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DESY.

Complexity of Collider Events
Disentangle short and long distance physics

• Processes with colored partons result in high 
multiplicity events
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DESY.

Complexity of Collider Events
Disentangle short and long distance physics

• Processes with colored partons result in high 
multiplicity events

• Impossible to do in fixed order

• Luckily, we can disentangle process into different 
energy regimes (factorization): 

• Hard interaction  

• Parton Shower  

• Hadronization 

Q ≈ 𝒪(100 GeV to TeV)

Q → μ ≈ 𝒪(1 GeV)

μ → Λ < 𝒪(1 GeV)
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DESY.

Quest for precision
…and current status

• Partons showers make up bigger part of uncertainty budget
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DESY.

Quest for precision
…and current status

• Partons showers make up bigger part of uncertainty budget

• Lack of systematic expansion: 
no formal estimate for accuracy/precision

• Unfortunate reality: estimation of PS error often just from 
comparing different MC generators

• Although we know:  
different types of showers give different levels of accuracy 
depending on observable: global vs. non-global 

➡ “Ultimate” goal: formal tools to show accuracy of PS, 
eventually Next-to-Leading-Log @ Next-to-Leading-
Colour accurate shower for all global and non-global 
observables
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DESY.

Parton Shower Activity 
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DESY.

Building blocks of parton showers

• Leading contributions from emissions in soft and collinear regions: 

	 	 	
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)
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DESY.

Building blocks of parton showers

• Leading contributions from emissions in soft and collinear regions: 

	 	 	
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

• Factorization in soft and collinear limits for  hard partonsm

⟨m + 1 |m + 1⟩ ≃
4πμ2εαS⟨m | ̂P(ij) 1

qi ⋅ qj
|m⟩ , (qi, qj) collinear

−8πμ2εαS ∑
k,i

⟨m |Ti ⋅ Tk
qi ⋅ qk

(qi ⋅ qj)(qk ⋅ qj)
|m⟩ , qj soft
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DESY.

Building blocks of parton showers

• Leading contributions from emissions in soft and collinear regions: 

	 	 	
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

• Factorization in soft and collinear limits for  hard partonsm

⟨m + 1 |m + 1⟩ ≃
4πμ2εαS⟨m | ̂P(ij) 1

qi ⋅ qj
|m⟩ , (qi, qj) collinear

−8πμ2εαS ∑
k,i

⟨m |Ti ⋅ Tk
qi ⋅ qk

(qi ⋅ qj)(qk ⋅ qj)
|m⟩ , qj soft

• Example for splitting function: 

⟨s | ̂Pqq(z) |s′￼⟩ = δs,s′￼CF [ 1 + z2

1−z
− ε(1−z)]

qμ
i = zpμ + kμ

⊥ −
k2

⊥

z
nμ

2p ⋅ n

qμ
j = (1 − z)pμ − kμ

⊥ −
k2

⊥

1 − z
nμ

2p ⋅ n
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DESY.

Building blocks of parton showers

• Leading contributions from emissions in soft and collinear regions: 

	 	 	
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

• Factorization in soft and collinear limits for  hard partonsm

⟨m + 1 |m + 1⟩ ≃
4πμ2εαS⟨m | ̂P(ij) 1

qi ⋅ qj
|m⟩ , (qi, qj) collinear

−8πμ2εαS ∑
k,i

⟨m |Ti ⋅ Tk
qi ⋅ qk

(qi ⋅ qj)(qk ⋅ qj)
|m⟩ , qj soft

• Example for splitting function: 

⟨s | ̂Pqq(z) |s′￼⟩ = δs,s′￼CF [ 1 + z2

1−z
− ε(1−z)]

• Use this to define Sudakov form factor/splitting kernel  in PS emission probability : 
 

Δ(t0, t)

dP(1st emission at t) =
dt
t ∫

z+

z−

α(z, t)
2π

̂P(z, t)dz × exp[−Δ(t0, t)]

qμ
i = zpμ + kμ

⊥ −
k2

⊥

z
nμ

2p ⋅ n

qμ
j = (1 − z)pμ − kμ

⊥ −
k2

⊥

1 − z
nμ

2p ⋅ n
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DESY.

