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Dark Showers

 One of the main LHC goals is to Traditional “mono jet” DM production
search for “WIMP” dark matter q 7 =
— However no significant evidence =! miss

from traditional missing transverse
momentum (pr™¢) searches

 Dark sector could be much richer
Dark Shower

- More particles 9
— Forces between dark particles

* |f new force is confining, it would
lead to “dark shower” and
hadronisation
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Generating Dark Showers

Involves Physics at a range of scales:

Hard Process:
Perturbative,
well known

Parton Shower:
Perturbative,
calculable

Hadronisation:
Non-perturbative

Decays:

2 body phase space (trivial)
3 body perturbative
(calculable)

* So far, only implemented
in Pythia

* Herwig uses different
shower and
hadronisation models

* Can act as a useful
complement

semi-empirical models

— challenging!



Dark Parton Shower

* Model assumes a structure
similar to QCD, with a
number of “dark quarks”, g,
and “dark gluons”, gp, 1.
mediating the force between
them

* Now implemented based on
BSM extension of Herwig
angular ordered parton 9o
shower

* Parameterise op by Ap, stay
In QCD-like regime - Ng/Nc<2
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Cluster Hadronisation Model

Uses the cluster hadronisation model:
- Gluons are split into gq pairs

- Colour connected qq pairs form clusters
(representing heavy pseudo-hadrons)

Very heavy clusters decay by springing g
pair from vacuum

Clusters decay to two hadrons according

phase space and number of available spin-

states
So far have only implemented dark meso
Depends on tunable parameters

— Must be set based on SM values or
intuition
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Dark Decays

* Unstable dark hadrons decay to SM
guarks (which undergo a further
parton shower and hadronise)

* Implemented using Darkonium
decayer

- Inspired by Quarkonium decayer,
has correct colour connections for
three body decays

- Plan to add phase space
dependance for 3 body decays in
a future release

diag
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Benchmark Model

Consider two broad scenarios (A and B):

Mass degenerate dark quarks
Scenario A: Ni=3, N\p € [4, 10, 30] GeV
Scenario B: Ni=4, N\p € [1, 10] GeV

1TeV Z
mediator

Start from e*e
to have clean
initial state

e"‘:

Based on Snowmass white paper
[DOI: 10.1140/epjc/s10052-022-11048-8]

Need to select 1to/Ap,
other masses from lattice

Scenario A: Ttip/N\p=0.6
=> Mpp>2Mmp
Scenario B: 1tio/A\p=1.7
=> Mpp<2Mpmp

Scenario A: pp - TipTIp,
%9 -, qg (heaviest
available SM quark),
off-diagonal 11p stable

Scenario B: pp® - qq,
pDnon-diag N T[qu (a”
available SM quarks),
all o stable



Scale Hierarchies

Mqp, SCenario B

Mnp, SCenario A Moo, Scenario A s, Scenario B
Energy | | | | | ] ‘
scale (\p) 0.6 1 1.5 1.7 2.5 ?‘,\3.1 17

(o constituent / _ ) B :

mass, scenario A go constituent Shower cut-off Cllma);: maximum

(05 * shower cut- mass, scenario B cluster mass

off) (dark pion mass)



Jet Substructure

e Jets from dark showers can
appear very different to SM
QCD jets

— Multiple “subjets”

e Can use variables sensitive

to angular structures within

a jet to search for these
models

e Sensitive to detalls of dark
shower and hadronisation
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Dark Shower | ’
produces /
dark hadrons

Further qcd
shower from
dark hadron
decays

Multiple
“subjets”

within each v\
jet \,\(}(, ! § C‘:z”



Correlation Functions

* Plot angular
distance between
each pair of
particles in the
jets, weighted by
energy of the
particles

Excess at wide
angles — distance
between dark
hadrons

Excess at small

* Compare to
production of SM
guarks by same
mediator

products of a
single dark hadron

angles — distance ; | < ;
between decay \ o ]
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Correlation Functions

Lower Ap shifts
spectrum to smaller
angles as dark
hadrons are lighter
and more boosted

Overall difference to
SM decreases as
/\po decreases since
dark shower
becomes more
similar to QCD

Only first peak
visible inside
jet for A\p=10
GeV

First peak for
No=4 GeV only
visible at very
small angles
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Correlation Functions

* No visible two-peak B i i,
structure for Scenario B

Events
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Correlations across Event

