Dark Showers and Hadronisation in Herwig

Suchita Kulkarni¹, Mohammad R. Masouminia², Simon Plätzer^{1,3}, <u>Dominic Stafford</u>⁴

University of Graz
IPPP, Durham University
University of Vienna
DESY CMS Group

04.07.2024 PSR Workshop, Graz

1

Dark Showers

- One of the main LHC goals is to search for "WIMP" dark matter
 - However no significant evidence from traditional missing transverse momentum (p_T^{miss}) searches
- Dark sector could be much richer
 - More particles
 - Forces between dark particles
- If new force is confining, it would lead to "dark shower" and hadronisation

Traditional "mono jet" DM production

Signatures

Emerging Jet

Little p_T^{miss}, but can be distinguished through jet substructure

DISPLACED et unless ISR LAMOND EMERGING JETS JET SEM1-"DARK" VISIBLE JETS JETS PROTIPT INVISIBLE VISIBLE

 p_{T}^{miss} aligned with jets, jet substructure also useful

Generating Dark Showers

Involves Physics at a range of scales:

Decays: 2 body phase space (trivial) 3 body perturbative (calculable)

- So far, only implemented in Pythia
- Herwig uses different shower and hadronisation models
- Can act as a useful complement

Dark Parton Shower

- Model assumes a structure similar to QCD, with a number of "dark quarks", qⁱ_D, and "dark gluons", g_D, mediating the force between them
- Now implemented based on BSM extension of Herwig angular ordered parton shower
- Parameterise α_D by Λ_D , stay in QCD-like regime N_F/N_C <2

5

Cluster Hadronisation Model

- Uses the cluster hadronisation model:
 - Gluons are split into $q\overline{q}$ pairs
 - Colour connected qq pairs form clusters (representing heavy pseudo-hadrons)
 - Very heavy clusters decay by springing qq pair from vacuum
 - Clusters decay to two hadrons according to phase space and number of available spinstates
- So far have only implemented dark mesons
- Depends on tunable parameters
 - Must be set based on SM values or intuition

Dark Decays

- Unstable dark hadrons decay to SM quarks (which undergo a further parton shower and hadronise)
- Implemented using Darkonium decayer
 - Inspired by Quarkonium decayer, has correct colour connections for three body decays
 - Plan to add phase space dependance for 3 body decays in a future release

Benchmark Model

Consider two broad scenarios (A and B):

Need to select π_D/Λ_D , other masses from lattice Scenario A: $\pi_D/\Lambda_D=0.6$ => $m_{\rho D}>2m_{\pi D}$ Scenario B: $\pi_D/\Lambda_D=1.7$ => $m_{\rho D}<2m_{\pi D}$

> - Scenario A: $\rho_D \rightarrow \pi_D \pi_D$, $\pi_D^{diag} \rightarrow q\bar{q}$ (heaviest available SM quark), off-diagonal π_D stable

Scenario B: $\rho_D^{\text{diag}} \rightarrow q\overline{q}$, $\rho_D^{\text{non-diag}} \rightarrow \pi_D q\overline{q}$ (all available SM quarks), all π_D stable

Scale Hierarchies

Jet Substructure

- Jets from dark showers can appear very different to SM QCD jets
 - Multiple "subjets"
- Can use variables sensitive to angular structures within a jet to search for these models
- Sensitive to details of dark shower and hadronisation

Correlation Functions

- Plot angular distance between each pair of particles in the jets, weighted by energy of the particles
- Compare to production of SM quarks by same mediator

11

Correlation Functions

- Lower Λ_D shifts spectrum to smaller angles as dark hadrons are lighter and more boosted
- Overall difference to SM decreases as A_D decreases since dark shower becomes more similar to QCD

Correlation Functions

- No visible two-peak structure for Scenario B
- Decaying dark hadrons much heavier ($\rho_D/\Lambda_D=3.18$ vs. $\pi_D/\Lambda_D=0.6$ for scenario A), so overlaps with second peak

Correlations across Event

- Can also look at correlations across entire events
- Dark showers tend to have more isotropic topologies than QCD, due to:
 - Higher Λ_D giving more wideangle emissions
 - More cluster fissioning
 - Parts of event decaying invisibly

Angularities

 Angularities also show discriminating power:

$$\sum_{i \in jet} \left(\frac{E_i}{E_{Tot}}\right)^{\beta} \left(2\sqrt{1 - \cos\theta_i}\right)^{\alpha}$$

- IRC safe for $\beta=1$
- Varying α can probe different angular regions within jets
- Not as easy to observe different features, but provide per-event observable

Angularity $\alpha = 1.5$, $\beta = 1$

Hadronisation Parameters

- Numerous parameters describing different aspects of hadronisation
- Impact of these parameters should be investigated for both final state and intermediate distributions (e.g. cluster masses)
- Studies performed for Scenario B, $\Lambda_D=10$ GeV
 - For scenario B hadronisation also determines visible decay fraction, since only ρ_D decay

Shower Cut-Off

- Final predictions should be independent of shower cut-off
- However, hadronisation is not currently able to absorb these changes
 - For SM can re-tune hadronisation parameters, but not possible for dark showers
- Ongoing work on physically motivated cluster evolution should be able to alleviate this (see next talk by Stefan Kiebacher)

Shower Cut-Off Variations

- Varied shower cut-off 10 GeV, keeping hadronisation parameters constant
- Lower shower cut-offs give more splittings from parton shower, which are more colinear than cluster fissioning
- Also reduces visible decay fraction from 56% to 50%

Hadronisation Parameters

- Varied hadronisation parameters by tuning uncertainties or differences between light and heavy quarks
- Most notable is Cl_{max} scale above which clusters are fissioned
- Can cause visible decay fraction to vary from 44% to 61%
- Affects boost of ρ_D , and hence angular distance between ρ_D decay products

Conclusions and Outlook

- Dark shower model implemented into the Herwig generator
 - Will be included in Herwig 7.4 release
- Correlation functions reveal interesting jet substructure
- Good description of dark showers requires a more fundamental description of hadronisation
 - Ongoing efforts in Herwig to realise this and provide uncertainties on hadronisation

Backup

Dark Hadronisation

- Can predict the fractions of unstable $\rho_{\rm D}$ relative to stable $\pi_{\rm D}$ (and $\eta_{\rm D}$, which decays to $\pi_{\rm D}$)
 - In Pythia these are input parameters
- Varying the cluster fission scale could give estimate of uncertainties
 - Working on prescription for uncertainty estimation

		Pythia parameters	Herwig prediction
Invisible	π_{D}	42%	43%
	η⊳	Neglected	0.9%
Visible	ρ _D	58%	56%