MULTI-EMISSION KERNELS FOR PARTON SHOWERS

Maximilian Löschner, DESY Theory Group

Parton Showers and Resummation, Graz, 2 July 2024

Disentangle short and long distance physics

 Processes with colored partons result in high multiplicity events

Disentangle short and long distance physics

 Processes with colored partons result in high multiplicity events

Disentangle short and long distance physics

- Processes with colored partons result in high multiplicity events
- Impossible to do in fixed order

Disentangle short and long distance physics

- Processes with colored partons result in high multiplicity events
- Impossible to do in fixed order
- Luckily, we can disentangle process into different energy regimes (factorization):
 - Hard interaction $Q \approx \mathcal{O}(100 \,\mathrm{GeV}$ to TeV)
 - Parton Shower $Q \rightarrow \mu \approx \mathcal{O}(1 \text{ GeV})$
 - Hadronization $\mu \to \Lambda < \mathcal{O}(1 \text{ GeV})$

...and current status

• Partons showers make up bigger part of uncertainty budget

...and current status

- Partons showers make up **bigger part of uncertainty budget**
- Lack of systematic expansion: no formal estimate for accuracy/precision

...and current status

- Partons showers make up bigger part of uncertainty budget
- Lack of systematic expansion: no formal estimate for accuracy/precision
- **Unfortunate reality:** estimation of PS error often just from comparing different MC generators

...and current status

- Partons showers make up bigger part of uncertainty budget
- Lack of systematic expansion: no formal estimate for accuracy/precision
- **Unfortunate reality:** estimation of PS error often just from comparing different MC generators
- Although we know:

different types of showers give different levels of accuracy depending on observable: **global vs. non-global**

 "Ultimate" goal: formal tools to show accuracy of PS, eventually Next-to-Leading-Log @ Next-to-Leading-Colour accurate shower for all global and non-global observables

Parton Shower Activity

Progress in improving the PS accuracy

Assessing the logarithmic accuracy of a shower

Herwig [1904.11866, 2107.04051], Deductor [2011.04777], Forshaw, Holguin, Plätzer [2003.06400] PanScales [1805.09327, 2002.11114], Alaric [2110.05964], ...

• Triple collinear / double soft splittings

Dulat, Höche, Krauss, Gellersen, Prestel [1705.00982, 1705.00742, 1805.03757, 2110.05964] Li & Skands [1611.00013], Löschner, Plätzer, Simpson Dore [2112.14454], ...

Matching to fixed-order see Alexander's talk

NLO; i.e. Frixione & Webber [0204244], Nason [0409146], ... NNLO; i.e. UNNLOPS [1407.3773], MiNNLOps [1908.06987], Vincia [2108.07133], ... NNNLO; Prestel [2106.03206], Bertone, Prestel [2202.01082]

Colour (and spin) correlations see Simon's talk

Forshaw, Holguin, Plätzer, Sjödahl [1201.0260, 1808.00332, 1905.08686, 2007.09648, 2011.15087] Deductor [0706.0017, 1401.6364, 1501.00778, 1902.02105], Herwig [1807.01955], Plätzer & Ruffa [2012.15215] PanScales [2011.10054, 2103.16526, 2111.01161], ...

Electroweak corrections

Vincia [2002.09248, 2108.10786], Pythia [1401.5238], Herwig [2108.10817], ...

Super-active field of research:

taken from Melissa van Bleekveld's talk at the CERN workshop on parton showers for future colliders.

Soft and collinear factorization

• Leading contributions from emissions in **soft and collinear regions**:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

Soft and collinear factorization

• Leading contributions from emissions in **soft and collinear regions**:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

• Factorization in soft and collinear limits for *m* hard partons

Soft and collinear factorization

• Leading contributions from emissions in **soft and collinear regions**:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

• Factorization in soft and collinear limits for *m* hard partons

$$\langle m+1 \,|\, m+1 \rangle \simeq \begin{cases} 4\pi \mu^{2\varepsilon} \alpha_{S} \langle m \,|\, \hat{P}^{(ij)} \frac{1}{q_{i} \cdot q_{j}} \,|\, m \rangle \;, \quad (q_{i}, q_{j}) \text{ collinear} \\ -8\pi \mu^{2\varepsilon} \alpha_{S} \sum_{k,i} \langle m \,|\, \mathbf{T}_{i} \cdot \mathbf{T}_{k} \frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} \,|\, m \rangle \;, \quad q_{j} \text{ soft} \end{cases}$$

Soft and collinear factorization

• Leading contributions from emissions in **soft and collinear regions**:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