Building blocks of parton showers
Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel  
(e.g. by inference of large  -limit to construct kernel)NC

𝒟ij,k(p1, …, pm+1) = −
1

2qi ⋅ qj
m⟨Ψ |

Tij ⋅ Tk

T2
ij

Vij,k |Ψ⟩m, |Ψ⟩ = |1,…, ĩj , …, k̃, …, m + 1⟩
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• Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel  
(e.g. by inference of large  -limit to construct kernel)NC

𝒟ij,k(p1, …, pm+1) = −
1

2qi ⋅ qj
m⟨Ψ |

Tij ⋅ Tk

T2
ij

Vij,k |Ψ⟩m, |Ψ⟩ = |1,…, ĩj , …, k̃, …, m + 1⟩

and e.g. ⟨s |Vij,k |s′￼⟩ = 8πμ2εαSCF [ 2
1 − z̃i(1 − yij,k)

− (1 + z̃i) − ε(1 − z̃i)] δss′￼
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Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel  
(e.g. by inference of large  -limit to construct kernel)NC

𝒟ij,k(p1, …, pm+1) = −
1

2qi ⋅ qj
m⟨Ψ |

Tij ⋅ Tk

T2
ij

Vij,k |Ψ⟩m, |Ψ⟩ = |1,…, ĩj , …, k̃, …, m + 1⟩

and e.g. ⟨s |Vij,k |s′￼⟩ = 8πμ2εαSCF [ 2
1 − z̃i(1 − yij,k)

− (1 + z̃i) − ε(1 − z̃i)] δss′￼

• Reproduce both limits with smooth interpolation.

1
qi ⋅ qj

Vij,k →
8πμ2εαS

1
qi ⋅ qj

̂P(ij) , (qi, qj) collinear

16πμ2εαS
1

qi ⋅ qj
T2

ij
qi ⋅ qk

(qi + qk) ⋅ qj
, qj soft, non-singular in ( j ∥ k)
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− (1 + z̃i) − ε(1 − z̃i)] δss′￼

• Reproduce both limits with smooth interpolation.

1
qi ⋅ qj

Vij,k →
8πμ2εαS

1
qi ⋅ qj

̂P(ij) , (qi, qj) collinear

16πμ2εαS
1

qi ⋅ qj
T2

ij
qi ⋅ qk

(qi + qk) ⋅ qj
, qj soft, non-singular in ( j ∥ k)

• Soft result is partitioned:

 
qi ⋅ qk

(qi ⋅ qj)(qk ⋅ qj)
=

qk ⋅ qj + qi ⋅ qj

qk ⋅ qj + qi ⋅ qj

qi ⋅ qk

(qi ⋅ qj)(qk ⋅ qj)
=

qi ⋅ qk

qi ⋅ qj(qi + qk) ⋅ qj
+

qi ⋅ qk

qk ⋅ qj(qi + qk) ⋅ qj

6| Multi-Emission Kernels for Parton Showers | Maximilian Löschner



DESY.

Dipole Shower
Pros and Cons

• Smooth interpolation of soft and collinear regions
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• Correct LL@Leading Color (LC) for non-global, 
but issues in NLL@LC and LL@NLC for global 
observables 

• Kernel carries non-trivial color structure  

which enters exponential 

➡ Difficult to deal with in MC 

➡ - effects possibly become comparable to 
sub-leading logs, i.e. ∼10% effects

Tij ⋅ Tk

1/Nc
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DESY.

Dipole Shower
Pros and Cons

• Smooth interpolation of soft and collinear regions

• Better accounting for changes in color structure 
using dipole-type soft gluon evolution as 
compared to e.g. angular ordering

• Correct LL@Leading Color (LC) for non-global, 
but issues in NLL@LC and LL@NLC for global 
observables 

• Kernel carries non-trivial color structure  

which enters exponential 

➡ Difficult to deal with in MC 

➡ - effects possibly become comparable to 
sub-leading logs, i.e. ∼10% effects

Tij ⋅ Tk

1/Nc

• Want: algorithmic construction of kernel
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DESY.

