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Resummation or exclusive exponentiation
Z. Was∗,

∗
Institute of Nuclear Physics, Polish Academy of Sciences, Krakow

(A) Monte Carlo programs such as Bhlumi for luminosity measurements with Bhabha

scattering or KKMC for lepton pair productions, were demonstrated thanks to associated

efforts that the precision for observables with complex cuts of sub permille level (even for

0.043% Opal luminosity measurement) were possible.

(B) Main building aspects enabling such precision:

1. Phase space (issues of iterations)

2. Matrix Elements and spin (issues of iterations)

3. Tests

(C) KKMC Monte Carlo solutions as main example, photos for extension hints?

KKMC is for e+e− → l+l−(nγ) and photos for radiative corrections in decays.

(D) My aim is to underline difficulties, why it worked for QED of solvable classical limit, but

not so elsewhere.

(E) Can my talk be of interest for resummation community, can it be presentable?
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Resummation or exclusive exponentiation

• I will be talking about QED, but may be that may be of inspiration elsewhere.

• We had to through matching of second order matrix elements with resummation

of multi-photon effects.

• That came with the price. Matrix elements had to be recalculated accordingly.

• Helpful in systematization was concept of group layers. Specifically Lorentz

group layers with respect of its rotation sub-group.

• Amplitudes could be divided into parts more conveniently, than counting powers

of “N”.

• (i) Look for the most singular part, (ii) identify what is needed to complete gauge

invariant part. (iii) Take away this group of terms and (iv) loop to point (i) or

finish.

• Am I able to build around that useful talk? I am full of worries.
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KKMC or photos rigorous “matrix element× full phase space” implementation

�
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• Phase-space Monte Carlo simulator is a

module producing “raw events” (includ-

ing importance sampling for possible in-

termediate resonances/singularities)

• Library of Matrix Elements; input for

“model weight”; independent module

• KKMC for e+e− → τ+τ−nγ and

photos for radiative corrections in de-

cays are non-Markovian algorithms, pho-

tons are generated independently first,

phase space constraints are added later,

thanks to conformal symmetry of eikonal

QED part KKMC or iteratively, Kinoshita-

Lee-Nauenberg theorem, for photos.

• KKMC handle initial state radiation,

photos massive states emission too.
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Lipsn+1 → Lipsn

Orthodox Lorentz-invariant phase space (Lips) is in use in photos!

dLipsn+1(P ) =

d3k1
2k01(2π)

3
...

d3kn
2k0n(2π)

3

d3q

2q0(2π)3
(2π)4δ4

(

P −
n
∑

1

ki − q
)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
d3k1

2k01(2π)
3
...

d3kn
2k0n(2π)

3
(2π)4δ4

(

p−

n
∑

1

ki

)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
dLipsn(p→ k1...kn).

Introduce factor equal 1: d4p of four-vector p, times δ4
(

p−
∑n

1 ki
)

, and another

factor equal 1, integration variable dM1 times δ
(

p2 −M2
1

)

.
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Phase Space Formula of KKMC

dLipsn+1(P → q1...qn, k1) = dLips+1 tangent
n ×Wn+1

n ; Wn+1
n = kγ

dLips+1 tangent
n = dkγd cos θdφ× dLipsn(p→ q̄1...q̄n),

dLips+1
n = λ2dkγkγd cos θdφ× dLipsn(p→ q̄1...q̄n). (1)

1. Factor λ of photon energy re-scaling lead to simple Jacobian. In this way relation

between P and p can be fixed. This enables separation of line-shape variable

generation from generation of bremsstrahlung photons.

2. This extends to multiple photon generation:

dLips+l
n = λ2l 1

l!

(

l
∏

i=1

(dkγikγi)d cos θdφ×
)

dLipsn(p → q̄1...q̄n) (2)

3.

dLips+exp
n =

∞
∑

l=0

λ2l 1

l!

