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Context - Parton Shower Accuracy

■ Parton showers play a crucial role in the interpretation of collider data.

■ A natural way to classify the accuracy of a parton shower is its logarithmic
accuracy.

■ Several NNLL accuracy milestones reached already in PanScales showers.
2406.02661: van Beekveld, Dasgupta, El-Menoufi, Ferrario Ravasio, Hamilton, JH, Karlberg, Monni,
Salam, Scyboz, Soto-Ontoso, Soyez, 2307.11142: Ferrario Ravasio, Hamilton, Karlberg, Salam, Scyboz,
Soyez
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What is needed for NNLL?

What do we need for NNLL accuracy?

η

ln kt/Q

1
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What is needed for NNLL?

Start with an NLL shower

η

ln kt/Q

1
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What is needed for NNLL?

η

ln kt/Q

1
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NLO Matching

NNDL event shape
accuracy
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What is needed for NNLL?

η

ln kt/Q

1
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Double Soft
corrections

NSL Non-global
logarithms

NNDL Multiplicity
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What is needed for NNLL?

η

ln kt/Q

1
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Integrated soft
collinear rate to α3

s

NNLL Event Shapes
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integrated hard

collinear rate to α2
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What is needed for NNLL?

η

ln kt/Q

1
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Triple collinear
and corresponding
virtual corrections

NSL DGLAP
NSL Small R jets

This talk
*Not in a full dipole shower



Overview

■ Reference observables

■ Collinear parton shower algorithm

■ Tests of logarithmic accuracy

■ Summary
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Reference observables

■ We need resummations differentially sensitive to the triple collinear region to
compare an NSL shower prediction to.

■ NSL fragmentation function evolution - well known Curci, Furmanski, Petronzio 1980 .

■ NSL Small radius jet evolution
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Small R jet evolution

■ We are interested in the energy spectrum of small radius jets (inclusive
micro-jet spectrum).

1

σ0

dσjet

dz
≡

∑

i=q,q̄,g

∫ 1

z

dξ

ξ
Cjet

i (ξ, µ,Q)Djet
i

(
z

ξ
, µ,E R

)

■ At LL the micro-jet fragmentation function (Djet
i ) evolves according to

DGLAP.

dDjet
k (z, µ,E R)

d lnµ2
=

∑

i

∫ 1

z

dξ

ξ
P̂ik

(
z

ξ
, µ

)
Djet

i (ξ, µ,E R) .
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Small R jet evolution at NSL

■ At NSL we need the coefficient function to O(αs).

■ And the two loop anomalous dimension

- Closely related to (but not equal
to) the timelike DGLAP kernel.

We can directly calculate the difference between the DGLAP and small R
anomalous dimensions at 2 loops e.g

must satisfy the sum rules. Using the expressions given in App. B we consistently find

Z 1

0
d z z

�
δP̂ (1)

qq (z) + δP̂ (1)
gq (z) + δP̂

(1)
q̄q (z)

�
= 0 ,

Z 1

0
d z z

�
δP̂ (1)

gg (z) + δP̂ (1)
qg (z) + δP̂

(1)
q̄g (z)

�
= 0 ,

Z 1

0
d z

�
δP̂ (1)

qq (z) − δP̂
(1)
q̄q (z)

�
= 0 . (2.28)

2.3 Running coupling effects beyond two loops

In this section we will discuss the scale of the coupling multiplying P̂
(1)
ik (z) in the evolution

equation of the small-R FFs shown in Eq. (2.2). Here we will present a simple physical

argument to justify the expression given in Eq. (2.3). A full derivation of this equation

leading to the explicit scale of the coupling for the term proportional to δP̂
(1)
ik (z) is reported

in Appendix C. As shown explicitly in the previous section, the two loop anomalous dimen-

sion P̂
(1)
ik (z) can be decomposed into the difference between the DGLAP kernel P̂

(1), AP
ik (z)

and δP̂
(1)
ik (z) given in Eq. (2.27). The latter correction originates from the change in the

longitudinal momentum fraction of the final state jet in a configuration in which one of the

radiated partons clusters with the jet. This scenario is depicted in Fig. 3 for the δP̂
(1)
qq case.

In this configuration, the emission outside the jet will have a coupling evaluated at a scale

δP̂
(1)
qq (z) ∼

R

×
�
δ(z − xzp) − δ(z − x)

�

Figure 3: Clustering configuration giving rise to δP̂
(1)
qq .