• Factorization in soft and collinear limits for *m* hard partons

$$\langle m+1 \,|\, m+1 \rangle \simeq \begin{cases} 4\pi \mu^{2\varepsilon} \alpha_{S} \langle m \,|\, \hat{P}^{(ij)} \frac{1}{q_{i} \cdot q_{j}} \,|\, m \rangle \;, \quad (q_{i}, q_{j}) \text{ collinear} \\ -8\pi \mu^{2\varepsilon} \alpha_{S} \sum_{k,i} \langle m \,|\, \mathbf{T}_{i} \cdot \mathbf{T}_{k} \frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} \,|\, m \rangle \;, \quad q_{j} \text{ soft} \end{cases}$$

• Example for **splitting function**:

$$\langle s \,|\, \hat{P}_{qq}(z) \,|\, s' \rangle = \delta_{s,s'} C_F \left[\frac{1+z^2}{1-z} - \varepsilon(1-z) \right]$$

$$q_{i}^{\mu} = zp^{\mu} + k_{\perp}^{\mu} - \frac{k_{\perp}^{2}}{z} \frac{n^{\mu}}{2p \cdot n}$$
$$q_{j}^{\mu} = (1 - z)p^{\mu} - k_{\perp}^{\mu} - \frac{k_{\perp}^{2}}{1 - z} \frac{n^{\mu}}{2p \cdot n}$$

Soft and collinear factorization

• Leading contributions from emissions in **soft and collinear regions**:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

• Factorization in soft and collinear limits for *m* hard partons

$$\langle m+1 \,|\, m+1 \rangle \simeq \begin{cases} 4\pi \mu^{2\varepsilon} \alpha_{S} \langle m \,|\, \hat{P}^{(ij)} \frac{1}{q_{i} \cdot q_{j}} \,|\, m \rangle \;, \quad (q_{i}, q_{j}) \text{ collinear} \\ -8\pi \mu^{2\varepsilon} \alpha_{S} \sum_{k,i} \langle m \,|\, \mathbf{T}_{i} \cdot \mathbf{T}_{k} \frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} \,|\, m \rangle \;, \quad q_{j} \text{ soft} \end{cases}$$

• Example for **splitting function**:

$$\langle s \,|\, \hat{P}_{qq}(z) \,|\, s' \rangle = \delta_{s,s'} C_F \left[\frac{1+z^2}{1-z} - \varepsilon(1-z) \right]$$

- Use this to define Sudakov form factor/splitting kernel $\Delta(t_0,t)$ in PS emission probability :

$$dP(1st \text{ emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$

 $q_{i}^{\mu} = zp^{\mu} + k_{\perp}^{\mu} - \frac{k_{\perp}^{2}}{z} \frac{n^{\mu}}{2p \cdot n}$ $q_{j}^{\mu} = (1 - z)p^{\mu} - k_{\perp}^{\mu} - \frac{k_{\perp}^{2}}{1 - z} \frac{n^{\mu}}{2p \cdot n}$

Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using **Catani-Seymour-dipole** kernel (e.g. by inference of large N_C -limit to construct kernel)

$$\mathscr{D}_{ij,k}(p_1,\ldots,p_{m+1}) = -\frac{1}{2q_i \cdot q_j} \mathscr{M} \{ \Psi | \frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | \Psi \rangle_m, \quad |\Psi\rangle = |1,\ldots,\widetilde{ij},\ldots,\widetilde{k},\ldots,m+1\rangle$$

[Catani, Seymour '97]

Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using **Catani-Seymour-dipole** kernel (e.g. by inference of large N_C -limit to construct kernel)

$$\mathcal{D}_{ij,k}(p_1,\ldots,p_{m+1}) = -\frac{1}{2q_i \cdot q_j} {}_m \langle \Psi | \frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | \Psi \rangle_m, \quad |\Psi\rangle = |1,\ldots,\widetilde{ij},\ldots,\widetilde{k},\ldots,m+1\rangle$$

and e.g.
$$\langle s | \mathbf{V}_{ij,k} | s' \rangle = 8\pi\mu^{2\varepsilon}\alpha_S C_F \left[\frac{2}{1 - \tilde{z}_i(1 - y_{ij,k})} - (1 + \tilde{z}_i) - \varepsilon(1 - \tilde{z}_i) \right] \delta_{ss'}$$

[Catani, Seymour '97]

Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using **Catani-Seymour-dipole** kernel (e.g. by inference of large N_C -limit to construct kernel)

$$\mathscr{D}_{ij,k}(p_1, \dots, p_{m+1}) = -\frac{1}{2q_i \cdot q_j} \mathscr{M} \left\{ \mathbf{Y} \right\} \frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} \left\{ \mathbf{Y} \right\}_m, \quad \left\{ \mathbf{Y} \right\} = \left\{ 1, \dots, \widetilde{ij}, \dots, \widetilde{k}, \dots, m+1 \right\}$$

and e.g. $\left\langle s \left| \mathbf{V}_{ij,k} \right| s' \right\rangle = 8\pi \mu^{2\varepsilon} \alpha_S C_F \left[\frac{2}{1 - \widetilde{z}_i (1 - y_{ij,k})} - (1 + \widetilde{z}_i) - \varepsilon (1 - \widetilde{z}_i) \right] \delta_{ss'}$

• Reproduce both limits with smooth interpolation.

$$\frac{1}{q_i \cdot q_j} \mathbf{V}_{ij,k} \to \begin{cases} 8\pi\mu^{2\varepsilon} \alpha_S \frac{1}{q_i \cdot q_j} \hat{P}^{(ij)} , & (q_i, q_j) \text{ collinear} \\ 16\pi\mu^{2\varepsilon} \alpha_S \frac{1}{q_i \cdot q_j} \mathbf{T}_{ij}^2 \frac{q_i \cdot q_k}{(q_i + q_k) \cdot q_j} , & q_j \text{ soft, non-singular in } (j \parallel k) \end{cases}$$

[Catani, Seymour '97]

Splitting kernel example: Catani-Seymour

• Can capture soft and collinear limits simultaneously using **Catani-Seymour-dipole** kernel (e.g. by inference of large N_C -limit to construct kernel)

$$\mathscr{D}_{ij,k}(p_1,\ldots,p_{m+1}) = -\frac{1}{2q_i \cdot q_j} \mathscr{M} \langle \Psi | \frac{\mathbf{T}_{ij} \cdot \mathbf{T}_k}{\mathbf{T}_{ij}^2} \mathbf{V}_{ij,k} | \Psi \rangle_m, \quad |\Psi\rangle = |1,\ldots,\widetilde{ij},\ldots,\widetilde{k},\ldots,m+1\rangle$$

and e.g.
$$\langle s | \mathbf{V}_{ij,k} | s' \rangle = 8\pi \mu^{2\varepsilon} \alpha_S C_F \left[\frac{2}{1 - \tilde{z}_i (1 - y_{ij,k})} - (1 + \tilde{z}_i) - \varepsilon (1 - \tilde{z}_i) \right] \delta_{ss'}$$

• Reproduce both limits with smooth interpolation.

$$\frac{1}{q_{i} \cdot q_{j}} \mathbf{V}_{ij,k} \rightarrow \begin{cases} 8\pi\mu^{2\varepsilon} \alpha_{S} \frac{1}{q_{i} \cdot q_{j}} \hat{P}^{(ij)}, \quad (q_{i}, q_{j}) \text{ collinear} \\ 16\pi\mu^{2\varepsilon} \alpha_{S} \frac{1}{q_{i} \cdot q_{j}} \mathbf{T}_{ij}^{2} \frac{q_{i} \cdot q_{k}}{(q_{i} + q_{k}) \cdot q_{j}}, \quad q_{j} \text{ soft, non-singular in } (j \parallel k) \end{cases}$$
Soft result is **partitioned**:
$$\frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} = \frac{q_{k} \cdot q_{j} + q_{i} \cdot q_{j}}{q_{k} \cdot q_{j} + q_{i} \cdot q_{j}} \frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} = \frac{q_{i} \cdot q_{k}}{q_{k} \cdot q_{j} + q_{i} \cdot q_{j}} \frac{q_{i} \cdot q_{k}}{(q_{i} \cdot q_{j})(q_{k} \cdot q_{j})} = \frac{q_{i} \cdot q_{k}}{q_{i} \cdot q_{j}(q_{i} + q_{k}) \cdot q_{j}} + \frac{q_{i} \cdot q_{k}}{q_{k} \cdot q_{j}(q_{i} + q_{k}) \cdot q_{j}}$$

Catani, Seymour '97]

• Smooth interpolation of soft and collinear regions

- Smooth interpolation of soft and collinear regions
- Better accounting for changes in color structure using dipole-type soft gluon evolution as compared to e.g. angular ordering

- Smooth interpolation of soft and collinear regions
- Better accounting for changes in color structure using dipole-type soft gluon evolution as compared to e.g. angular ordering
- Correct LL@Leading Color (LC) for non-global, but issues in NLL@LC and LL@NLC for global observables