(

l
∏

i=1

(dkγikγi)d cos θdφ×
)

dLipsn(p → q̄1...q̄n) (3)
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4. We can generate each photon variables independently from other

5. once variables generated energy momentum conservation can be assure line shape

variable (s = p2/P 2
) generated independently by simple rescaling (factor λ2l

).

6. Of course the above formulas are incomplete, the matrix elements need to be added,

that will be covered in part two of my talks

7. Recalling work fine for upper limit of phase space sectors, for the lower one extra effort is

need, but there matrix elements are following eikonal form.
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Phase Space Formula of photos

dLipsn+1(P → k1...kn, kn+1) = dLips+1 tangent
n ×Wn+1

n ,

dLips+1 tangent
n = dkγd cos θdφ× dLipsn(P → k̄1...k̄n),

{k1, . . . , kn+1} = T
(

kγ , θ, φ, {k̄1, . . . , k̄n}
)

. (4)

1. If dLipsn(P ) was exact, then this formula is exact parametrization of dLipsn+1(P )

2. Practical implementation: Take the configurations from n-body phase space.

3. Turn it back into some coordinate variables.

4. construct new kinematical configuration from all variables.

5. Forget about temporary kγθφ. Only weight Wn+1
n and four vectors count.

6. Simultaneous use of several T is possible and necessary/convenient if more than one

charge is present in final state.

7. Choice for T construction depend on matrix element: must tangent at singularities, see

next slide.
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Phase Space: (main formula)

If we choose

Gn : M2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k̄1 . . . k̄n (5)

and

Gn+1 : kγ , θ, φ,M
2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k1 . . . kn, kn+1

(6)

then

T = Gn+1(kγ , θ, φ,G
−1
n (k̄1, . . . , k̄n)). (7)

The ratio of the Jacobians form the phase space weight Wn+1
n for the transformation. Such

solution is universal and valid for any choice of G’s. However, Gn+1 and Gn has to match

matrix element, otherwise algorithm will be inefficient (factor 1010 ...).

In case of photosGn ’s

Wn+1
n = kγ

1

2(2π)3
× λ1/2(1,m2

1/M
2
1...n,M

2
2...n/M

2
1...n)

λ1/2(1,m2
1/M

2,M2
2...n/M

2)
, (8)
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Phase Space: (multiply iterated)

By iteration, we can generalize formula (4) and add l particles:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (9)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Note that variables kγm , θγm , φγm are used at a time of the m−th step of iteration only,

and are not needed elsewhere in construction of the physical phase space; the same is true

for invariants and angles M2
2...n, θ1, φ1, . . . , θn−1, φn−1 → k̄1 . . . k̄n of (5,6), which

are also redefined at each step of the iteration. Also intermediate steps require explicit

construction of temporary k̄′

1 . . . k̄
′

n . . . k̄′

n+m , statistical factor
1
l! added.

We have got exact distribution of weighted events over n+ l body phase space.
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Phase Space Formula: multichannels.

Often MC algorithm has to be split into branches. In the most general case, when n different

parametrisations of the phase space with different orderings of particles are in use, the cross

section can be written as follows:

dΓX =
∑n

λ=1

∫ 1

0

∏m

i=1
dxi Pλ

[

∑n

δ=1
PδJ

−1

δ (q1(λ, xi), ...qk(λ, xi))
]

−1

×|M |2.

In the above formula the four-momenta qi(λ, xi) are calculated from the random numbers

xi according to the parametrization of the phase space of type λ. The Jacobians Jδ have to

be calculated for all parametrisations of the phase space at the point qi; Pλ denotes the

probability of choosing the parametrization of type λ in the generation, λ thus takes
a

a role of

an additional discrete variable in the generation. Numerical values of probabilities Pλ do not

affect the final distributions, but only the efficiency of the generation.

aBut not δ.
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Phase Space parametrizations Gn for complex singularity structure

• Several Gn+1 can be used simultaneously (branching of the generation algorithm).