µ2 that runs between E2R2 and E2. Conversely, the scale of the coupling associated with

the emission inside the jet is bounded by E2R2 due to the constraint imposed by the jet

radius on the angle of the emission. Therefore, the two terms defining P̂
(1)
ik (z) in Eq. (2.25)

enter the NLL evolution equation evaluated at two different scales, that is as

αs(µ
2)
�
αs(µ

2)P̂
(1), AP
ik − αs(E

2R2)δP̂
(1)
ik

�
. (2.29)

The above result is explicitly derived in Appendix C using the formalism of Ref. [22] and

it justifies the anomalous dimension given in Eq. (2.3), where the term in the second line

has the role of changing the scale of the δP̂
(1)
ik term to E2R2.

3 Fixed order test through O(α2
s)

To test our prediction for the inclusive micro-jet spectrum, we compare the perturbative

expansion of Eq. (2.1) to a fixed-order prediction obtained with the program Event2 [36].

– 11 –

δP̂ (1)
qq (z) ≡

(
2 ln z P̂ (0)

qq

)
⊗ P̂ (0)

qq
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Small R jet evolution at NSL

■ Similar considerations in other colour channels.

■ Can test at α2
s with EVENT2 through the difference in the energy spectrum

between two small radii.

■ Zero shows consistency between the calculation and EVENT2.

DGLAP MS ADs

small-R ADs

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

z

Δ
2C
F2

(z
,R

1
,R

2
)
(g
e
n
e
ra
lis
e
d
k
t
a
lg
o
ri
th
m
s
)

J.Helliwell (U.O.O) NSL collinear fragmentation and parton showers 2 July 2024 9 / 32



Small R jet evolution at NSL

■ Similar considerations in other colour channels.

■ Can test at α2
s with EVENT2 through the difference in the energy spectrum

between two small radii.

■ Zero shows consistency between the calculation and EVENT2.

DGLAP MS ADs

small-R ADs

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

z

Δ
2C
F
C
A
(z
,R

1
,R

2
)
(g
e
n
e
ra
lis
e
d
k
t
a
lg
o
ri
th
m
s
)

J.Helliwell (U.O.O) NSL collinear fragmentation and parton showers 2 July 2024 9 / 32



Small ycut jet evolution at NSL

■ Now we consider defining jets with a small ycut, instead of a small radius

■ This replaces the angular cuttoff of with a kt-like cuttoff

yij = 2
min

(
E2

i , E
2
j

)

Q2
(1− cos(θij)) < ycut

■ In this case the 2-loop anomalous dimension coincides with that of DGLAP

■ This suggests a correspondance between the scale of the MS fragmentation
function and a transverse momentum cuttoff
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NSL collinear parton shower

A NSL collinear shower
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NSL collinear parton shower

■ Construction of an NSL (αn
sL

n−1) collinear parton shower algorithm

■ Will consider the case of a shower designed specifically for non-singlet
collinear fragmentation observables.

■ The goal is to implement the ideas and understanding developed and tested
here to a full shower.

J.Helliwell (U.O.O) NSL collinear fragmentation and parton showers 2 July 2024 12 / 32



NSL collinear parton shower

dPi =
αeff
s

π

dvi
vi

dzi
dϕi

2π
P exp

[
−
∫ vi−1

vi

αeff
s

π

dv

v
dz

dϕ

2π
P

]

αeff
s = αs(vi)

[
1 +

αs(vi)

2π
K(zi)

]

■ K(zi) defines an NLO inclusive emission probability (=KCMW in the soft
limit), which accounts for virtual corrections.

■ P is the shower matrix element.

J.Helliwell (U.O.O) NSL collinear fragmentation and parton showers 2 July 2024 13 / 32



NSL collinear parton shower - Real emissions

■ At NLL accuracy the real ME needs to be correct for emissions
logarithmically separated in phase space (shown on the Lund plane) 2002.11114,
Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez .

η

ln kt/Q

1
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NSL collinear parton shower - Real emissions

■ At NNLL, must additionally reproduce the correct matrix element for pairs of
emissions close by in phase space 2002.11114, Dasgupta, Dreyer, Hamilton, Monni, Salam,

Soyez .

■ Here, this means triple collinear. configurations

η

ln kt/Q

1
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NSL collinear parton shower - Real emissions

■ Having accepted a first emission, we use the following shower matrix element

P = J(Φi,Φp)
p1→3(Φi,Φp)

Pqq(zp)
Θ(vgiqi < vgpqi)

So that for two emissions we reproduce the correct triple collinear matrix element
and phase space

■ Applying this for successive emissions, the shower will correctly reproduces
the matrix elements for pairs of emissions, strongly ordered with respect to
other pairs
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NSL collinear parton shower - Ordering

■ A typical shower would generate emissions with the ordering Θ(vg1,q̃ > vg2,q)

g1

q̃

→
g1

g2

q

■ When applying triple collinear matrix element corrections, the ordering
variable needs to be symmetric between the 2 emissions to exactly account
for the 1/2 symmetry factor.

