

"
M+2X

j=3

Jj

4X

i=1

c
(r)
i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d
(r)
i

⌦
H2!M Si

↵
#

,

(7.48)

where the basis operators have been defined in (7.36) and (7.45). It follows from (7.14) that

the coe�cients d
(r)
i

vanish for r = 0. We find that these coe�cients obey the recurrence

relations
d

(s+1)
1 = 2Nc c

(s)
1 + 4c

(s)
3 + 8Nc d

(s)
1 + 8d

(s)
4 ,

d
(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d
(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d
(s+1)
4 = 4c

(s)
1 + 2Nc c

(s)
3 + 8d

(s)
1 + 8Nc d

(s)
4 ,

d
(s+1)
5 = 4 (C1 + C2)

h
4c

(s)
1 + Nc c

(s)
3 � Nc c

(s)
4

i

� 2Nc (N2
c + 8)

3
c
(s)
1 � 4N

2
c c

(s)
3 + 4Nc d

(s)
5 ,

d
(s+1)
6 = 8C1C2

h
2c

(s)
1 � Nc c

(s)
4 + 4d

(s)
1

i
.

(7.49)
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MANAGING THE COLOR ALGEBRA

14’’

Introduce a color basis (closed under applications of      and       ) 

▸ Simplest case of (anti-)quark-initiated scattering processes: 

▸ Kinematic information contained in  angular integrals from :(M + 1) Γ

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions

7

matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into
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14’’’

Introduce a color basis (closed under applications of      and       ) 

▸ Simplest case of (anti-)quark-initiated scattering processes: 

▸ Extension to processes with initial-state gluons requires an enlarged 
operator basis containing 20 (  scattering) and 14 (  scattering) 
operators, respectively

gg qg, q̄g

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into
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15

Introduce a color basis (closed under applications of      and       ) 

▸ Represent      ,        and            as objects acting in that basis: 

Recall:

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]
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�
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↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
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µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c
Uc(1;µi, µj)

4
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1
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�
1
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0 0 0 0 0

1

CCCCCCA
.

(3.17)
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⇥
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µ2
h

�
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This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
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with

Positive eigenvalues:  {0, 1/2, 1} 
(additional ones for initial-state gluons)

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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Introduce a color basis (closed under applications of      and       ) 

▸ Represent      ,        and            as objects acting in that basis: 

Recall:

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
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results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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⇥
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and

c(µi, µj) = exp


Nc I�
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dµ
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↵s(µ)
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µ2

µ2
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�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =
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BBBBBB@
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0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
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⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc
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µi

µj
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µ
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�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
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.

(3.17)
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double-log terms (SLLs) 
always lead to suppression!

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
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G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator
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�
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No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define
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4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
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|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
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⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V
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not receive double-logarithmic contributions. The series of SLLs is obtained from terms
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to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
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bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].
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see (2.4), and it was shown that at a given order in perturbation theory the terms with
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integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1
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r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c
Uc(1;µi, µj)

4
N2

c
Uc(

1
2 ;µi, µj) 0 0

�
1
2 Uc(1;µi, µj) 0 0 0 0

Uc(1;µi, µj) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
.

(3.17)
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c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
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#
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�
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The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]
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0
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1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0
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1
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1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form
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0
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CCCCCCA
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with

Uc(v;µi, µj) = exp
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µ
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↵s(µ)
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µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
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c
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c
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2 ;µi, µj) 0 0
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1
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CCCCCCA
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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Introduce a color basis (closed under applications of      and       ) 

▸ Represent      ,        and            as objects acting in that basis: 

Recall:

with

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
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Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M
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⇣
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
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the final-state particles. These integrals generate the entire Glauber series,
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as
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Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd
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Introduce a color basis (closed under applications of      and       ) 

▸ This yields: 

with:

qq̄ ! 0 qq̄ ! g qq0 ! qq0 qq̄ ! q0q̄0 qq̄0 ! qq̄0 qq̄ ! gg

X1 – 0 0 0 0 0

X2 – 0 0 O(1) O(1) 0

X3 – 0 O(1) O(1) O(1/N2
c
) O(1)

X4 O(1) O(1/N2
c
) O(1/N2

c
) O(1/N2

c
) O(1) O(1/N4

c
)

X5 O(1) O(1) O(1) O(1) O(1) O(1)

Table 1: Large-Nc counting of the matrix elements hH2!M Xii for quark-initiated partonic

scattering processes, where quarks q and q0 have di↵erent flavors.

the region outside the jets, in which a veto on energetic radiation is imposed. In (3.7) the
index j is summed over all-final-state partons in the process. Note that compared with the
conventions used in [18,26], we have included a factor 1/Nc in the definitions of X3 and X4.
This ensures that the contributions of all structures to a given partonic scattering process
scale at most as O(N0

c
) in the large-Nc limit, see Table 1.

We now define matrix representations of the collinear-emission operator �c and the
Glauber operator V G on the space of basis structures, such that5

⌦
H�c

Xi

↵
=

X

ı̃

⌦
HXı̃

↵
Nc (I�

c)
ı̃i
,

⌦
HV

G
Xi

↵
=

X

ı̃

⌦
HXı̃

↵
i⇡Nc

�
G
�
ı̃i
,

(3.9)

whereH can be a generic hard function. Next, we define the row vectorsXT = (X1, . . . ,X5)
and &T = (1, 0, 0, 0, 0). Under the color trace, the operator V G �⌦ 1 maps onto [19]

V
G �⌦ 1 ! 16i⇡X1 ⌘ 16i⇡XT & . (3.10)

The fact that in this result there is no factor N2
c
on the right-hand side is responsible for

the suppression of the SLLs, and in fact of all terms in the Glauber series, by a factor 1/N2
c

in the large-Nc limit. It now follows that

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥

1X

l=1

⌦
H2!M(µh)X

T
↵ (l)

SLL(µh, µs) & ,

(3.11)

5
Compared with [27] we define these matrices with transposed indices because this will preserve the

order of matrix products.
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c
Uc(1;µi, µj)

4
N2

c
Uc(

1
2 ;µi, µj) 0 0

�
1
2 Uc(1;µi, µj) 0 0 0 0

Uc(1;µi, µj) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
.