Towards high accuracy 

• Goal: construct (multi-)emission kernels 
algorithmically, inspired by Catani-Seymour 
dipoles, i.e. smooth interpolation between collinear 
and soft: 

➡ Organize kernels into collinear sectors 

➡ Partition soft contributions into those sectors 

➡ Allow for general momentum mapping 

➡ Adapts to momentum mapping, e.g. transverse 
recoil scheme
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and soft: 

➡ Organize kernels into collinear sectors 

➡ Partition soft contributions into those sectors 

➡ Allow for general momentum mapping 

➡ Adapts to momentum mapping, e.g. transverse 
recoil scheme

Δn ∼ exp[ − ∑
c

∫ dΦn 𝒦(c)
n ]

sum over collinear sectors

factorized emission phase space

Multi-emission kernel
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DESY.

Towards high accuracy 

• Goal: construct (multi-)emission kernels 
algorithmically, inspired by Catani-Seymour 
dipoles, i.e. smooth interpolation between collinear 
and soft: 

➡ Organize kernels into collinear sectors 

➡ Partition soft contributions into those sectors 

➡ Allow for general momentum mapping 

➡ Adapts to momentum mapping, e.g. transverse 
recoil scheme

• Possibility to study the difference between iterating 
the single- vs. multi-emission approximation.

Δn ∼ exp[ − ∑
c

∫ dΦn 𝒦(c)
n ]

sum over collinear sectors

factorized emission phase space

Multi-emission kernel
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Results

[S. Dore, ML, S. Plätzer; arXiv:2112.14454]
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• Partitioning algorithms 

➡ two options: fractional and subtractive  

➡ spread soft contributions over kernels
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Multi-Emission Kernels
Results

[S. Dore, ML, S. Plätzer; arXiv:2112.14454]

• Partitioning algorithms 

➡ two options: fractional and subtractive  

➡ spread soft contributions over kernels

• Momentum mapping 

➡ Parameterization of how collinear limit is 
approached and transverse recoil is 
spread for multiple emissions
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DESY.

Multi-Emission Kernels
Results

[S. Dore, ML, S. Plätzer; arXiv:2112.14454]

• Partitioning algorithms 

➡ two options: fractional and subtractive  

➡ spread soft contributions over kernels

• Momentum mapping 

➡ Parameterization of how collinear limit is 
approached and transverse recoil is 
spread for multiple emissions

• Amplitude level power counting  

➡ extract leading soft/collinear 
contributions
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DESY.

Squaring amplitudes
Uniform power counting

Want to know which amplitudes are relevant for 
soft/collinear limits when squaring: 

➡ Determine squared amp (i.e. diff. xsec), but 
keep control at amplitude level 
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DESY.

Squaring amplitudes
Uniform power counting

Want to know which amplitudes are relevant for 
soft/collinear limits when squaring: 

➡ Determine squared amp (i.e. diff. xsec), but 
keep control at amplitude level 

1. Carry out spin/helicity sums to replace spinors/
polarization vectors
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Squaring amplitudes
Uniform power counting

Want to know which amplitudes are relevant for 
soft/collinear limits when squaring: 

➡ Determine squared amp (i.e. diff. xsec), but 
keep control at amplitude level 

1. Carry out spin/helicity sums to replace spinors/
polarization vectors

2. Introduce projectors to disentangle amplitude 
and conjugate amplitude
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DESY.

Squaring amplitudes
Uniform power counting

Want to know which amplitudes are relevant for 
soft/collinear limits when squaring: 

➡ Determine squared amp (i.e. diff. xsec), but 
keep control at amplitude level 

1. Carry out spin/helicity sums to replace spinors/
polarization vectors

2. Introduce projectors to disentangle amplitude 
and conjugate amplitude

3. Can now study soft/collinear scaling of internal 
and external lines on same footing at 
amplitude level
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DESY.

Power Counting
Sudakov decomposition

• Decompose momenta into forward, backward and transverse direction: 

qμ
i = zi pi

μ + yinμ + k⊥,i
μ
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DESY.