• Each Gn+1 can be used presample distinct singularities. See slides 30+.

• Price: Wn+1
n is more complicated but remain exact. T = Gn+1(kγ , θ, φ,G

−1
n (...))

• HOWEVER: We have observed that while matching Jacobians for the two branches related

to collinear singularity of photons along direction of l+ and l+ (in Z decay) approximation

must be used if more than one photon is present in final state. Otherwise solution become

inconsistent. Phase space is not iterative, whereas matrix element for multi-photon state is

obtained by iteration.

• AVOID INCONSISTENCY: in expanding manifold curvature: must be the same for phase

space and Matrix Element. Phase space is manifold, Matrix element squared – bi-linear form

on it. Truncation of perturbative expansion or iterative solutions mean truncation in powers of

Ricci tensor, this has to be consistent. Multi-channel phase space is not iterative, single

branch algorithm we explained before is that is OK for expansion and exact phase space

remain. I have learned that hard way.
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Phase Space: (multiply iterated)

We have generalized formula phase space formula to case of l particles added:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (10)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

.

Now we have to start talking about matrix elements: Our relation between n and n+l body

phase space is motivated by cancellation of infrared singularities. It provides kind of

triangulation. Measure defining distance between points from manifolds of distinct no. of

particles. Such phase space points are close if they differ by presence of soft photons only.

Experimental user attention necessary. Can 1 GeV photon be ignored or only 0.1 MeV one.

We will move now from exact distribution of weighted events over n+ l body

phase space to case where l is parameter too, but all remain exact!
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CrudeDdistribution and crude matrix element

If we add arbitrary factors f(kγi , θγi , φγi) and sum over l we obtain:

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi , θγi , φγi)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n), (11)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).← KLN good start

• The olive parts of rhs. give crude distribution over tangent space, orthogonal (ki, θi, φi).

We restrict phase space by kmin (typically 10−6
) kmax arbitrary (boundary by Wn+i

n+i−1).
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Heuristic CW complexes

We define our crude distribution over yellow space

(surface=1) (represented by sum of: red point, green lines and flat yellow square). Later we

do projections into physics space, using T and matrix elements.

NOTE: in KKMC YFS exclusive exponentiation – conformal symmetry is used instead.

Z. Was Graz Jul,2, 2024
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Both for KKMC and photos algorithms are non Markovian

1. For photos fixed order algorithm is preserved for tests. It is good for comparisons with

fixed order orthodox calculations, for KKMC such option is abandoned. It was present in

its predecessor KORALZ.

2. For fixed order MC binomial distribution for number of photons candidates has to be

used. To regulate infrared singularity, soft photon region need to be integrated out and

combined with virtual correction. That leads to technical approximation, photons below

threshold value are not generated. Alternatively negative weight events can be used.

Both solutions are not good for experiments.

3. If one goes to second order, things are getting worse for technical approximation.

4. Here exponentiation helps, primary distribution of photon number is poissonian and any

value can be used for minimal energy of the photon to be generated.

5. That is all I can say before entering discussions of matrix elements.

6. May be the only comment can be that in case of KKMC phase space constraints are

introduced in one step λ factor rescaling of photon momenta. In case of photos

phase space constraints are introduced iteratively.
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1. Both KKMC and photos generation starts from non-markovian generation of

photon candidates accordingly to poisonian distribution, number of photons and

independently each photon energy, θ and φ.

2. Solution of KKMC phase space, is prepared for use with second order or higher

matrix elements. This is thanks to conformal symmetry of multiphoton phase

space. This enables independent generation of line-shape and beamstrahlung.

3. Solution of photos could have been extended to generation of additional

massive particles (lepton pair). Kinoshita-Lee-Nauenberg theorem is used to

relate phase-space slots of given multiplicity. It is less convenient for higher

order matrix element implementation, because of iterative nature of phase

space, jacobians and boundaries, implementation.

4. In both cases extensions to QCD higher orders, etc are possible, but there is a

question of man power.