(3.17)
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5 process-dependent color traces

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions

7

matrix elements a non-zero color trace can only be obtained if the two right-most insertions
of �H are proportional to V G �, one can show that the infinite series of the SLLs is generated
by the evolution operator

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp


�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.2)

No path-ordering is required in this expression, since the matrix structure in the exponent
is scale-independent. Expression (3.1) can be generalized straightforwardly to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. With this definition, the Glauber series can be written as

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

Since QCD cross sections are real in the Born approximation, the sum over l can be
restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [20, 21]. However, it has been pointed out in [23] that cross sections
for scattering processes involving the massive electroweak gauge bosons can be complex-
valued even at tree level. In general, if the Born-level scattering amplitude is of the form
|M2!Mi = |M

(r)
2!M

i+ i|M(i)
2!M

i, where the two terms have di↵erent color structures, then
the hard function has the form (apart from phase-space integrations)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G and, more generally, both even and odd

8
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Perform the scale integrals in terms of the running coupling 

▸ Generalized Sudakov factors in RG-improved perturbation theory: 

 with                                and:        

▸ Encounter products of Sudakov factors:                     

The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
non-zero. Using the fact that the vector & is an eigenvector of I�c with eigenvalue 1, which is
true irrespective of the nature of the initial-state partons [18], the rightmost factor always
results in Uc(1;µl�1, µl). Note also that the (1,3) entry of the product G

c(µi, µj), which
contains the only contribution corresponding to the eigenvalue 1

2 of �
c, is absent in the large-

Nc limit. This fact greatly simplifies the treatment of higher-order terms in the Glauber
series in the large-Nc limit [28].

In the above result, all double-logarithmic e↵ects are resummed into the Sudakov factors
Uc(v;µi, µj) with eigenvalues v 2 {

1
2 , 1}. It is straightforward to evaluate these factors at

leading order in RG-improved perturbation theory. To this end, we change variables from
µ to the running coupling ↵s(µ) via d↵s(µ)/d lnµ = �

�
↵s(µ)

�
and use the perturbative

expansions of the QCD �-function and the cusp anomalous dimension,

�(↵s) = �2↵s

1X

n=0

�n

⇣↵s

4⇡

⌘n+1

, �cusp(↵s) =
1X

n=0

�n
⇣↵s

4⇡

⌘n+1

, (3.18)

with expansion coe�cients given in Appendix B. We find

Uc(v;µi, µj) = exp

(
�0vNc

2�2
0

"
4⇡

↵s(µh)

✓
1

xi

�
1

xj

� ln
xj

xi

◆

+

✓
�1
�0

�
�1

�0

◆✓
xi � xj + ln

xj

xi

◆
+

�1

2�0

�
ln2 xj � ln2 xi

�
#)

,

(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables

12

where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c
Uc(1;µi, µj)

4
N2

c
Uc(

1
2 ;µi, µj) 0 0

�
1
2 Uc(1;µi, µj) 0 0 0 0

Uc(1;µi, µj) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
.

(3.17)
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The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
non-zero. Using the fact that the vector & is an eigenvector of I�c with eigenvalue 1, which is
true irrespective of the nature of the initial-state partons [18], the rightmost factor always
results in Uc(1;µl�1, µl). Note also that the (1,3) entry of the product G

c(µi, µj), which
contains the only contribution corresponding to the eigenvalue 1

2 of �
c, is absent in the large-

Nc limit. This fact greatly simplifies the treatment of higher-order terms in the Glauber
series in the large-Nc limit [28].

In the above result, all double-logarithmic e↵ects are resummed into the Sudakov factors
Uc(v;µi, µj) with eigenvalues v 2 {

1
2 , 1}. It is straightforward to evaluate these factors at

leading order in RG-improved perturbation theory. To this end, we change variables from
µ to the running coupling ↵s(µ) via d↵s(µ)/d lnµ = �

�
↵s(µ)

�
and use the perturbative

expansions of the QCD �-function and the cusp anomalous dimension,

�(↵s) = �2↵s

1X

n=0

�n

⇣↵s

4⇡

⌘n+1

, �cusp(↵s) =
1X

n=0

�n
⇣↵s

4⇡

⌘n+1

, (3.18)

with expansion coe�cients given in Appendix B. We find

Uc(v;µi, µj) = exp

(
�0vNc

2�2
0

"
4⇡

↵s(µh)

✓
1

xi

�
1

xj

� ln
xj

xi

◆

+

✓
�1
�0

�
�1

�0

◆✓
xi � xj + ln

xj

xi

◆
+

�1

2�0

�
ln2 xj � ln2 xi

�
#)

,

(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
non-zero. Using the fact that the vector & is an eigenvector of I�c with eigenvalue 1, which is
true irrespective of the nature of the initial-state partons [18], the rightmost factor always
results in Uc(1;µl�1, µl). Note also that the (1,3) entry of the product G

c(µi, µj), which
contains the only contribution corresponding to the eigenvalue 1

2 of �
c, is absent in the large-

Nc limit. This fact greatly simplifies the treatment of higher-order terms in the Glauber
series in the large-Nc limit [28].