■ Generate a disordered emission and apply the ordering condition,
Θ(vg1,q > vg2,q) on the three particle kinematics.
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Inclusive emission probability - gluon branching channels

■ We consider a non-singlet shower, so can treat gluon branching inclusively
(CFCA and CFnf channels).

■ K(z) found by fixing the kinematics of a collinear gluon and integrate
inclusively over a subsequent (collinear) branching combining with the
corresponding 1-loop correction.

■ very closely related to Bq
2(z) from 2109.07496: Dasgupta, El-Menoufi .

Pqq(z)K(z) =
2CF

1− z
KCMW +Bq,nab

2 (z)
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Inclusive emission probability - C2
F channel

■ More care is needed in defining the inclusive emission probability as
subsequent real emissions are resolved.

■ K(z) encodes the probability of producing an emission, inclusive over the
virtual corrections and subsequent branchings that are correlated with the
presence of that emission.
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v1 v2
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Inclusive emission probability - C2
F channel

■ More care is needed in defining the inclusive emission probability as
subsequent real emissions are resolved.

■ K(z) encodes the probability of producing an emission, inclusive over the
virtual corrections and subsequent branchings that are correlated with the
presence of that emission.

v1 v2
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Inclusive emission probability - C2
F channel

■ More care is needed in defining the inclusive emission probability as
subsequent real emissions are resolved.

■ K(z) encodes the probability of producing an emission, inclusive over the
virtual corrections and subsequent branchings that are correlated with the
presence of that emission.

Start by considering the case of e+e− → qq̄g

αs

2π
K(zg) =

Vqq̄g

Bqq̄g
− Vqq̄

Bqq̄
+

∫ ṽg

0

dΦqq̄ij

dΦqq̄g

Bqq̄ij

Bqq̄g
−
∫ vg

0

dΦqq̄g′

dΦqq̄

Bqq̄g′

Bqq̄

*A similar equation appears in the context of embedding NLO 3-jet with NLO 2-jet in a shower 1303.4974,
1611.00013, 2108.07133; Li, Skands et.al .
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Inclusive emission probability - C2
F channel

Taking the collinear limit:

αs

2π
K(zg) =

Vqq̄g

Bqq̄g
− Vqq̄

Bqq̄
+

∫ ṽg

0

dΦqq̄ij

dΦqq̄g

Bqq̄g1g2

Bqq̄g
−
∫ vg

0

dΦqq̄g′

dΦqq̄

Bqq̄g′

Bqq̄

Vqq̄g

Bqq̄g
− Vqq̄

Bqq̄
=

P
(1)
q→qg(sqg, zg, ϵ, µ

2)

Pqq(z, ϵ)

The process dependence cancels between the two terms
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Inclusive emission probability - C2
F channel

Taking the collinear limit:

αs

2π
K(zg) =

Vqq̄g

Bqq̄g
− Vqq̄

Bqq̄
+

∫ ṽg

0

dΦqq̄ij

dΦqq̄g

Bqq̄g1g2

Bqq̄g
−
∫ vg

0

dΦqq̄g′

dΦqq̄

Bqq̄g′

Bqq̄︸ ︷︷ ︸
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Inclusive emission probability - C2
F channel

Taking the collinear limit:

αs

2π
K(zg) =

Vqq̄g

Bqq̄g
− Vqq̄

Bqq̄
+

∫ ṽg

0

dΦqq̄ij

dΦqq̄g

Bqq̄g1g2

Bqq̄g
−
∫ vg

0

dΦqq̄g′

dΦqq̄

Bqq̄g′

Bqq̄︸ ︷︷ ︸

Again, the process dependence cancels between the two terms.
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Factorises into a product of
Bqq̄ with a 1 → 3 or 1 → 2

splitting function

Evaluated with shower
kinematics and ordering

This is crucial so that the
shower Sudakov will properly
cancel this term down to the

cutoff scale.



Inclusive emission probability

For the the ordering variable vij = min(Ei, Ej)θij , we have

400

200

0

200

400

K
(a

b)
(z

g)

K(ab)
> (zg), ln vg = 8

K(ab)
< (zg), ln vg = 8

K(ab)
> (zg), ln vg = 4

K(ab)
< (zg), ln vg = 4

0.0 0.2 0.4 0.6 0.8 1.0
zg

5

0

5

10
K

(a
b)

(z
g)

■ The kink at z = 1/2 is a result of our choice of ordering variable
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Inclusive emission probability

■ K(z) is process independent (and can be computed without reference to
process dependent terms).