5. Training takes time and other domains value expertise higher...
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Phase-space alone makes no sense:

1. Matrix elements and spin degrees of freedom must match that. For spin,

language of matrix elements is more convenient than work with distributions

2. Especially important is matching enhancements of matrix elements; collinear

and soft, with phase space parametrisations and pre-samplers.

3. I will drop virtual corrections and mixed real-virtual ones. Nothing about

complex masses, how they affect parametric ambiguities→ non-analytic nature

of dispersion relations. That is valid at one loop level, what is beyond?

4. Kleiss-Stirling formalism for spin amplitudes. We had to revise reference

frames, common definition independently of number of particles (photons) in

final state: S. Jadach, B.F.L. Ward, Z. Was,Global positioning of spin GPS scheme for half spin massive

spinors Eur.Phys.J.C 22 (2001) 423. For photos (working on distributions) reference

frame orientation was essential too. Matrix elements required re-do: divide

them in parts corresponding to: crude level distribution build from eikonal parts

and parts which could have been identified in higher order amplitudes.
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Matrix Element for Z decay:

• Our discussion of double emission amplitudes was started from the single

photon one, careful choice of current J , it must be nearly like at Born level, but

match what is in higher order amplitudes too.

• The same is true for amplitudes of other processes. We have to check if they

are similar to this for Z decay. Only if their structure match the pattern, we can

expect that of multi-emission will work. Classical limit of QED helps.

•

I = IA + IB + IC

•

I = J/

[(

p·e1
p·k1

−
q ·e1
q ·k1

)]

−

[

1

2

e/1k/1
p·k1

]

J/+ J/

[

1

2

e/1k/1
q ·k1

]

three gauge invariant parts, IA is eikonal; IB , IC carry collinear contrib from p and q

Z. Was Graz Jul,2, 2024
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Scalar QED: B → Kπ decays – pure IA

• The one-loop QED correction to the decay width can be represented as the

sum o f the Born contribution with the contributions due to virtual loop diagrams

and soft and hard photon emissions.

dΓTotal = dΓBorn
{

1 +
α

π

[

δSoft(mγ , ω) + δVirt(mγ , µUV
)
]

}

+ dΓHard(ω)

• where for Neutral meson decay channels, hard photon contribution:

dΓHard = |ABorn|24πα

(

q1
k1.ǫ

k1.kγ
− q2

k2.ǫ

k2.kγ

)2

dLips3(P → k1, k2, kγ)

• for Charged meson decay channels, hard photon contribution:

dΓHard = |ABorn|24πα

(

q1
k1.ǫ

k1.kγ
− q

P.ǫ

P.kγ

)2

dLips3(P → k1, k2, kγ)
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Scalar QED for γ∗ → π+π−γ: IA and non-leading

• This case is different, because of spin structure. One can not make spin of
initial state out of internal spin of outgoing particles.

H
µ

=
e2F2π(p

2)

p2

{
(q1 + k − q2)

µ q1 · ǫ∗

q1 · k
+ (q2 + k − q1)

µ q2 · ǫ∗

q2 · k
− 2ǫ

∗µ
}

• As in case of Z decay one can separate spin amplitude into gauge invariant

parts (C = e2F2π(p
2)

p2 ):

H
µ
I = C (q1−q2)

µ

(
q1 · ǫ∗

q1 · k − q2 · ǫ∗

q2 · k

)
, H

µ
II = C

(
k
µ

(
q1 · ǫ∗

q1 · k +
q2 · ǫ∗

q2 · k

)
− 2ǫ

∗µ
)

,

(12)

• This can be improved with the following change:

H
µ

I′
= C

(
(q1 − q2)

µ
+ k

µ q2 · k − q1 · k
q2 · k + q1 · k

)(
q1 · ǫ∗

q1 · k − q2 · ǫ∗

q2 · k

)
, (13)