In the above result, all double-logarithmic e↵ects are resummed into the Sudakov factors
Uc(v;µi, µj) with eigenvalues v 2 {

1
2 , 1}. It is straightforward to evaluate these factors at

leading order in RG-improved perturbation theory. To this end, we change variables from
µ to the running coupling ↵s(µ) via d↵s(µ)/d lnµ = �

�
↵s(µ)

�
and use the perturbative

expansions of the QCD �-function and the cusp anomalous dimension,

�(↵s) = �2↵s

1X

n=0

�n

⇣↵s

4⇡

⌘n+1

, �cusp(↵s) =
1X

n=0

�n
⇣↵s

4⇡

⌘n+1

, (3.18)

with expansion coe�cients given in Appendix B. We find

Uc(v;µi, µj) = exp

(
�0vNc

2�2
0

"
4⇡

↵s(µh)

✓
1

xi

�
1

xj

� ln
xj

xi

◆

+

✓
�1
�0

�
�1

�0

◆✓
xi � xj + ln

xj

xi

◆
+

�1

2�0

�
ln2 xj � ln2 xi

�
#)

,

(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
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where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
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which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
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where we have already performed the integral over xl+1 and used the one-loop approximation
for the cusp anomalous dimension in the Glauber terms (with �0 = 4). This formula
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Here we have used the identities

Uc(1, 1;µh, µ1, µ2) = Uc(1;µh, µ2) , Uc(0, 1;µh, µ1, µ2) = Uc(1;µ1, µ2) , (3.25)

which follow from (3.20). As explained after (3.17), in all cases the last eigenvalue equals 1,
and a zero eigenvalue can only appear in the first entry. Pressing on to higher l values, we
find
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Evolution functions with two and four Glauber insertions 

▸ l=2: 

▸ l=4                             
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where

K12 ⌘ (�1 � �2)
2 N
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� 4
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=
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c
� 4

N2
c

�qq̄ . (3.28)

For up to four insertions (l  4), the integrals over the xi variables can be performed
numerically without much e↵ort. Some results are presented in Section 5.

4 Fixed-coupling results and asymptotic behavior

An important open challenge is to determine the asymptotic behavior of the resummed
terms in the Glauber series in the limit where ↵sLs ⇠ 1 and hence ↵sL2

s
� 1. Here, the

variable Ls = ln(µh/µs) depends on the ratio of the hard and soft matching scales and
reduces to the variable L used in the introduction for the default choices µh = Q and
µs = Q0. Generalizing the definitions given in the text following relation (1.1) to more
general scale choices, we define the variables

w =
Nc ↵s(µ̄)

⇡
L2
s
, w⇡ =

Nc ↵s(µ̄)

⇡
⇡2 . (4.1)

For the series of the SLLs, corresponding to l = 2 in (3.3), it was shown in [18, 19] that in
the asymptotic limit where w � 1

U
(2)
SLL({n}, µh, µs) ⇠ ⇡2Nc

✓
↵sLs

⇡

◆3 lnw

w
=

↵sLs

⇡Nc

w⇡ lnw , (4.2)

but so far no corresponding estimates for subleading logarithmic corrections have been
obtained. Our new formula (3.12) provides a convenient basis for performing studies of
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Resummation of the Glauber series in the limit of large Nc 

▸ Closed analytic expression in terms of a double integral: 

▸ Super-leading logarithms (l=2 term) are exact 

▸ First RG-improved resummation of the Glauber series!  

▸ Analogous results can be derived for processes with initial-state gluons, 
involving eigenvalues  for qg scattering and  for   
gg scattering — mysterious spin-color connection
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Note that the factor 2CF
Nc

= 1 � 1
N2

c
in the last component of this expression can be replaced

by 1 in the large-Nc limit, but keeping this factor in its original form ensures that the terms
with l = 2 (the SLLs) are reproduced exactly.

It is now straightforward to resum the entire Glauber series in the large-Nc limit. For the
infinite sum over odd l values we find
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while the infinite sum over even l values is given by
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The scale µx is defined via x = ↵s(µx)/↵s(µh). The higher-order contributions in the Glauber
series, those beyond the SLLs, are contained in the terms proportional to �qq̄. These contri-
butions always reduce the contribution of the SLLs, albeit typically by a small amount.

The above results allow us to resum the Glauber series in RG-improved perturbation theory.
It is not di�cult to derive from them the corresponding expressions valid in the approximation
of working with a fixed coupling ↵s ⌘ ↵s(µ̄). Using that
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where Li = ln(µh/µi), and employing expression (50) for the Sudakov factors, we find after a
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Note that the factor 2CF
Nc

= 1 � 1
N2

c
in the last component of this expression can be replaced

by 1 in the large-Nc limit, but keeping this factor in its original form ensures that the terms
with l = 2 (the SLLs) are reproduced exactly.

It is now straightforward to resum the entire Glauber series in the large-Nc limit. For the
infinite sum over odd l values we find
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The scale µx is defined via x = ↵s(µx)/↵s(µh). The higher-order contributions in the Glauber
series, those beyond the SLLs, are contained in the terms proportional to �qq̄. These contri-
butions always reduce the contribution of the SLLs, albeit typically by a small amount.

The above results allow us to resum the Glauber series in RG-improved perturbation theory.
It is not di�cult to derive from them the corresponding expressions valid in the approximation
of working with a fixed coupling ↵s ⌘ ↵s(µ̄). Using that

xi =
↵s(µi)

↵s(µh)
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where Li = ln(µh/µi), and employing expression (50) for the Sudakov factors, we find after a
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Figure 15. Numerical results for super-leading contributions to partonic qq
0
! qq

0 (top row) and
qq̄ ! q

0
q̄
0 (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic

center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

theory can di↵er quite substantially between di↵erent channels. For example, in both

qq̄ ! gg and gg ! qq̄ scattering (Figure 16), the three-loop contribution (n = 0) yields

the dominant correction to the cross sections.6 In other cases, such as gg ! gg and, to a

lesser extent, qg ! qg scattering (Figure 17), also higher-loop contributions can be very

large, and significant cancellations among them take place, so our resummation formalism

is crucial to obtain reliable results.
6
In the strict sense of the word, these n = 0 terms are not a “super-leading” e↵ect, even though they

result from two Glauber exchanges.
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Figure 2: Numerical estimates of the impact of the Glauber series on qq0 ! qq0 scattering.
The upper left figure shows the all-order result obtained with three di↵erent choices for the
scale in the running coupling. The remaining three figures show the partial sums defined
by the scenarios A (upper right panel), B (bottom left panel) and C (bottom right panel).
Dashed lines, whenever plotted, show the corresponding curves in the approximation of
keeping only the SLLs (` = 1). In all plots we use Q = 1TeV and �Y = 2, as well as
µ̄ =

p
QQ0 in all but the first plot. Note that the all-order result (black curve) is the same

in all four cases.

