Developing an amplitude level parton shower – CVolver

Updating on progress made since the last

PSR24

Fernando Torre González

With Jeff Forshaw and Simon Plätzer

The University of Manchester

Described in detail in Angeles Martinez, de Angelis, Forshaw, Plätzer, Seymour [1802.08531]

The soft evolution algorithm

We dress the hard process density matrix with iterative real and virtual operators:

$$\begin{aligned} \sigma_0 &= \operatorname{Tr} \left(\mathbf{V}_{\mu,Q} \mathbf{H}(Q) \mathbf{V}_{\mu,Q}^{\dagger} \right) \equiv \operatorname{Tr} \mathbf{A}_0(\mu) \\ \mathrm{d}\sigma_1 &= \operatorname{Tr} \left(\mathbf{V}_{\mu,E_1} \mathbf{D}_1^{\mu} \mathbf{V}_{E_1,Q} \mathbf{H}(Q) \mathbf{V}_{E_1,Q}^{\dagger} \mathbf{D}_{1\mu}^{\dagger} \mathbf{V}_{\mu,E_1}^{\dagger} \right) \mathrm{d}\Pi_1 \\ &\equiv \operatorname{Tr} \mathbf{A}_1(\mu) \mathrm{d}\Pi_1, \\ \mathrm{d}\sigma_2 &= \operatorname{Tr} \left(\mathbf{V}_{\mu,E_2} \mathbf{D}_2^{\nu} \mathbf{V}_{E_2,E_1} \mathbf{D}_1^{\mu} \mathbf{V}_{E_1,Q} \mathbf{H}(Q) \mathbf{V}_{E_1,Q}^{\dagger} \mathbf{D}_{1\mu}^{\dagger} \mathbf{V}_{E_2,E_1}^{\dagger} \mathbf{D}_{2\nu}^{\dagger} \mathbf{V}_{\mu,E_2}^{\dagger} \right) \mathrm{d}\Pi_1 \mathrm{d}\Pi_2 \\ &\equiv \operatorname{Tr} \mathbf{A}_2(\mu) \mathrm{d}\Pi_1 \mathrm{d}\Pi_2 \\ &\vdots \\ \mathrm{d}\sigma_n &= \operatorname{Tr} \mathbf{A}_n(\mu) \prod_{i=1}^n \mathrm{d}\Pi_i \end{aligned}$$

$$\mathbf{D}_i^\mu = \sum_j \mathbf{T}_j rac{n_j^\mu}{n_j \cdot n_i} \, ,$$

$$\mathbf{V}_{a,b} = \exp\left(-\frac{\alpha_s}{\pi}\ln\left(\frac{b}{a}\right)\sum_{i< j}(-\mathbf{T}_i\cdot\mathbf{T}_j)\int\frac{\mathrm{d}\Omega_k}{4\pi}\omega_{ij}(\hat{k})\right)$$

By working in the colour flow basis, we can expand the exponentiated anomalous dimension as a series in $1/N_c$ Plätzer [1312.2448]:

$$\left[\tau \left| \mathbf{V}_{E,E'} \left| \sigma \right\rangle \simeq \delta_{\tau\sigma} R(\{\sigma\}) + \sum_{l=1}^{d} \left(-\frac{1}{N_c} \right)^l \sum_{\{\sigma_0,...,\sigma_l\}} \delta_{\tau\sigma_0} \delta_{\sigma_l,\sigma} \left(\prod_{\alpha=0}^{l-1} \Sigma_{\sigma_{\alpha+1},\sigma_{\alpha}} \right) R(\{\sigma_0,...,\sigma_l\})$$

Keeping track of colour

At each step in the evolution, the colour state after the action of the real and virtual operators is sampled. This defines each event as a trajectory in colour space.

We count every factor of $1/N_c$ included at each step. There are four possible sources: the reals, the virtuals, the scalar product of the final colour states, and the hard process.

Thus, we can expand the cross-section in this way:

$$\sum_{m} N_{c}^{m} g_{m} \left(C_{0,m} + \frac{C_{1,m}}{N_{c}} + \frac{C_{2,m}}{N_{c}^{2}} + \dots \right)$$

Significant developments

 Implemented "rings and strings" in the calculation of real emission matrix elements, which exploit the collinear-finiteness of subleading colour.

See Forshaw, Holguin, Plätzer [2112.13124]

- Switched from an angular collinear cutoff to a rapidity-type cutoff.
- Added functionality to write event data in HDF5 format, allowing for reanalysis of data and reducing computing time significantly.
- A lot of different improvements to the sampling notably the ability to count colour orders and specify the desired colour accuracy of the evolution.

e⁺e⁻ → qq | gaps between jets

Collinear cutoff agreement

$e^+e^- \rightarrow q\bar{q}$ gaps between jets Breakdown in powers of $1/N_c$ for a specific multiplicity Full colour 10⁻¹ LC' $N_c^2 g_2 \left(C_{0,2} + \frac{C_{1,2}}{N_c^2} + \frac{C_{2,2}}{N_c^4} \right)$ -(1 / N_c²) : NLC¹ $\sigma(\rho)\,/\,N_c$ $(1 / N_c^4)$: NNLC' 10-2 $N_{c} = 3$ $N_c = 4$ 10-3 $N_c = sqrt(2)$ 10^{-1} 10^{-2}

PSR24, July 3rd

18

Summary and next steps

- We have implemented a full colour soft evolution algorithm that keeps track of every source of subleading colour in a systematic way.
- We have performed every cross-check we can think of.
- It has provided plenty of evidence that there is significant non-trivial subleading colour coming in at phenomenologically relevant scales.
- It is ready to produce lots of other interesting physics -- for example we can study differential observables in event generator mode (like colour reconnection) and Glauber effects.
- The algorithm design is such that we can "plug in" new features, which are under development:
- Full kinematics parton shower, with hard process elements.
- \circ k_t ordering.
- Hard-collinear physics See Forshaw, Holguin, Plätzer [1905.08686]

We work for tomorrow

Appendix: PRL plot for qqbar

singlet $\rightarrow q\bar{q}$ spectrum