H
µ

II′
= C

(
kµ

q2 · k + q1 · k (q1 · ǫ∗ + q2 · ǫ∗) − ǫ
∗µ
)

. (14)

• In the second case non-eikonal term is free of collinear logarithm, but is non

trivial and contributes 0.2 % to total rate, thus can be numerically studied!
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QED for W → lνlγ: IA, IB and non-leading

M
σ
λ,λν ,λl

(k,Q, pν , pl) =

[
Ql

2 k · pl

bσ(k, pl) −
QW

2 k · Q
(bσ(k, pl) + bσ(k, pν))

]
Bλ

λl,λν
(pl, Q, pν)

+
Ql

2 k · pl

∑

ρ=±

U
σ
λl,ρ

(pl,ml, k, 0, k, 0)B
λ

ρ,−λν
(k,Q, pν)

− QW

2 k · Q
∑

ρ=±

(
Bλ

λl,−ρ(pl, Q, k)U
σ
−ρ,−λν

(k, 0, k, 0, pν , 0) (15)

+ U
σ
λl,ρ

(pl,ml, k, 0, k, 0)B
λ

ρ,−λν
(k,Q, pν)

)
,

Bλ

λ1,λ2
(p1, Q, p2) ≡ g

2
√
2
ū(p1, λ1) ǫ̂

λ
W (Q)(1 + γ5) v(p2, λ2) ,

Uσ
λ1,λ2

(p1,m1, k, 0, p2,m2) ≡ ū(p1, λ1) ǫ̂
σ
γ (k)u(p2, λ2) , (16)

δλ1λ2
bσ(k, p) ≡ U

σ
λ1,λ2

(p,m, k, 0, p,m) ,

Ql and QW are the electric charges of the fermion l and the W boson, respectively, in units of the positron charge,

ǫσγ (k) and ǫλW (Q) denote respectively the polarization vectors of the photon and the W boson. An expression of

the function Uσ
λ1,λ2

in terms of the massless spinors.
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Matrix Element (anything useful seen?):

• We have seen that in all cases terms IA, IB , IC appear

• These are the only ones which carry soft or collinear contributions

• That is why universal weight of photos could be defined.

• That is also why the solution defined from Z amplitudes work for other

processes as well

• part of reliability proof. Note that it is for spin amplitudes level, thus such

corrections do not necessarily break spin correlations. → extra slides

• Tests confirm that ME complete kernel (process dependent) is not necessary

even for sub-permille precision level→ good for users.
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Formula of photos if we identify factors f(kγi , θγi , φγi) with IA-s of

previous slides. Still questions of ME not explained see following slides ...

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi , θγi , φγi)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n) |MB(P → k̄1...k̄n)|
2, (17)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1 , θγ1 , φγ1 , {k̄1, . . . , k̄n}
)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).← KLN good start

• The olive parts of rhs. give crude distribution over tangent space, The whole formula is of

the lowest order in exponentiation scheme

E
¯
ikonal parts of ME, must be valid all over phase-space!
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WE define the complete set of spin amplitudes for emission of n photons in O(αr)
CEEX

, r = 0, 1, 2 as follows:

M
(0)
n

(
p
λ
k1
σ1

. . . kn
σn

)
=
∑

{℘}

∏n
i=1 s

{℘i}

[i]
β
(0)
0

(p
λ;X℘

)
, (18)

M
(1)
n

(
p
λ
k1
σ1

. . .
kn
σn

)
=
∑

{℘}

∏n
i=1 s

{℘i}

[i]




β
(1)
0

(p
λ;X℘

)
+
∑n

j=1

β
(1)
1{℘j}

(
p
λ

kj
σj

;X℘

)

s

{℘j}

[j]




 , (19)

M
(2)
n

(
p
λ
k1
σ1

. . . kn
σn

)
=

=
∑

{℘}

n∏

i=1

s
{℘i}

[i]