for ` � 2. In these schemes higher-order terms in the Glauber series play an important
role, but the sum of all terms is the same as before. We hence conclude that summing all
logarithmically-enhanced corrections for fixed powers of w⇡ (scenario A) leads to a rapidly

16
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Figure 16. Numerical results for super-leading contributions to partonic qq̄ ! gg (top row) and
gg ! qq̄ (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

Once we leave the kinematic region of small-angle scattering, the calculation of the

SLL terms becomes more complicated. An interesting new feature of 2 ! 2 hard-scattering

processes is that there are in general several di↵erent color configurations which contribute

to a given process. Choosing an orthonormal basis {|BIi} of color configurations, the

amplitudes in a given channel can be decomposed as

|M4i =
X

I

M
(I)
4 |BIi , (7.20)
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Figure 2: Numerical estimates of the impact of the Glauber series on gg ! qq̄ (top row) and
gg ! gg (bottom row) small-angle scattering as a function of the jet-veto scale Q0. The
figures on the left show the all-order result obtained with three di↵erent choices for the scale
µ̄ in the coupling. The figures on the right show the contributions of individual Glauber-
phase pairs for µ̄ =

p
QQ0, with all large double logarithms resummed. Dashed lines show

the corresponding curves in the SLL approximation (` = 1). In all plots Q = 1TeV and
�Y = 2.

4.1 Numerical estimates for 2 ! 2 processes

For 2 ! 2 processes, the leading-order hard functions have, in general, a non-trivial depen-
dence on the kinematic variables. In the small-angle limit, these processes are dominated
by the t- or u-channel exchange. For gg ! qq̄ and gg ! gg scattering the cross section is
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

( eH4)IJ = M
(I)
4 M

(J)⇤
4 . (7.21)

The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

( eH4)IJ = M
(I)
4 M

(J)⇤
4 . (7.21)

The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
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Figure 5: Numerical results for super-leading contributions to partonic qg ! qg forward (left)

and gg ! gg small-angle scattering (right) as a function of the jet-veto scale Q0. The meaning of

the curves and the yellow band is the same as in Figure 2.

7 Conclusions

This article advances the resummation of the Glauber series for non-global LHC observables
to be systematically performed in RG-improved perturbation theory. Compared to the
previous works [18, 19, 26, 27], including the running of the coupling ↵s(µ) constitutes an
important milestone in reliably estimating the perturbative uncertainties, and in providing
a systematically improvable framework for such contributions. This step is achieved by a
new strategy that involves treating the Glauber operators V G perturbatively and expanding
the evolution operator in (3.4) accordingly. Re-ordering this series results in the collection
of all double-logarithmic corrections in the evolution operator (3.2), which takes the form
of a matrix-valued Sudakov operator. This operator is no longer path-ordered but only
an ordinary matrix exponential, and its evaluation becomes straightforward with the help
of the color bases developed in [27]. The remaining task is then to obtain the relevant
coe�cient vectors. We have explicitly demonstrated this for the quark case in the main
text and for the more complicated case featuring gluons in the initial state in Appendix A.
When restricting to the super-leading logarithms, one can determine the coe�cients using
a process-independent set of operators, demonstrated in Appendix 6. In the large-Nc limit,
the matrix representation (3.17) simplifies, motivating a closer investigation [28].

The l-th term in the series of coe�cient vectors, where l denotes the number of Glauber-
operator insertions, contains l + 1 scale integrals, one of which can always be performed
straightforwardly. We evaluate the remaining l integrals numerically in leading-order RG-
improved perturbation theory, i.e. using the two-loop expressions of the cusp anomalous
dimension and the QCD �-function for the logarithmically enhanced terms. This is a

28

RG improved



Matthias Neubert  — JGU Mainz

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

24’

Q = 1 TeV, �Y = 2
<latexit sha1_base64="p3QOSWq/wYpWIqSW0NOhOhoBWQY="></latexit>

Visible effects of higher Glauber contributions

SCET AND THE GLAUBER SERIES

10 20 30 40 50
0

10

20

30

40

50

60

10 20 30 40 50
-5

0

5

10

15

20

25

Figure 3: Numerical estimates of the impact of the Glauber series on qg ! qg forward
scattering as a function of the jet-veto scale Q0. All plots and curves have the same
meaning as in Figure 2.

symmetric, and only the t-channel diagrams are considered in the following. In that case,
the hard functions are

Hgg!qq̄ = hHgg!qq̄i
1

C2
F
Nc

(ta1ta2)↵3↵4(t
b2tb1)�4�3 ,

Hgg!gg = hHgg!ggi
1

N2
c
(N2

c
� 1)

fa1a3afa2a4af b1b3bf b2b4b .

(4.4)

However, the qg ! qg cross section di↵ers between the forward-scattering (t-channel dom-
inated) and backward-scattering (u-channel dominated) limits. In the following, only for-
ward scattering is considered, and the respective hard function reads

Hqg!qg = hHqg!qgi
2

Nc(N2
c
� 1)

fa2a4a(ta)↵3↵1 f
b2b4b(tb)�1�3 . (4.5)

Evaluating the color traces of these hard functions with the basis elements A
(j), S and

O
(j), O, respectively, we can determine the di↵erent terms in the Glauber series (3.3). For

a central rapidity gap of width �Y , the angular integrals (1.15) evaluate to J12 = �Y as
well as J3 = ��Y and J4 = +�Y for forward scattering [10]. In gluon-initiated processes
only the di↵erence (J4 � J3) appears.

Figures 2 and 3 show the contributions of the Glauber series for these processes as a
function of the jet-veto scale Q0. In the left panels the perturbative uncertainty is estimated
by varying the scale µ̄ in the running coupling between the high scale Q and the low scale
Q0. The solid curves show the results for the entire Glauber series, while the dashed ones
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

( eH4)IJ = M
(I)
4 M

(J)⇤
4 . (7.21)

The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
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Figure 2: Numerical estimates of the impact of the Glauber series on gg ! qq̄ (top row) and
gg ! gg (bottom row) small-angle scattering as a function of the jet-veto scale Q0. The
figures on the left show the all-order result obtained with three di↵erent choices for the scale
µ̄ in the coupling. The figures on the right show the contributions of individual Glauber-
phase pairs for µ̄ =

p
QQ0, with all large double logarithms resummed. Dashed lines show

the corresponding curves in the SLL approximation (` = 1). In all plots Q = 1TeV and
�Y = 2.