Power Counting
Sudakov decomposition

• Decompose momenta into forward, backward and transverse direction: 

qμ
i = zi pi

μ + yinμ + k⊥,i
μ

• Can decompose quark and gluon lines on same footing leading to 
effective Feynman rules: 
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DESY.

Power Counting
Soft and collinear scaling

• Create table of soft and collinear scaling of lines 
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DESY.

Power Counting
Soft and collinear scaling

• Create table of soft and collinear scaling of lines 
 

• Determine leading amplitudes  
(table shows scaling of amplitude numerator)
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DESY.

One emission Kernel

• One emission kernel as partitioned collection of 
leading amplitudes
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DESY.

Leading collinear

One emission Kernel

• One emission kernel as partitioned collection of 
leading amplitudes

• Lightcone gauge: leading collinear from self-
energy-like diagrams
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DESY.

Leading collinear

Soft singular
One emission Kernel

• One emission kernel as partitioned collection of 
leading amplitudes

• Lightcone gauge: leading collinear from self-
energy-like diagrams

• Cross-talk between soft divergent contributions 

• Soft singular term from splitting function cancels 

• Eikonal remains
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DESY.

Leading collinear

Soft singular
One emission Kernel

• One emission kernel as partitioned collection of 
leading amplitudes

• Lightcone gauge: leading collinear from self-
energy-like diagrams

• Cross-talk between soft divergent contributions 

• Soft singular term from splitting function cancels 

• Eikonal remains

• Kernel depends on momentum mapping, e.g. 
transverse recoil distribution
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DESY.

Dependence on transverse recoil

• Assignment of transverse recoil is not unique 

➡ Choice needs to be translated to PS
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DESY.

Dependence on transverse recoil

• Assignment of transverse recoil is not unique 

➡ Choice needs to be translated to PS

• Form of our kernel changes for different 
choices of transverse recoil!
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DESY.

Dependence on transverse recoil

• Assignment of transverse recoil is not unique 

➡ Choice needs to be translated to PS

• Form of our kernel changes for different 
choices of transverse recoil!

• Still leads to the same splitting functions etc.
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DESY.

Example multi emission result

Reproduction of the triple collinear limit using our power counting when tracing:
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Example multi emission result

Reproduction of the triple collinear limit using our power counting when tracing:

➡ “Non-iterated” topologies included
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DESY.

Example multi emission result

Reproduction of the triple collinear limit using our power counting when tracing:

➡ “Non-iterated” topologies included

➡ Exhibition of factorization for two collinear gluons
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Triple collinear limit
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Example multi emission Result
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Double soft decomposition

• Decomposition of the two emission soft gluon current squared: 

 

Sij(q1, q2) = P
⇣
B(6)

l21i

⌘
⇥ 2Sij(Sj1 + 2Sj2)Nj12

�P
⇣
X(1)

i12j

⌘
⇥ S2

ij

+ P
⇣
A(3)

i12j

⌘
⇥ 2Sij(Sj1 � 3Sj2)Ni12Nj12

�P
⇣
A(2)

i12j

⌘
⇥ 2S2

ijNi12Nj12

+ P
⇣
A(5)

i12j

⌘
⇥ 2(1� ")(Si1Sj2 + Si2Sj1)Ni12Nj12 + (1 $ 2).
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• Decomposition of the two emission soft gluon current squared: 
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⇣
B(6)
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⇥ 2Sij(Sj1 + 2Sj2)Nj12
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⇣
X(1)
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⌘
⇥ S2

ij

+ P
⇣
A(3)

i12j

⌘
⇥ 2Sij(Sj1 � 3Sj2)Ni12Nj12

�P
⇣
A(2)

i12j

⌘
⇥ 2S2

ijNi12Nj12

+ P
⇣
A(5)

i12j

⌘
⇥ 2(1� ")(Si1Sj2 + Si2Sj1)Ni12Nj12 + (1 $ 2).

• Can partition this topology-wise using our partitioning algorithms



DESY.