β
(2)
0

(p
λ;X℘

)
+
∑n

j=1

β
(2)
1{℘j}

(
p
λ

kj
σj

;X℘

)

s

{℘j}

[j]

+
∑

1≤j<l≤n

β
(2)
2{℘j℘l}

(
p
λ

kj
σj

kl
σl

;X℘

)

s

{℘j}

[j]
s

{℘l}

[l]




 .(20)

The coherent sum is taken over set {℘} of all 2n
partitions – the partition ℘ is defined as a vector

(℘1, ℘2, . . . , ℘n); ℘i = 1 for an ISR and ℘i = 0 for an FSR photon. The set of all partitions is explicitly the

following:

{℘} = {(0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . (1, 1, 1, . . . , 1)}.

The s-channel four-momentum in the (possibly) resonant s-channel propagator is

X℘ = pa + pb −
∑n

i=1 ℘i ki.

At O(αr) we have to provide functions β
(r)
k , k = 0, 1, ..., r, from Feynman diagrams, which are infrared-finite by

construction yfs:1961. Their actual precise definitions can be found in other refs. on KKMC. Here we shall define only
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the most essential ingredients. The lowest-order β
(0)
0 are just Born spin amplitudes times a certain kinematical factor

β
(0)
0

(p
λ;X

)
= B

(p
λ;X

) X2

(pc + pd)2
. (21)

The Born spin amplitudes B
(p
λ;X

)
and other spin amplitudes are calculated using the spinor technique of Kleiss

and Stirling (KS) reformulated a bit.. Soft factors s
(ω)

[i]
, ω = 0, 1, are complex numbers, see ref. for exact definitions;

here we only need to know their absolute values

∣∣∣s(1)[i]

∣∣∣
2
= − e2Q2

e

2

(
pa

kipa

− pb

kipb

)2

,
∣∣∣s(0)[i]

∣∣∣
2
= −

e2Q2
f

2

(
pc

kipc

− pd

kipd

)2

. (22)

The factor Θ̄(Ω) defines the infrared (IR) integration limits for real photons. More precisely for a single photon,

complementary domain Ω includes the IR divergence point k = 0, which is excluded from the MC phase space, we

define a characteristic function Θ(Ω, k) = 1 for k ∈ Ω and Θ(Ω, k) = 0 for k 6∈ Ω. The characteristic function

for the phase space included in the integration is Θ̄(Ω, k) = 1 − Θ(Ω, k). The characteristic function for all

photons in the MC phase space is

Θ̄(Ω) =

n∏

i=1

Θ̄(Ω, ki). (23)

In the present program we opt for an Ω traditionally defined by the photon energy cut condition k0 < Emin .
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Consequently, the YFS form factor reads

Y (Ω; pa, ..., pd) = Q
2
eYΩ(pa, pb) + Q

2
fYΩ(pc, pd)

+ QeQfYΩ(pa, pc) + QeQfYΩ(pb, pd) − QeQfYΩ(pa, pd) − QeQfYΩ(pb, pc),

(24)

where

YΩ(p1, p2) ≡ 2αB̃(Ω, p1, p2) + 2αℜB(p1, p2)

≡ − 2α
1

8π2

∫
d3k

k0
Θ(Ω; k)

(
p1

kp1

− p2

kp2

)2

+ 2αℜ
∫

d4k

k2

i

(2π)3

(
2p1 + k

2kp1 + k2
− 2p2 − k

2kp2 − k2

)2

(25)

Z. Was Graz Jul,2, 2024
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Basic formula is the same (OK it is similar only but differ in essential results)

1. for phase space limits iterative solution instead of re-scaling available thanks to

conformal symmetry is used.

2. Instead of expansion of matrix elements into β
(1)
i and sum over partition,

products of (si + β
(1)
i ) of each photon is used.

3. surprisingly this does not destroy second order parts, but help include the

dominant parts of that.

4. β
(1)
i as used in photos consist of process independent part, (after integration

it gives LL parts), but also process dependent parts (for some decays only).

