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Motivation

@ Dead-cone effect: radiation is suppressed within an angular size of m/E
@ First direct experimental observation of collinear radiation suppression

ALICE: ArXiv: 2106.05713
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@ But only a handful of theoretical studies for heavy flavour jet substructure:
e L. Cunqueiro, D. Napoletano and A. Soto-Ontoso Arxiv: 2211.11780
o S. Caletti, A. Ghira and S. Marzani Arxiv: 2312.11623

o B. Blok, C. Wu Arxiv: 2312.15560
@ Our goal: study medium modification effects on the parton splitting functions
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Soft drop grooming and zg distribution

Soft drop (SD) grooming: clean the jets up by removing soft radiation (More details in
Andrea Ghira’s talk)

@ identify the “correct” angular scale

@ throw away what is soft & large angle

@ left a groomed jet
Declustering the jet constituents until the subjets satisfy the SD condition:

_ min(ps, p2) > 76, 0, = AR
cutUg » - R

€ p1 + p2

@ For B > 0, collinear splittings always pass the SD condition, z; not IRC safe, need
applying Sudakov safe techniques.

@ For 8 =0, i.e. modified mass drop, z; provides a direct measurement of the
splitting function.
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Parton propagation through medium

@ Dilute medium: For low medium opacity, only one scattering occurs.
@ Dense medium:

o Bethe-Heitler regime, w < wgy

o BDMPS-Z regime, wgy < w < w¢: Multiple scatterings based on a
path-integral formalism

e Hard GLV regime, w > w.: Opacity expansion in terms of the number
of scattering centers

& &£ £
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Three regimes of the radiative spectrum in dense media [ArXiv: 2206.02811].
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Parton propagation in dense medium

@ Vacuum-like emissions (VLE): double differential probability for bremsstrahlung at

DLA
s Cr du d?

T w 62

d’P =

o Duration: t; ~w/k3 =1/ (w6?)
Parent parton and the emitted gluon lose their mutual quantum
coherence

e Angular ordering: 6,1 < 6, radiation is confined in a cone

QCD :

o Heavy flavor VLE: dead-cone approximation
asCr dw do? 1

d’pP = -
Tow 2 (1462/62)
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Parton propagation in dense medium

@ Medium-induced emissions (MIE): no collinear divergence

asCr dw dt
™ W tmed

d*P ~ Phroad (0) dO, with tmeq = \/w/q

@ Transverse momentum broadening:

o Gaussian distribution, with a width <kJ2_> ~ qAt
o The broadening accumulated momentum over the formation time.
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@ Heavy flavor MIE: the radiation is also suppressed, but less effective due to the
reduction of LPM effect.
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Dead-cone and radiation in dense QCD medium

Radiation from an energetic, massive quark is strongly suppressed within the dead-cone
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Lund plane density: Medium-induced (top) and vacuum emissions (bottom) [ArXiv: 2211.11789].

Definition (Jet modification factor)

R; (Zg) = Ti,med (Zg) /ff,vac (zg)

= > o L
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Physical picture: factorization between VLE and MIE

@ Physical picture: factorization between VLE and MIE:
tr (w,0) K tmed (W)

o The medium k| cannot be smaller than k? = Qtmed
o No VLE allowed: tneq < tr < L
@ Jet factorizes into three regions:
e angular ordered vacuum-like shower inside the medium
e medium-induced emissions triggered by previous sources

e vacuum-like showmer outside the medium
o, E

3
H
log k, =log w6

inside "
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Tog 1/6

The phase-space for VLE and MIE [P. Caucal, E. lancu, G, Soyez 1907.04866]
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Physical picture: extension to heavy flavor

Factorization between vacuum-like and medium-induced emissions:

b= & tmed = 4]
L R VP

=w8)
=w8)

log(kr
log(kr

loggt- log- log} loggt- logg- log}

Lund diagram representation of the phase space for the in-medium radiation for massless case (left) and heavy flavor
jets (right) with c-jets (dotted line) and b-jets (dashed line).
@ Blue region:t{* > L, outside of the medium, the blue crossed region is between
tf* < L and 6 < 6, i.e. not resolved by the medium

vac

@ Red region: t/°° < tpeq, VLE emissions inside the medium

@ White region: L > t/°° > tmed, the VLEs are vetoed.
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BDMPS-Z

BDMPS formula: The medium-induced gluon spectrum is given by

W4 O‘schR/ dtz/ dti
dw w?

Oz - 8}7 [K (X, t2|y, tl) — Ko ()?a t2|)77 tl)] |>'<':)7:0

Alternative method: Zakharov approach

dl 7055CR
wo =2 ’“/o ds(L- )3 f|p o

where H is the solution of radial Schrodinger equation
) 1 4m? — 1\ -
<18§+58p - Vi(p) — 7> F=0

with the initial condition

F(0.0) =V (o) /5.
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NN-based differential equation solver

Neural network can solve differential equations as an optimization problem. In general,
there are three approaches:

@ Continuous time approach
@ Discrete time approach

@ Connection between PDEs and stochastic processes: backward stochastic
differential equation

it
MSE <6 __=+— MSE = MSE[uzcuc) + MSE;
p lwscic) &

outp o Yes
Neural network structures.
Ny Ny
MSE — 1 f n .ny |2 _ 1 ~n n oy (2
f_iz| (Xf7tf)‘7M5Eu—7 |U—U(Xu7tu)| .
Ne n=1 Ny n=1
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NN predicted solution for harmonic oscillator approximation

For harmonic potential

wQ?
V(p) = ?pza
with imaginary frequency Q = %\/E One can obtain the famous BDMPS spectrum
I 2as wwe As 2we
d @ CRI og|cos (L) | Kpe & asCr 2w
Ydw 71' w

On the other hand, from my NN solver we can solve the TDSE, we have
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NN predicted solution for harmonic oscillator approximation

For harmonic potential

wQ?
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On the other hand, from my NN solver we can solve the TDSE, we have

spectrum
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The three parts of the gluon spectrum in the presence of a medium

Early emission, t < tmeq
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Late emission, t > tmeq: at massless limit

dl as CF
do.)d2 ke 2w

S 2 C
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Multiplicity and energy loss

Recall the physical picture: VLEs in the medium act as the source of medium-induced
radiation.