Conclusion

• Parton Showers are indispensable for understanding collider pheno, 
but can be limiting factor in analyses uncertainty budget
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• Parton Showers are indispensable for understanding collider pheno, 
but can be limiting factor in analyses uncertainty budget

• Path to higher accuracy PS: generalized construction of CS-like 
kernels 

➡ Density-operator formalism to study iterative behavior of 
emissions 

➡ Set of power counting rules to single out leading amplitudes 

➡ Two partitioning algorithms to separate overlapping 
singularities  

➡ Momentum mapping for exposing collinear and soft  
factorization for multiple emission
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Conclusion

• Parton Showers are indispensable for understanding collider pheno, 
but can be limiting factor in analyses uncertainty budget

• Path to higher accuracy PS: generalized construction of CS-like 
kernels 

➡ Density-operator formalism to study iterative behavior of 
emissions 

➡ Set of power counting rules to single out leading amplitudes 

➡ Two partitioning algorithms to separate overlapping 
singularities  

➡ Momentum mapping for exposing collinear and soft  
factorization for multiple emission

• Eventually: develop Monte Carlo algorithm to sample over sets of 
soft and collinear amplitudes

Thank you!

AI imagination of a  
“future parton shower”
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Why Parton Showers?
…and hadronization models

• Fixed order results for jet observables can deviate 
significantly from data (even at lepton colliders)
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• Emission of partons and subsequent hadronization can 
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DESY.

Why Parton Showers?
…and hadronization models

• Fixed order results for jet observables can deviate 
significantly from data (even at lepton colliders)

• Emission of partons and subsequent hadronization can 
not be neglected

• May even change qualitative behavior of distributions
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DESY.

Helpful Facts & Tools

• Attaching emissions to internal lines is sub-leading in soft/collinear limits

• Powerful result:  

• Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of 
contributions and color charge conservation  

 ∑
i ∈ ext.

Ti |ℳ(p1, …, pm)⟩ = 0

Sidenote: [S. Weinberg, PRB, 1964]
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Helpful Facts & Tools

• Attaching emissions to internal lines is sub-leading in soft/collinear limits

• Powerful result:  

• Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of 
contributions and color charge conservation  

 ∑
i ∈ ext.

Ti |ℳ(p1, …, pm)⟩ = 0

• Color charge operators: unified language for different partons types 

                    

c c

a

c c

a

Ti = − Ta
cici

c c

a

Ti = Ta
cici

c c

a

Ti = f acc

T2
i = C2

i , Ti ⋅ Tj = Tj ⋅ Ti (i ≠ j)

Sidenote: [S. Weinberg, PRB, 1964]

21| Multi-Emission Kernels for Parton Showers | Maximilian Löschner



DESY.

Helpful Facts & Tools

• Attaching emissions to internal lines is sub-leading in soft/collinear limits

• Powerful result:  

• Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of 
contributions and color charge conservation  

 ∑
i ∈ ext.

Ti |ℳ(p1, …, pm)⟩ = 0

• Color charge operators: unified language for different partons types 

                    

c c

a

c c

a

Ti = − Ta
cici

c c

a

Ti = Ta
cici

c c

a

Ti = f acc

T2
i = C2

i , Ti ⋅ Tj = Tj ⋅ Ti (i ≠ j)

• Work in lightcone gauge: more complicated gluon propagator, but decouple ghost 
contributions (only physical polarization propagate)

Sidenote: [S. Weinberg, PRB, 1964]

Δμν(k) =
idμν(k)
k2 + iϵ

,

dμν(k) = − ημν +
kμnν + nμkν

n ⋅ k
, n2 = 0
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Building blocks of parton showers
Attaching emissions

• Additional propagator factors from attaching emissions lead to enhanced soft 
and collinear regions in phase space: 

 
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

qi

qj

qk

dP(1st emission at t) =
dt
t ∫

z+

z−

α(z, t)
2π

̂P(z, t)dz × exp[−Δ(t0, t)]
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Building blocks of parton showers
Attaching emissions

• Additional propagator factors from attaching emissions lead to enhanced soft 
and collinear regions in phase space: 