5. I should say more about virtual corrections.

6. for emission kernels they can be simply coded as form-factors.

7. Far more fundamental is what to do with loop corrections beyond KLM level.

They need to be included in rates of events prior photos.

8. for more than two body substantial work may be needed for high precision level.
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How it is with higher orders? 28

Higher orders are installed in KKMC only.

1. That required work on spin amplitudes, it was not straightforward.

2. How to write fixed order amplitutes into parts, the ones which could have been

obtained from from lower orders and the one which could have been used for

higher order ones.

3. For e+e− → τ+τ−γγ + · · · that was already complicated, need to

separation into initial state and final state amplitudes appeared.

4. Fortunately interferences were easy to introduce.

5. for e+e− → ν̄eνeγγ + · · · things became more complicated. Expansion

around contact interaction was necessary to use and QED was not anymore

pure. Care about charged higgs ghosts and their contributions was necessary.
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some tests/developments: 29

• One of the necessary steps was to verify, that once photos activated, the

lepton spectra will be reproduced as far as the LL corrections to required order.

• Formal solution of QED evolution equation can be written as:

D(x, βch) = δ(1−x)+βchP (x)+
1

2!
β2
ch{P×P}(x)+

1

3!
β3
ch{P×P×P}(x)+. . .

(26)

where P (x) = δ(1− x)(ln ε+ 3/4) + Θ(1− x− ε) 1x (1 + x2)/(1− x)

and {P × P}(x) =
∫ 1

0
dx1

∫ 1

0
dx2δ(x− x1x2)P (x1)P (x2).

• In the LL contributing regions, phase space Jacobians of photos trivialize

(CPC 1994). The solution above is reproduced by photos in a

straightforward manner, for each of the outgoing charged lines.

• But it is only a limit! photos treat phase space exactly and covers all

corners.

• In a similar way (simplifying phase space Jacobians and dropping parts of ME)

one can get convinced that distribution of soft photons is as should be for

exclusive exponentiation.
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• Symmetries helped for phase-space and separation of spin amplitudes into parts....

• ... useful for fully differential and valid all over the phase space predictions.

• That is important for Monte Carlo and calculations of multidimensional distributions.

• It exposes parts of GSW predictions from sub-theories like QED (eikonal QED).

• Those are parts which need to be taken to higher orders.

• Calculation of negligible terms may be then avoided.

• I talked little about loop corrections, they are important, but less of technical importance

for Monte Carlo construction.

• I was not talking about amplitudes parts similarities between different processes.

• Disadvantage: pressure on automated methods and higher orders validity proofs.

• What future will decide? Keep these methods in tool-box.

• Do not drop the topic out. Even as its use bring sometimes pain, but some fun too.

• This is (nearly) the first time I present such selection like today.

• I am not sure if it can be useful. My apologies, thanks for listening.
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• Do these consideration make any sense from perspective of strong interactions?

• In QCD nothing like infrared solvable region exist.

• Hadrons are complex → underlying events, multiparton interactions, need to be taken

into account in experiments data analyzes.

• But ....

• Spin amplitudes were used at early steps of factorization work (I was told by Boris

Ermolayev from his experience of early Leningrad winter schools).

• I’ve made some attempts of identification spin amplitude parts, following symmetry of

Lorentz group. Surprisingly parts corresponding to DGLAP etc. appeared naturally: A.

van Hameren, Z. Was Eur.Phys.J.C 61 (2009) 33

• Also Stanislaw Jadach attempts on NLO parton shower approaches are in place to

mention.

• Anyway, that was my motivation to prepare the talk.

• May be it will be of a help for somebody?

• Thank you for listening.
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Extra slides 32

... but of importance.

In KKMC adjusted variant of Kleiss Stirling spin amplitudes formalism was used.

Routine relating rest frames of τ ’s with lab-frame, essential.