@ multiple branching scale wp,: w < wpr
MIEs need to be resumed to all-order

“e g :
at ~ 1
/w 9 o~ 0(1) |

br

(R) @ 70 s e 10 M0 120 130

R)
for massless case: w,’ = C Cri-

@ In medium VLE multiplicity: v(z,R) = fgfz do ZF;TT dwddﬁ‘;éE

average muliplicity
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Multiplicity and energy loss

Recall the physical picture: VLEs in the medium act as the source of medium-induced

radiation.

@ multiple branching scale wp: w < wp
MIEs need to be resumed to all-order

“e dl
D d ~
e 0(1)
br
for massless case: w,(f = C CR

6 70 8 9 10 10 120 130

@ Energy loss: multiple soft branchmgs at large angles, and semi-hard gluons with

angle 0 > R

1 e MC:a5 4 1INR
. 4542uR
- sar1a0E

average energy loss
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Multiplicity and energy loss

Recall the physical picture: VLEs in the medium

radiation.

@ multiple branching scale wp,: w < wpr
MIEs need to be resumed to all-order

“e dl

—dw ~ O

dw

Whr

R)
for massless case: wf,,

@ Energy loss for heavy flavor jet: smaller energy loss for heavy quarks than for light

(1

)

CCR

quarks, a net effect due to the filling of dead-cone
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average energy loss

quark

G=15GeVifm, L=amm

pr=200GeV, a, = 024
1

e MC:464171R
Lot

act as the

source of medium-induced

-
- 83=01:0.020-05
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In medium z, distribution

@ Full shower formula: included VLE multicity due to the fact each VLE act as a
source of MIE Sudakov safe:

R
f(zg) =N degAmt (R,0g) P (2¢,0¢) © (zg — zeur)

GCUt
P (2,05) = Pwie (2,0g) + v (2,05) Puie (2, 6¢)
Alternative, due to no collinear singularities for MIE spectrum:
R
F(2) = N [ d [Puse (26.00) A7 (R 00) + v (20, ) Pune (26,0)| © (24 — 2e)
GCU[

@ Definition of z, with energy loss:

pri _ zpT — &g (2pT,b)

pr1+ pr2 pr — & (pT,6g)

Zg (2,6g)

Zg
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Phenomenology: z; in dense medium

Normalised z, distribution Normalised z, distribution
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Combination of incoherent energy loss affecting vacuum-like splitting and a small z,
peak associated with the SD condition being triggered by MIE.
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Phenomenology: heavy flavor z; in dense medium

Normalised , distribution

4= 15 Gevitm, Lam || P20
80=mipr cov
<o botom auark
ot herm ek

Rizy)

R ratio is sensitive to the dead-cone angle and can be used to help probe gluon filling

the dead-cone
@ vacuum emissions are more suppressed compared with the MIEs.

@ in some limited regions of phase space the dead cone is filled
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Towards medium-induced radiation in expanding medium

Expanding QGP medium: non-uniform, time-dependent, g = q(t)
@ Bjorken expanding medium: g (t) = qo (to/t)”
@ Exponential decaying medium: g (t) = goe~*/*

For massless case: dl

w

dw
Scaling law: an equivalent static scenario for expanding medium
C. Salgado, U. Wiedemann ArXiv: hep-ph/0302184, 0204221
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Conclusions and outlook

Summary:

@ We extended the factorization picture for heavy flavor and further extended it by
factorizing early and late emissions

@ Heavy flavor jet substructure can help probe dead-cone effect
Ongoing and future works:

@ Neural network approach to solve DGLAP-like evolution equation and its
application to medium-induced heavy flavor jet evolution

@ Heavy flavor jet substructure in expanding medium
@ Heavy flavor extension for the Improved Opacity Expansion framework

@ Towards precision phenomenology of jet quenching

Thank you for your attention
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Two examples

Unintegrated gluon distribution in the small

°(

x limit

d as
UE¢(X7 U) - g/x

"y
y

6(x,1) = x

For NN, the integral part is calculated via
matrix multiplication, we have

X

y

>¢(y7 u)

Comparison of the NN predicted and exact solution,

fixed-coupling limit
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Network parameters:

Parameter TosE bGLaP
Hidden layers 5 5
Internal width 100 100
Activation function Swish Tanh
Tea . 2000 200
Batch 1000 20
Epochs 10 100
Optimizer LeFcs Adam
(. By. B2) (1 X 107 2 09, 0.000)

Max iteration

(0.1, 1, 0.00)
200

Non-linear time-dependent Schrodinger
equation [Arxiv 1711.10561]
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x x x
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Full shower result for in-medium Z:

Njet normalised z, distribution Njee normalised z, distribution

G=15GeV?/fm, L=6fm
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