 
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

• Enhancement compensates for additional powers of couplings 

schematically for one emission (where ):t ∈ {θ, p⊥, …}

∫ dσ+1 ∼ σ0
αS

2π

t

∫
t0

dtj
tj

μ2

∫
Q2

dE2
j

E2
j

= σ0
αS

2π
log ( t

t0 ) log ( μ2

Q2 )
∼𝒪(1)

qi

qj

qk

dP(1st emission at t) =
dt
t ∫

z+

z−

α(z, t)
2π

̂P(z, t)dz × exp[−Δ(t0, t)]
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=

1
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j (1 − cos θij)

• Enhancement compensates for additional powers of couplings 

schematically for one emission (where ):t ∈ {θ, p⊥, …}

∫ dσ+1 ∼ σ0
αS

2π
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∫
t0

dtj
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μ2

∫
Q2

dE2
j

E2
j

= σ0
αS

2π
log ( t

t0 ) log ( μ2

Q2 )
∼𝒪(1)

• Large logarithms for ,   may add significant correction to fixed 

order result 

μ2 ≪ Q2 t ≪ t0
σ0
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dt
t ∫
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̂P(z, t)dz × exp[−Δ(t0, t)]
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Building blocks of parton showers
Attaching emissions

• Additional propagator factors from attaching emissions lead to enhanced soft 
and collinear regions in phase space: 

 
1

(qi + qj)2
=

1
2q0

i q0
j (1 − cos θij)

• Enhancement compensates for additional powers of couplings 

schematically for one emission (where ):t ∈ {θ, p⊥, …}

∫ dσ+1 ∼ σ0
αS

2π

t

∫
t0

dtj
tj

μ2

∫
Q2

dE2
j

E2
j

= σ0
αS

2π
log ( t

t0 ) log ( μ2

Q2 )
∼𝒪(1)

• Large logarithms for ,   may add significant correction to fixed 

order result 

μ2 ≪ Q2 t ≪ t0
σ0

• Job of the parton shower: reproduce this behavior by generating emissions 
according to an appropriate probability distribution

qi

qj

qk

dP(1st emission at t) =
dt
t ∫

z+

z−

α(z, t)
2π

̂P(z, t)dz × exp[−Δ(t0, t)]
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Multiple emissions
QED example

• Single collinear photon emission gives factorized 
result: 

σ2+1 = σ2(t0)
t

∫
t0

dt′￼
1
t′￼

z+

∫
z−

dz
α
2π

̂Pγ(z) = σ2(t0)
t

∫
t0

dt′￼W(t′￼)

[Lecture by S. Gieseke]
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∫
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dt′￼
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t′￼

z+

∫
z−

dz
α
2π

̂Pγ(z) = σ2(t0)
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∫
t0

dt′￼W(t′￼)

• Attach a collinear emission to each external charged 
line:  
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Multiple emissions
QED example

• Single collinear photon emission gives factorized 
result: 

σ2+1 = σ2(t0)
t

∫
t0

dt′￼
1
t′￼

z+

∫
z−

dz
α
2π

̂Pγ(z) = σ2(t0)
t

∫
t0

dt′￼W(t′￼)

• Attach a collinear emission to each external charged 
line:  

• Now attach second emission:                                              
      

where we use 

t

∫
t0

dt1…
tn−1

∫
t0

dtnW(t1)…W(tn) =
1
n!

t

∫
t0

dt′￼W(t′￼)

n

[Lecture by S. Gieseke]
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Multiple emissions
QED example

• Single collinear photon emission gives factorized 
result: 

σ2+1 = σ2(t0)
t

∫
t0

dt′￼
1
t′￼

z+

∫
z−

dz
α
2π

̂Pγ(z) = σ2(t0)
t

∫
t0

dt′￼W(t′￼)

• Attach a collinear emission to each external charged 
line:  

• Now attach second emission:                                              
      

where we use 

t

∫
t0

dt1…
tn−1

∫
t0

dtnW(t1)…W(tn) =
1
n!

t

∫
t0

dt′￼W(t′￼)

n

• Note: no interferences, iteration taken in probabilistic 
manner. Want to check this approximation explicitly