4.1 Numerical estimates for 2 ! 2 processes

For 2 ! 2 processes, the leading-order hard functions have, in general, a non-trivial depen-
dence on the kinematic variables. In the small-angle limit, these processes are dominated
by the t- or u-channel exchange. For gg ! qq̄ and gg ! gg scattering the cross section is
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the asymptotic behavior, since it resums all double-logarithmic corrections to all orders of
perturbation theory.

To study the asymptotic behavior for ↵sL2
s
� 1, it is su�cient to evaluate the evolution

operators with a fixed coupling ↵s ⌘ ↵s(µ̄), since the scale dependence of the running
coupling is a single-logarithmic e↵ect. It has been shown in [19] that using a fixed coupling
at the intermediate scale µ̄ =

p
µhµs provides numerical results in good agreement with

the results obtained using a running coupling inside the scale integrals. Using the one-loop
approximation for the cusp anomalous dimension, we find from (3.12)

(l)
SLL(µh, µs) = 4 (i⇡)l N l�1

c

⇣↵s

⇡

⌘l+1
Z

Ls

0

dL1 . . .

Z
Ls

Ll�1

dLl (Ls � Ll)

⇥ c(µh, µ1)

"
l�1Y

i=1

G
c(µi, µi+1)

#
,

(4.3)

with Li ⌘ ln(µh/µi) � 0, c(µi�1, µi) as given in (3.15), and

Uc(v;µi, µj) ⌘ exp


v
Nc↵s

⇡

�
L2
i
� L2

j

��
. (4.4)

As in the previous section, we need to evaluate multi-dimensional integrals over the con-
catenations Uc(v1, . . . , vl;µh, µ1, . . . , µl) defined in (3.22), with vl = 1 and vi 6=l 2 {1, 12 , 0},
where a zero eigenvalue is only allowed for v1. Inverting the order of the integrations, we
define ⇣↵s

⇡
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Z
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0

dLl (Ls � Ll) . . .

Z
L2

0

dL1 Uc(v1, . . . , vl;µh, µ1, . . . , µl)

⌘
1

(l + 1)!

⇣↵s

⇡
Ls

⌘l+1

⌃(v1, . . . , vl;w) ,

(4.5)

where ⌃(v1, . . . , vl; 0) = 1. In analogy with relations (3.23), (3.24) and (3.26), (3.27), we
then obtain for l  4
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We now collect explicit expressions for the relevant functions as well as their asymptotic
expansions for w � 1.

Case l = 1

We find
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where the last formula shows the complete asymptotic expansion for w � 1 up to expo-
nentially small terms.

Case l = 2

The object ⌃(v, 1;w) is a Kampé de Fériet function, for which several useful expressions
have been derived in [19]. For the relevant values of v, we obtain
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(3.27)
where

K12 ⌘ (�1 � �2)
2 N

2
c
� 4

4N2
c

=
N2

c
� 4

N2
c

�qq̄ . (3.28)

For up to four insertions (l  4), the integrals over the xi variables can be performed
numerically without much e↵ort. Some results are presented in Section 5.

4 Fixed-coupling results and asymptotic behavior

An important open challenge is to determine the asymptotic behavior of the resummed
terms in the Glauber series in the limit where ↵sLs ⇠ 1 and hence ↵sL2

s
� 1. Here, the

variable Ls = ln(µh/µs) depends on the ratio of the hard and soft matching scales and
reduces to the variable L used in the introduction for the default choices µh = Q and
µs = Q0. Generalizing the definitions given in the text following relation (1.1) to more
general scale choices, we define the variables

w =
Nc ↵s(µ̄)

⇡
L2
s
, w⇡ =

Nc ↵s(µ̄)

⇡
⇡2 . (4.1)

For the series of the SLLs, corresponding to l = 2 in (3.3), it was shown in [18, 19] that in
the asymptotic limit where w � 1

U
(2)
SLL({n}, µh, µs) ⇠ ⇡2Nc

✓
↵sLs

⇡

◆3 lnw

w
=

↵sLs

⇡Nc

w⇡ lnw , (4.2)

but so far no corresponding estimates for subleading logarithmic corrections have been
obtained. Our new formula (3.12) provides a convenient basis for performing studies of
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integrals of                 
Kampé de Fériet functions

Asymptotics for                                          derived using a fixed coupling 

▸ Analytic expression in terms of Σ-functions:
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the asymptotic behavior, since it resums all double-logarithmic corrections to all orders of
perturbation theory.

To study the asymptotic behavior for ↵sL2
s
� 1, it is su�cient to evaluate the evolution

operators with a fixed coupling ↵s ⌘ ↵s(µ̄), since the scale dependence of the running
coupling is a single-logarithmic e↵ect. It has been shown in [19] that using a fixed coupling
at the intermediate scale µ̄ =

p
µhµs provides numerical results in good agreement with

the results obtained using a running coupling inside the scale integrals. Using the one-loop
approximation for the cusp anomalous dimension, we find from (3.12)
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(4.3)

with Li ⌘ ln(µh/µi) � 0, c(µi�1, µi) as given in (3.15), and

Uc(v;µi, µj) ⌘ exp
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As in the previous section, we need to evaluate multi-dimensional integrals over the con-
catenations Uc(v1, . . . , vl;µh, µ1, . . . , µl) defined in (3.22), with vl = 1 and vi 6=l 2 {1, 12 , 0},
where a zero eigenvalue is only allowed for v1. Inverting the order of the integrations, we
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where ⌃(v1, . . . , vl; 0) = 1. In analogy with relations (3.23), (3.24) and (3.26), (3.27), we
then obtain for l  4
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(4.9)

We now collect explicit expressions for the relevant functions as well as their asymptotic
expansions for w � 1.

