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In Decuctor we did everything at LO level that is humanly possible:

v All order definition of parton shower cross sections
v Evolution at density operator level (aka amplitude level evolution)
v Multi-variable evolution (angular ordering, ...)
v Colour evolution beyond the leading colour approximation
v LC+ base approximation
v subleading colour treated perturbatively
v Fully exponentiated Glauber gluon effect
v' Summation of threshold logarithms
v PDF factorisation schemes vs. shower evolution variable
v Testing log accuracy of parton showers analytically

X We haven't implemented spin dependence

It is time to move on and go beyond the first order!
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This is highly non-trivial operator and cancelation of all the singularities in the first term is rather delicate.

Double real Double virtual

_A A

DA (p?, i) = PO (1, 1d) + DUV (i, i) + DO (2, pil)

~~

Real-virtual

and

Single real

_A

DY (i, u2) = DOV (i, u2) + DOV (12, 4if)

~~

Single virtual
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Consider the momenta coming from the hard part as fixed
and on shell. /

This gives us an operator as

({0, 5.8, Vonsna | p(1%)) [ e
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T Infefpolaflng Gauged

| will describe the interpolating gauge invented by Doust (1987) and probably reinvented by Baulieu and
Zwanziger (1999) and we also reinvented (2022) before we found it in the literature.

- Doust wanted to fix the ambiguities of the Coulomb gauge Feynman integrals.
- Baulieu and Zwanziger wanted to understand confinement.
Our interest in simplifying the soft and collinear singularities of QCD amplitudes.

This may be useful to define the infrared sensitive operator that is need for subtraction terms for fixed
order calculation and for splitting operators in parton showers.

Our particular interest in defining the splitting operators for a parton shower at order 0552 level.

Interpolating gauge interpolates between Feynman gauge (or Lorenz gauge) and Coulomb gauge.
With our different goal we adopt a different notation and emphasise different features of the gauge.

We also explore technical issues in some detail.
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not Feynman gaugess

The gluon propagator is very simple in Feynman gauge, but consider the graphs with a virtual gluon that couples to
an external leg

P — (g DI

There are collinear singularities that give a logarithmic divergence fromg — xp; .

The collinear divergences appear even when the gluon connects to an off-shell internal line in the graph.

The unphysical polarisations of the gluon causes the problem and we can get rid of the by using the Ward identity.

This is rather simple at 1-loop level, but higher order level it gets extremely complicated very quickly.

It might be better if these unphysical collinear singularities don’t occur.
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W ,Interpolahng gauge:

m Use a special reference frame defined by a light like vector n#, with n=1.

m i 2%
* Define a tensor 7" as In the 77 = O frame this tensor is

W = g"" — <1 - iz) nn” L2 00 0
v g _ | 0 =1 0 0
10 0 -1 0

0 0 0 -1
w For any vector g# we define an associated vector g* by

1
T

w Note, in the v2 — 0 limit A#* — gH

w Jse the gauge fixing condition G[A] = O with

Compare this to

GlAle(z) = 0, A (x) — we(x) G[Ale() = 9, Al (x) — we(x)
for covariant gauge
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Lor(r) = 57 (0 AL (@) (D A; (@)
- \With this the gluon propagator is
D)= q> Jlrio A quqqi/;jfoqy - (1 " v12> q qg ?I—Vi() B €v_2 : (q -q(;iyiO)Q
w Usually we choose & = 1.
 The ghost propagator is
Dlg) = —
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Introducing the polarisation vectors in the usual way, the gluon propagator can be decomposed as

Describes the propagation of the
transversely polarised gluons

(T-gluons)
1T — S el @) + (@) ()
D’LW _ 7 v * 0 0 3 3

~~

Describes the propagation of the
longitudinally polarised gluons
(L-gluons)

N R . e
Note, that ¢-q = UQE ¢, and the condition for on-shell propagation is

E = +ol|q| ::> L-gluons propagate with speed v in the 7 = O frame.

We usually take v > 1, this means the L-gluons are tachyonic states. This is also true for the ghost fields.
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Why is it called interpolating gauge?

< Ifwetake v = 1, we get Feynman gauge for £ = 1 and Lorenz gauge for & = 0.
% Ifwetake v — 00, we get Coulomb gauge.

< The L-gluons give the Coulomb force, which propagates with infinite speed in the 77 = O frame.

“* Now the Coulomb gauge is defined as a limit. This way the loop integrals are defined unambiguously.

< Wedontneedv — oo, v = \/5 is perfectly fine.
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“ T-gluons do not give collider singularities except for self-energy insertion on external legs, that is because
q-€,(q) =

< L-gluon do not give collinear singularities because if p* = 0 and ¢ — xpj, then (p; — g)* — 0, but
q:-q 7 0.

 Thus interpolating gauge is like physical gauge respect to collinear divergences.
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% Both T-gluons and L-gluons create soft divergences (g# — 0) when they couple to two external legs.
¢ These are pure soft divergences, but without collinear divergences.

“ The interpolating gauge looks a powerful tool to disentangle the soft and collinear divergences.



- > p . »
Vv /—"7

“* Renormalization works, we did it at 1-loop level and calculated all the renormalisation constants,

Zwa Zﬁya Zna Zga Z’Ua Z§

% The BRST invariance shows that the S-matrix independent of the gauge parameters, v, &, n”.

y oag 1 220% + 35v% +20v —1 & 4 5
ZIIZ (asavag):g“ +__([ 6?}(1—|—U)2 2 Ca—3 g“

4T €5
as 1 4v(1l+ 2v)

v 2
- — 3(1—|—’U)2 C' 4 h* —|—O(Ozs)

| 11 4
7, (g =1- = Cy— — O(a?
g(as,v, ) Ir e (6 AT o Rnf)—l— ()



“ Interpolating gauge is not useful to calculate exact matrix element, for that purpose | still recommend
Feynman gauge.

¢ But for defining subtraction terms for fixed order calculation or splitting operators for parton shower or for
studying IR structures, it might be a very useful gauge.

% Our goal is to define a NLO level parton shower.
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This is highly non-trivial operator and cancelation of all the singularities in the first term is rather delicate.

Double real Double virtual

_A A

D@ (u?, i) = PO (1, 1f) + DUV (1, i) + DO (?, pi3)

~~

Real-virtual

and

Single real

_A

DY (i, u2) = DOV (i, u2) + DOV (12, 4if)

~~

Single virtual



This is highly non-trivial operator and cancelation of all the singularities in the first term is rather delicate.

Double real Double V|rtual

_A

D@ (42, u2) = DO (12, us)H?(l ”(u us)H?(”)u us e

Real V|rtual

:LL:LLS

and

Single real

A

DO (2, 12) = DO (122, us

Slngle virtual
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