■ This definition is also applicable in the soft limit (consistent with the
approaches in 2307.11142, 2406.02661 ).

■ Can also be applied (now with process dependence) to matching between
fixed-order and parton showers 1303.4974, 1611.00013, 2108.07133; Li, Skands et.al .
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NSL collinear parton shower - Tests of logarithmic accuracy

■ Non-singlet partonic fragmentation function evolution

■ Comparison between shower and HOPPET DGLAP evolution code

■ Zero in the αs → 0 limit signals NSL agreement
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*CF = CA/2 = 3/2 to avoid the Nc suppressed q → qq̄q contribution
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NSL collinear parton shower - Tests of logarithmic accuracy

■ Non-singlet small radius jet spectrum

■ same as fragmentation function at SL but distinct at NSL

■ NSL prediction implemented in HOPPET
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Summary

■ Presented 2-loop anomalous dimension for small R and small ycut jets

■ Described the construction of a shower with NSL accuracy for non-singlet
collinear fragmentation observables.

■ Presented a definition of the NLO inclusive emission probability which is
applicable beyond the collinear limit and is consistent with 2307.11142, 2406.02661

.

■ The goal is to implement the ideas developed here into the PanScales
showers to give almost complete NNLL accuracy (Double soft and soft
collinear inclusive emission probability are already implemented).
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Backup slides
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Tests of Logarithmic accuracy

To test the single logarithmic accuracy of the shower, we construct

D
(PS)
NS (z, vmin, vmax)

D
(NSL)
NS (z, vmin, vmax)

− 1 .

and take the αs → 0 limit.

For NSL accuracy, the relevant quantity is

1

αs

D
(PS)
NS (z, vmin, vmax)

D
(NSL)
NS (z, vmin, vmax)

− 1 .
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Tests of Logarithmic accuracy - Fragmentation function

■ We start the shower at scale vmax with a quark with momentum fraction
z = 1.

■ Run the shower down to vmin and measure the energy distribution of quarks.

λ = αs(vmax) ln(vmin/vmax)

D
(NSL)
NS (z, vmin, vmax) = C(vmin)⊗ exp

[∫ v2
max

v2
min

dv2

v2
P̂ (v)

]
⊗ C−1(vmax)

The coeficient function accounts for the scheme change between MS
fragmentation function, using dimensional regularisation, and the shower scheme,

using a cuttoff regularisation scheme.
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Tests of Logarithmic accuracy - small R jets

■ Start the shower at sufficiently high scale with a quark with momentum
fraction z = 1, so that, for any z ∈ [zc, 1− zc], the angular scale R0 can be
generated by the shower.

■ Run the shower down to a low scale, so that for any z ∈ [zc, 1− zc], the
angular scale R can be generated by the shower.

■ Veto emissions with angle larger than R0, so as to mimic starting with a jet
of radius R0.

■ Cluster jets with radius R, and study the energy spectrum of jets containing
the quark.
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Tests of Logarithmic accuracy - small R jets

D
(NSL)
R (z, ER,ER0) =

C(R)(ER)⊗ exp

[
2

∫ ER0

ER

dµ

µ
P̂ (R)(µ,ER)

]
⊗ [C(R)(ER0)]

−1 ,

■ As we don’t implement matching in our shower, the hard matching
coefficient is replaced by [C(R)(ER0)]

−1 which accounts for starting with a
jet of radius R0.
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Small R jet evolution - beyond α2
s

■ We find that the scale associated with δP̂
(1)
ik is not simply µ but ER.

P̂ik (z, µ,E R) =
αs(µ

2)

2π

(
P̂

(0)
ik (z) +

αs(µ
2)

2π
P̂

(1),AP
ik (z)− αs(E

2R2)

2π
δP̂

(1)
ik

)

so that:

dDjet
k (z, µ,E R)

d lnµ2
=

∑

i

∫ 1

z

dξ

ξ
P̂ik

(
z

ξ
, µ,E R

)
Djet

i (ξ, µ,E R) .

■ This can be derived using an NSL generating functional approach 2307.15734

■ Emerges as a consequence of the change in energy of the quark over the
course of the evolution
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Small R jet evolution - Varying the lower boundary

■ This effect can be incorporated into the structure of an evolution equation
where now it is the low scale being varied

dDjet
NS(z, E, µ)

d lnµ2
=− P̂ (0)

qq (z)⊗
(
αs(z

2µ2)

(2π)
Djet

NS(z, E, µ)

)

− P̂ (1),NS
qq (z)⊗

(
α2
s(z

2µ2)

(2π)2
Djet

NS(z, E, µ)

)
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