[Lecture by S. Gieseke]
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Sudakov Form Factor
Iterating the single emission result

• Generalize to  emissions by induction:n

[Lecture by S. Gieseke]
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Sudakov Form Factor
Iterating the single emission result

• Generalize to  emissions by induction:n

W2(t) =
22

2! (∫
t

t0

dt′￼W(t′￼))
2

⟶ Wn(t) =
2n

n! (∫
t

t0

dt′￼W(t′￼))
n

[Lecture by S. Gieseke]
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2! (∫
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t0

dt′￼W(t′￼))
2

⟶ Wn(t) =
2n

n! (∫
t

t0

dt′￼W(t′￼))
n

• So for the cross-section for one or more emissions, we get

[Lecture by S. Gieseke]
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Sudakov Form Factor
Iterating the single emission result

• Generalize to  emissions by induction:n

W2(t) =
22

2! (∫
t

t0

dt′￼W(t′￼))
2

⟶ Wn(t) =
2n

n! (∫
t

t0

dt′￼W(t′￼))
n

• So for the cross-section for one or more emissions, we get

σ>2 = σ2(t0)
∞

∑
k=1

2k

k! (∫
t

t0

dt′￼W(t′￼))
k

= σ2(t0)[exp (2∫
t

t0

dt′￼W(t′￼)) − 1] = σ2(t0)( 1
Δ2(t0, t)

− 1)

[Lecture by S. Gieseke]
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Sudakov Form Factor
Iterating the single emission result

• Generalize to  emissions by induction:n

W2(t) =
22

2! (∫
t

t0

dt′￼W(t′￼))
2

⟶ Wn(t) =
2n

n! (∫
t

t0

dt′￼W(t′￼))
n

• So for the cross-section for one or more emissions, we get

σ>2 = σ2(t0)
∞

∑
k=1

2k

k! (∫
t

t0

dt′￼W(t′￼))
k

= σ2(t0)[exp (2∫
t

t0

dt′￼W(t′￼)) − 1] = σ2(t0)( 1
Δ2(t0, t)

− 1)
• Where we defined the Sudakov Form Factor: 

Δ(t0, t) = exp [−∫
t

t0

dt′￼W(t′￼)]

[Lecture by S. Gieseke]
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Sudakov Form Factor
… and how to interpret it

• Sum over all possibilities for emissions:

[Lecture by S. Gieseke]
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Sudakov Form Factor
… and how to interpret it

• Sum over all possibilities for emissions:

σall = σ2 + σ>2 = σ2 + σ2 ( 1
Δ2(t0, t)

− 1) ⟹ Δ2(t0, t) =
σ2

σall
=

[Lecture by S. Gieseke]
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DESY.

Sudakov Form Factor
… and how to interpret it

• Sum over all possibilities for emissions:

σall = σ2 + σ>2 = σ2 + σ2 ( 1
Δ2(t0, t)

− 1) ⟹ Δ2(t0, t) =
σ2

σall
=

• So  corresponds to the probability of having no emissions 

on one leg in the range  (hard scale to lower resolution scale) 

➡ Note: we find  because we studied two 
independent charged legs

Δ(t0, t)
t → t0

Δ2 = Prob.2

[Lecture by S. Gieseke]
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Sudakov Form Factor
… and how to interpret it

• Sum over all possibilities for emissions:

σall = σ2 + σ>2 = σ2 + σ2 ( 1
Δ2(t0, t)

− 1) ⟹ Δ2(t0, t) =
σ2

σall
=

• So  corresponds to the probability of having no emissions 

on one leg in the range  (hard scale to lower resolution scale) 

➡ Note: we find  because we studied two 
independent charged legs

Δ(t0, t)
t → t0

Δ2 = Prob.2

• Result: probability density to sample over (what e.g. HERWIG does 
to determine how to emit partons): 
 

dP(1st emission at t) =
dt
t ∫

z+

z−

α(z, t)
2π

̂P(z, t)dz × exp[−Δ(t0, t)]

[Lecture by S. Gieseke]
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