Case l = 1

We find

⌃(1;w) =

p
⇡w erf
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�
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� 1
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+O(e�w) , (4.10)

where the last formula shows the complete asymptotic expansion for w � 1 up to expo-
nentially small terms.

Case l = 2

The object ⌃(v, 1;w) is a Kampé de Fériet function, for which several useful expressions
have been derived in [19]. For the relevant values of v, we obtain
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the “soft” region z4 ⇠ w�1/2
⌧ 1 and the “hard” region z4 ⇠ 1. However, we find that

in the cases where all vi values are non-zero the hard region gives rise to exponentially
suppressed contributions, while for v1 = 0 it contributes terms starting at O(1/w3), which
are suppressed relative to the two leading terms scaling as 1/w2 and 1/w5/2.6 It thus su�ces
to focus on the soft region, for which the upper limit on the integral over z4 must be replaced
by infinity. Introducing new integration variables via the substitutions z1 = t1z2, z2 = t2z3
and z3 = t3z4, and performing the integral over z4, we then find (up to higher-order terms)

⌃(v1, v2, v3, v4;w)
��
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2
3 + v4(1� t23) . (4.22)

The integral over t2 is straightforward to evaluate. Performing the remaining parameter
integrals for the cases of interest, we find the asymptotic forms
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(4.23)

In Figure 1 we show the relevant functions ⌃(v1, . . . , vl;w) for 1  l  4. As a represen-
tative example, the dashed line shows the asymptotic behavior for large w for the case of
the function ⌃(1, . . . , 1;w). We observe that for increasing values of l, the asymptotic forms
start providing a good approximation at increasing values of w. Note also that for given
l the di↵erences of two functions belonging to di↵erent vi values are much smaller than
the individual functions. As a consequence, we will find that the coe�cients of the color
operators X4 and X5 are considerably smaller in magnitude than those of the operators
X2 and X3, cf. (4.7) and (4.9).

6
For l = 2 the hard region gives unsuppressed contributions for v1 = 0. This fact is responsible for the

ln(4w)/w term and the absence of a term proportional to w�3/2
in the expression for ⌃(0, 1;w) in (4.15).
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are error functions, 2F2(a1, a2; b1, b2; z) is a generalized hypergeometric function, and
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1
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2x

2 (1+t
2)

1 + t2
(4.13)

denotes the Owen T -function. To derive the result for ⌃(12 , 1;w) from the corresponding
expression given in [19], we have used the identity
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which holds for 0 < a < 1. The " ! 0+ regulator is needed to regularize the pole at t = i.
To prove this relation, one shows that the derivatives with respect to x are identical on
both sides, and that the relation holds for x = 0.

The asymptotic behavior of these Kampé de Fériet functions for w � 1 is given by
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where in the last two cases there exist higher-order power-suppressed terms in addition to
exponentially small contributions.

Case l = 3

In (4.8) we only need the two functions
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whose asymptotic expansions read
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To obtain the second result we have replaced the upper integration limit by infinity, using
that the hypergeometric function behaves like 2F2(1, 1;

3
2 , 2; y) ⇠ y�3/2 ey for y ! 1.
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Asymptotics for                                          derived using a fixed coupling 

▸ Analytic expression in terms of Σ-functions: 

▸ Parametric suppression:
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Figure 1: Functional form of the functions ⌃(v1, . . . , vl;w) for l  4. The functions are shown

from bottom to top in the order in which they are presented in the text. The relevant values are

v1 2 {1, 12 , 0} for l = 2, v2 2 {1, 12} for l = 3, and (v1, v3) 2 {(1, 1), (12 , 1), (0, 1), (1,
1
2), (

1
2 ,

1
2), (0,

1
2)}

for l = 4. The dashed lines show the asymptotic large-w behavior for the case of ⌃(1, . . . , 1;w).

All-order asymptotic behavior

The technique described for the case l = 4 can be straightforwardly extended to higher
values of l. Focusing on the functions needed in (4.3), it follows that the leading asymptotic
behavior for w � 1 is

⌃(v1, . . . , vl;w) ⇠
1

w l/2
, (4.24)

with the single exception that for ⌃(0, 1;w) there is an extra factor lnw in the numerator,
which enters only in the fifth component of the evolution vector. For the generic case, we
find
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

▸ Can collinear factorization violations be 
understood in a quantitative way, and at 
which scale (  or ) do they occur?  Q0 ΛQCD
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▸ Can collinear factorization violations be 
understood in a quantitative way, and at 
which scale (  or ) do they occur?  Q0 ΛQCD

▸ Implications for LHC phenomenology?
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▸ Our analytical results will be relevant for                                          
validations of parton showers with quantum interference
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Contribution to partonic cross sections (fixed coupling approximation) 

▸ Infinite series can be expressed in closed form in terms of a prefactor 
times Kampé de Fériet functions  with                       and Σ(vi, w)
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for all “cusp terms” generating double logarithms in (5.6), and
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for the two Glauber terms. In the approximation where one works with a fixed coupling

↵s(µ̄), as in (5.4), one would obtain
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To approximately take this e↵ect into account in our numerical results presented in Sec-

tion 7, we will simply replace

↵s(µ̄) !


1 +

�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�
↵s(µ̄) (5.12)

in the fixed-order results. For the results obtained using a running coupling, we will

multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated

at µ̄ =
p
QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically

this has the e↵ect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary

2 ! M process in Section 6. While the resulting expressions for specific partonic channels

can be lengthy, we find that in all cases the dependence on r and n can be factorized in

the general form

Crn = (�cusp0 Nc)
n


k0 �r0 +

6X

i=1

ki v
r

i

�
, (5.13)

with �
cusp
0 = 4 and process-dependent coe�cients ki and parameters

v1 =
1

2
, v2 = 1 , v3,4 =

3Nc ± 2

2Nc

, v5,6 =
2 (Nc ± 1)

Nc

, (5.14)

where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of �c acting

on the space of color structures, see Section 6. Neglecting the running of the coupling, as

is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple

expression for the integrals Irn. Using this expression and the power-like dependence of

Crn on r, we find that the SLL contribution to the partonic cross section is given by the

double sum

�̂
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where
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(5.16)
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Figure 8. Behavior of the functions ⌃(v, w) for di↵erent values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

much weaker for the SLLs. We will come back to this after we analyze the color traces for

a few simple processes.