* Can also look at correlations . ki
across entire events N S e e B G
1 :_‘: -+ Sc‘enanju B,ﬁn=1DFEV -
* Dark showers tend to have | “h- SemaroA Ap—10GY 3
more isotropic topologies than B = T 5
QCD, due to: ks __5?--_:"—_--- e L
- Higher Ap giving more wide- =B
angle emissions -
- More cluster fissioning I s

- Parts of event decaying T T
invisibly e B W R e B

Corr. func. (rad)
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Angularities

Angularity a = 1.5, 8 =1

* Angularities also show discriminating
power: '
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First Cluster Mass
10° g

% —+— Z' s qq
o . E_ oy =rfm Scenarin B, Ap =1 GeV
Hadronisation Parameters i
IEE' =+ - Scenario A, Ap = 10 GeV
10% -~ Scenario A, Ap = 30 GeV
. . F e TN
* Numerous parameters describing different ¢ k S
aspects of hadronisation 1 T E‘-“w.: |
= e W
* Impact of these parameters should be 2 , £ B .
Investigated for both final state and o o
iIntermediate distributions (e.g. cluster e S R
masses) b 30 ~¥-- Scenario B, Ap = 1 GeV
E_ C =rfe= Scenarin B, Ap = 10 GeV
 Studies performed for Scenario B, Ap=10 = ™' - e g
GeV 5 £ Scenario A, Ap = 30 GeV
- For scenario B hadronisation also sil, e TRy ﬂ
determines visible decay fraction, ' '- P& 3
since only pp decay e ! ;
1 | IlIIIII| !I !I;III'II !I .

M eluster {GEV]



First Cluster Mass

Last Cluster Mass

—t+ Shower cut-off=30GeV
—+ Shower cut-off=20GeV
—+ Shower cut-off=40GeV

z et —t+ Shower cut-off=30GeV ? o s
-'i 103 —+ Shower cut-off=20GeV §~ 103
= i — Shower cut-off=40GeV 3 E
Shower Cut-Off 2 L
* Final predictions should be ik
Independent of shower cut-off 3 R
08 E 9 ;
 However, hadronisation is not 2 o7
currently able to absorb these e 0
changes
- For SM can re-tune hadronisation e
parameters, but not possible for dark
showers

* Ongoing work on physically motivated
cluster evolution should be able to
alleviate this (see next talk by Stefan
Kiebacher)

103
Melyster (GeV)



Shower Cut-Off Variations

e Varied shower cut-off 10 GeV,
Keeping hadronisation
narameters constant

* Lower shower cut-offs give
more splittings from parton
shower, which are more
colinear than cluster fissioning

* Also reduces visible decay
fraction from 56% to 50%
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Hadronisation Parameters

* Varied hadronisation
parameters by tuning

. L. . Last Cluster Mass Ang. Corr. Func.

Uncerta|nt|es Or dlﬁerences 103 E — 0 TTT T T T T T[T T T T[T T T T[T T T T TTTT H

. = = ~ Clpmax =170 GeV | £ | | | [ |
between light and heavy 2 A+ Clue=119Gev | § ;8 = Clnax =170Gev N
qu arks e Clynax = 221 GeV F i gm - g‘i gg’ ]
E ; : max — ~
* Most notable is Clnax — SCale u i }

above which clusters are e -

fissioned - 107" E
L
* Can cause visible decay 12 E- 12 £ E
fraction to vary from 44%to ¢ = | - e o s sl
(] AﬁeCtSbOOStOpr, and hence g.gé_ 1 AN L1 it 2:2§|J|||||||i|l|||||J|l|||||J|1E
i 1 2 0 0.5 1 1.5 2 2.5 3
angular distance between pp 10 A R e ik

decay products



Conclusions and Outlook

* Dark shower model implemented into the Herwig
generator

- Will be included in Herwig 7.4 release
* Correlation functions reveal interesting jet substructure

* Good description of dark showers requires a more
fundamental description of hadronisation

— Ongoing efforts in Herwig to realise this and provide
uncertainties on hadronisation
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Dark Hadronisation

e Can predict the fractions of
unstable p_ relative to stable Tt

(and n,, which decays to 1)

- In Pythia these are input
parameters

e Varying the cluster fission scale
could give estimate of
uncertainties

— Working on prescription for
uncertainty estimation

22

Pythia Herwig

parameters | prediction

Tlp 42% 43%
Invisible

No | Neglected 0.9%

Visible | po 58% 56%
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