Essential details photos preserve spin correlations

Note that the spin carried out by photon is in most cases zero, orbital and

spin of photon cancel out completely in soft and collinear limit.

only in ultra-hard ultra collinear configurations of∼ 1/3α/π weight it is not

the case.

photos was developed keeping that in mind. PURPOSE: not to destroy spin

correlations of the consecutive decays.
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Details of parametrization used in G and G− 33

1. we are using STANDARD and FORMAL parametrizations of Lorentz group.

One can express it with the help of consecutive boosts and rotations.

2. Convenient for Monte Carlo event construction!

3. For the definition of coordinate system in the P -rest frame the x̂ and ŷ axes of the

laboratory frame boosted to the rest frame of P can be used. The orthogonal

right-handed system can be constructed with their help in a standard way.

4. We choose polar angles θ1 and φ1 defining the orientation of the four momentum k̄2 in

the rest frame of P . In that frame k̄1 and k̄2 are back to back
a
, see fig. (1).

5. The previous two points would complete the definition of the two-body phase space, if

both k̄1 and k̄2 had no measurable spin degrees of freedom visualizing themselves e.g.

through correlations of the secondary decay products’ momenta. Otherwise we need to

know an additional angle φX to complete the set of Euler angles defining the relative

orientation of the axes of the P rest-frame system with the coordinate system used in

the rest-frame of k̄2 (and possibly also of k̄1), see fig. (2).

aIn the case of phase space construction for multi-body decays k̄2 should read as a state representing

the sum of all decay products of P but k̄1.
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6. If both rest-frames of k̄1 and k̄2 are of interest, their coordinate systems are oriented

with respect to P with the help of θ1, φ1, φX . We assume that the coordinate systems

of k̄1 and k̄2 are connected by a boost along the k̄2 direction, and in fact share axes:

z′ ↑↓ z′′, x′ ↑↑ x′′
, y′ ↑↓ y′′

.

7. For the three-body phase space: We take the photon energy kγ in P rest frame. We

calculate: photon, k1 and k2 energies, all in k1 + k2 frame.

8. We use the angles θ, φ, in the rest-frame of the k1 + k2 pair: angle θ is an angle

between the photon and k1 direction (i.e. −z′′ ). Angle φ defines the photon azimuthal

angle around z′′, with respect to x′′
axis (of the k2 rest-frame), see fig. (3).

9. If all k1, k2 and k1 + k2 rest-frames exist, then the x-axes for the three frames are

chosen to coincide. It is OK, all frames connected by boosts along z′′ see fig. (3).

10. To define orientation of k2 in P rest-frame coordinate system, and to complete

construction of the whole event, we will re-use Euler angles of k̄2: φX , θ1 and φ1 (see

figs. 4 and 5), defined again of course in the rest frame of P .
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Figure 1: The angles θ1, φ1 defined in the rest-frame of P and used in parametrization of

two-body phase-space.
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Figure 2: Angle φX is also defined in the rest-frame of P as an angle between (oriented)

planes spanned on: (i) k̄1 and ẑ-axis of the P rest-frame system, and (ii) k̄1 and x′′
-axis of

the k̄2 rest frame. It completes definition of the phase-space variables if internal orientation

of k̄1 system is of interest. In fact, Euler angle φX is inherited from unspecified in details,

parametrization of phase space used to describe possible future decay of k̄2 (or k̄1).
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Figure 3: The angles θ, φ are used to construct the four-momentum of kγ in the

rest-frame of k1 + k2 pair (itself not yet oriented with respect to P rest-frame). To

calculate energies of k1, k2 and photon, it is enough to know m1, m2, M and

photon energy kγ of the P rest-frame.
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Figure 4: Use of angle φx in defining orientation of k1, k2 and photon in the rest-

frame of P . At this step only the plane spanned on P frame axis ẑ and k2 is oriented

with respect to k2 × x′′ plane.
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Figure 5: Final step in event construction. Angles θ1, φ1 are used. The final orien-

tation of k2 coincide with this of k̄2.
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