The functional form of ⌃(v, w) for two di↵erent values of v is illustrated in Figure 7,

where we also show the perturbative expansion up to the eighth order in w (dotted lines)

and the asymptotic form (5.27) (dashed line). Note that in the phenomenologically inter-

esting region w & 1 the convergence of the Taylor series (5.20) is slow. In Figure 8 we show

the functions ⌃(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly

universal. As discussed in Section 7, this induces cancellations that strongly reduce the

super-leading e↵ects in 2 ! 0 and 2 ! 1 processes, for which the results can be expressed

in terms of di↵erences of ⌃(vi, w) functions belonging to di↵erent eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under

the color trace in (4.6) by their commutator [V G
,�]. Introducing the abbreviation

H = H2!M (�c)r V G (�c)n�r
, (6.1)

we find after a straightforward calculation

H [V G
,�] = �16⇡fabc

X
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Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain

⌃(v, w) =
3

2z
p
w
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(5.25)

with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2

⌘
+

3

4w2
+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding

⌃(v, w) =
3 arctan

�p
v � 1

�
p
v � 1w

�
3
p
⇡

2
p
v w3/2

+O(w�2) . (5.27)

Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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for the two Glauber terms. In the approximation where one works with a fixed coupling

↵s(µ̄), as in (5.4), one would obtain
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To approximately take this e↵ect into account in our numerical results presented in Sec-

tion 7, we will simply replace
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in the fixed-order results. For the results obtained using a running coupling, we will

multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated

at µ̄ =
p
QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically

this has the e↵ect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary

2 ! M process in Section 6. While the resulting expressions for specific partonic channels

can be lengthy, we find that in all cases the dependence on r and n can be factorized in

the general form

Crn = (�cusp0 Nc)
n
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with �
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, v2 = 1 , v3,4 =
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where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of �c acting

on the space of color structures, see Section 6. Neglecting the running of the coupling, as

is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple

expression for the integrals Irn. Using this expression and the power-like dependence of

Crn on r, we find that the SLL contribution to the partonic cross section is given by the

double sum
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Figure 8. Behavior of the functions ⌃(v, w) for di↵erent values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

much weaker for the SLLs. We will come back to this after we analyze the color traces for

a few simple processes.

The functional form of ⌃(v, w) for two di↵erent values of v is illustrated in Figure 7,

where we also show the perturbative expansion up to the eighth order in w (dotted lines)

and the asymptotic form (5.27) (dashed line). Note that in the phenomenologically inter-

esting region w & 1 the convergence of the Taylor series (5.20) is slow. In Figure 8 we show

the functions ⌃(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly

universal. As discussed in Section 7, this induces cancellations that strongly reduce the

super-leading e↵ects in 2 ! 0 and 2 ! 1 processes, for which the results can be expressed

in terms of di↵erences of ⌃(vi, w) functions belonging to di↵erent eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under

the color trace in (4.6) by their commutator [V G
,�]. Introducing the abbreviation

H = H2!M (�c)r V G (�c)n�r
, (6.1)

we find after a straightforward calculation

H [V G
,�] = �16⇡fabc

X

i,j

(�i1 � �i2)

⇥

⇢h⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘
H+H

⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘i Z
d⌦(nk0)

4⇡
W

k0

ij

� 2
⇣
T

a

1 T
b

2 HT
c

j + T
c

j HT
a

1 T
b

2

⌘
W

k0

ij ⇥hard(nk0)

�
. (6.2)

– 31 –

Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain
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(5.25)

with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
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+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding
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3
p
⇡

2
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v w3/2

+O(w�2) . (5.27)

Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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Comments on the construction of the color basis 

▸ Recall that      and        only depend on generators of partons 1 and 2, 
whereas     brings in the generator of one additional parton j    

▸ Hence, there are two types of structures: 

▸ Color structures      contain products of color generators of parton i; 
they carry two matrix indices (fundamental or adjoint) as well as an 
open adjoint index for each generator 

▸ Such structures can be built from symmetric products:

CONSTRUCTION OF THE COLOR BASIS OPERATORS

A.1

SCET AND THE GLAUBER SERIES

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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and

S5 = T1 · T2 , S6 = 1 . (2.15)

In general, the operators O(j)
n contain a generator for one of the final-state partons (with

index j), whereas the operators Sn contain the color generators of the initial-state partons
only. The structures Sn appear when the (real or virtual) soft gluon emitted from � is
attached to a collinear gluon emitted from �c. We remark that more structures appear once
gluons in the initial-state (i.e. generators in the adjoint representation) are considered [10].
One can write1

Cr1,r2 =
16

N2
c

(�⇡2) (4Nc)
r1+r2+2

"
2+MX

j=3

Jj
X

i=2,4

c(r1)
i

hH2!M O
(j)
n
i+ J12

X

i=5,6

d(r1)
i

hH2!M Sni

#
,

(2.16)

with the coe�cients c(r1)
i

and d(r1)
i

given by

c(r1)2 = �
Nc

2
, c(r1)4 = +2�r1 ,

d(r1)5 = �2
�
1� 2�r1

�
, d(r1)6 = �2CF 2�r1 (1� �0r1) . (2.17)

The quantities Jj and J12 in (2.16) are the two relevant angular integrals

Jj ⌘

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 ⌘ J2 = �J1 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) , (2.18)

where ⇥veto(nk) ⌘ 1�⇥hard(nk) restricts the soft emission to be inside the veto region, and
the soft dipole is given by

W k

ij
=

ni · nj

ni · nk nj · nk

. (2.19)

The set of color traces in (2.16) can easily be calculated for a given hard-scattering process.
Evaluating the iterated scale integrals originating from (2.5) then gives the SLL contribution
to the cross section in the double-logarithmic approximation.

3 Generalized color traces

We now turn to the generalized color traces relevant for the resummation of the Glauber
series. We define

C`

{r} = hH2!M (�c)r1 V G (�c)r2 V G . . . (�c)r2`�1
V

G (�c)r2` V G �i , (3.1)

1
For simplicity, we omit writing “⌦1” in the angle brackets from now on.
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2 Systematic reduction of the color traces

The central task is the evaluation of the color traces (1.12). For particles transforming
in the fundamental representation, products of generators can always be reduced to a
single generator or the identity matrix. This feature was exploited in [23] to resum the
Glauber series for quark-initated processes. However, such a property does not exist for
gluons, which transform in the adjoint representation. Due to the plethora of �c and
V

G insertions, the color traces (1.12) then involve color structures of seemingly arbitrary
complexity. Remarkably, it is still possible to reduce the color trace in this case. This is
achieved by constructing a finite color basis that is closed under repeated applications of
V

G and �c. This allows for a resummation of the Glauber series for initial states that
feature gluons, thus extending the analysis in [23].

2.1 Construction of the color bases

Since the color traces (1.12) contain only a single insertion of �, and V
G as well as �c

only depend on the color generators T1,2 of the initial-state partons, at most one generator
Tj of a final-state parton appears, see (1.14). Hence, one can decompose all possible color
structures into two distinct classes, corresponding to certain linear combinations of either

⇣ C1
eC2 Tj or ⇣ C1

eC2 , (2.1)

where the tilde indicates that these structures are not necessarily related by interchanging
1 $ 2. If the initial-state partons are either both (anti-)quarks or both gluons, these linear
combinations are constrained by additional symmetries from relabeling particles 1 $ 2.
The objects Ci and eCi are color-space matrices which contain products of color generators
associated with parton i. One the one hand, they carry two matrix indices, i.e. anti-
fundamental or fundamental indices if parton i is a quark or anti-quark, respectively, or
adjoint indices if it is a gluon. On the other hand, they also carry an open adjoint index
for each color generator. Whereas the matrix indices are to be contracted with the hard
function under the color trace, the open adjoint indices are contracted with ⇣, a color-space
tensor of corresponding rank. For example, the color structure in (1.14) is of the first class,
with

⇣ = ifabc , C1 = T
a

1 , eC2 = T
b

2 , (2.2)

and describes the soft emission of a gluon from final-state parton j. In contrast, the second
class in (2.1), without the additional generator Tj, describes soft emissions originating from
collinear gluons [9, 10, 23].

One possible choice for the structures C1 and eC2 are symmetrized products of SU(Nc)
generators. Spelling out adjoint indices explicitly, they read

C
(k)a1...ak
i

=
1

k!

X

�2Sk

T
a�(1)

i
. . .T

a�(k)

i
, (2.3)
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Comments on the construction of the color basis 

▸ Open adjoint indices are contracted with   , which can be built from 
Kronecker δ, f- and d-symbols (higher d-symbols defined recursively):        

▸ For identical initial-state particles, the structures (including angular 
integrals Jj) need to be symmetric under  

▸ For initial-state quarks or anti-quarks, symmetric products of 
generators can be reduced to linear form 

▸ For initial-state gluons, all indices are adjoint ones

1 ↔ 2

CONSTRUCTION OF THE COLOR BASIS OPERATORS

A.2

SCET AND THE GLAUBER SERIES
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where C
(0)
i

= 1i and the sum is over all permutations of {1, 2, . . . , k}. The open adjoint
indices must be contracted with ⇣, which can be constructed from all combinations and
permutations of the symbols �a1a2 , ifa1a2a3 and da1a2a3 , for example

⇣(0) = 1 , ⇣(2)a1a2 = �a1a2 , ⇣(3)a1a2a3 2 {ifa1a2a3 , da1a2a3} , (2.4)

and so on. Here, da1a2a3 are the totally symmetric and traceless coe�cients. Note that
higher-order d-symbols are recursively defined via �a1a2 and da1a2a3 , see e.g. [27].

For the treatment of the SLLs, it su�ces to consider symmetrized products of up to
three generators, cf. (6.36) and (6.45) in [10]. However, inserting more and more Glauber
operators in (1.12) creates color structures that contain symmetrized products of more and
more generators. Therefore, it is not possible to construct a finite color basis valid for
initial-state partons transforming under any representation. However, upon specifying a
representation, one can always construct a finite basis, as will be shown for the fundamen-
tal and adjoint representations below. This is a somewhat unexpected result, given the
complexity of the color algebra in the adjoint representation.

2.1.1 Quark-initiated processes

For the initial-state partons i = 1, 2 being (anti-)quarks, one can use the relation

t
a

i
t
b

i
=

1

2Nc

�ab 1i +
1

2

�
ifabc + �i d

abc
�
t
c

i
(2.5)

to construct a finite color basis for this case [23]. The color-space formalism implies that
(ta

i
)↵i�i = �(ta)T

↵i�i
, �i = �1 if the initial-state parton i is a quark and (ta

i
)↵i�i = (ta)↵i�i ,

�i = +1 for an anti-quark, where ta are generators of the fundamental representation.
For the two classes of structures shown in (2.1), one now constructs all contractions of
C1 2 {11, ta1} and eC2 2 {12, tb2} with ⇣ 2 {�bc, �ac, ifabc, �1dabc, �2dabc} for the first class and
⇣ 2 {1, �ab} for the second class of structures. As a consequence of (2.5), the d-symbols are
always accompanied by �1,2.

Note that the cross section is invariant under the relabeling 1 $ 2. The structures from
the first class always appear in combination with the angular integral Jj, where j > 2,
whereas the ones from the second class are accompanied by J12 ⌘ J2. According to (1.15),
these angular integrals transform as

Jj ! �Jj , J12 ! +J12 (2.6)

under the exchange 1 $ 2, it su�ces to consider the anti-symmetric combinations

ifabc
t
a

1 t
b

2 T
c

j
, (�1 � �2) d

abc
t
a

1 t
b

2 T
c

j
, (t1 � t2) · Tj , (2.7)

in the former case, and the symmetric combinations

t1 · t2 , 1 , (2.8)

in the latter case. These five color structures form a basis for the case of quark-initiated
processes, as has been explicitly verified in [23].
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