- Smooth interpolation of soft and collinear regions
- Better accounting for changes in color structure using dipole-type soft gluon evolution as compared to e.g. angular ordering
- Correct LL@Leading Color (LC) for non-global, but issues in NLL@LC and LL@NLC for global observables
- Kernel carries non-trivial color structure $\mathbf{T}_{ij}\cdot\mathbf{T}_k$ which enters exponential
 - ➡ Difficult to deal with in MC
 - → $1/N_c$ effects possibly become comparable to sub-leading logs, i.e. ~10% effects

- Smooth interpolation of soft and collinear regions
- Better accounting for changes in color structure using dipole-type soft gluon evolution as compared to e.g. angular ordering
- Correct LL@Leading Color (LC) for non-global, but issues in NLL@LC and LL@NLC for global observables
- Kernel carries non-trivial color structure $\mathbf{T}_{ij}\cdot\mathbf{T}_k$ which enters exponential
 - ➡ Difficult to deal with in MC
 - → $1/N_c$ effects possibly become comparable to sub-leading logs, i.e. ~10% effects
- Want: algorithmic construction of kernel

Towards high accuracy

- Goal: construct (multi-)emission kernels algorithmically, inspired by Catani-Seymour dipoles, i.e. smooth interpolation between collinear and soft:
 - ➡ Organize kernels into collinear sectors
 - ➡ Partition soft contributions into those sectors
 - ➡ Allow for general momentum mapping
 - ➡ Adapts to momentum mapping, e.g. transverse recoil scheme

DESY. | Multi-Emission Kernels for Parton Showers | Maximilian Löschner

Towards high accuracy

- Goal: construct (multi-)emission kernels algorithmically, inspired by Catani-Seymour dipoles, i.e. smooth interpolation between collinear and soft:
 - Organize kernels into collinear sectors
 - ➡ Partition soft contributions into those sectors
 - ➡ Allow for general momentum mapping
 - Adapts to momentum mapping, e.g. transverse recoil scheme

 $\Delta_n \sim \exp\left[-\sum_c \int d\Phi_n \,\mathscr{K}_n^{(c)}\right]$ sum over collinear sectors

Multi-emission kernel

factorized emission phase space

Towards high accuracy

- Goal: construct (multi-)emission kernels algorithmically, inspired by Catani-Seymour dipoles, i.e. smooth interpolation between collinear and soft:
 - Organize kernels into collinear sectors
 - ➡ Partition soft contributions into those sectors
 - ➡ Allow for general momentum mapping
 - Adapts to momentum mapping, e.g. transverse recoil scheme
- Possibility to study the difference between iterating the single- vs. multi-emission approximation.

Multi-emission kernel

 $\mathrm{d}\Phi_n \mathscr{K}_n^{(c)}$

factorized emission phase space

[S. Dore, ML, S. Plätzer; arXiv:2112.14454]

• Partitioning algorithms

- ➡ two options: fractional and subtractive
- ➡ spread soft contributions over kernels

- Partitioning algorithms
 - ➡ two options: fractional and subtractive
 - ➡ spread soft contributions over kernels

- Partitioning algorithms
 - ➡ two options: fractional and subtractive
 - spread soft contributions over kernels

- Partitioning algorithms
 - two options: fractional and subtractive
 - ➡ spread soft contributions over kernels
- Momentum mapping
 - Parameterization of how collinear limit is approached and transverse recoil is spread for multiple emissions

DESY | Multi-Emission Kernels for Parton Showers | Maximilian |

DESY. | Multi-Emission Kernels for Parton Showers | Maximilian Löschner

Multi-Emission Kernels Results

- Partitioning algorithms
 - ➡ two options: fractional and subtractive
 - ➡ spread soft contributions over kernels
- Momentum mapping
 - Parameterization of how collinear limit is approached and transverse recoil is spread for multiple emissions
- Amplitude level power counting
 - extract leading soft/collinear contributions

Squaring amplitudes Uniform power counting

Want to know which amplitudes are relevant for soft/collinear limits when squaring:

Determine squared amp (i.e. diff. xsec), but keep control at amplitude level

Squaring amplitudes Uniform power counting

Want to know which amplitudes are relevant for soft/collinear limits when squaring:

- Determine squared amp (i.e. diff. xsec), but keep control at amplitude level
- 1. Carry out **spin/helicity sums** to replace spinors/ polarization vectors

Squaring amplitudes Uniform power counting

Want to know which amplitudes are relevant for soft/collinear limits when squaring:

- Determine squared amp (i.e. diff. xsec), but keep control at amplitude level
- 1. Carry out **spin/helicity sums** to replace spinors/ polarization vectors
- 2. Introduce **projectors** to disentangle amplitude and conjugate amplitude

$$\begin{aligned}
\underbrace{\begin{array}{c} \sum_{\substack{i=1\\i=1\\i\neq i}} \left(\begin{array}{c} \sum_{\substack{j=1\\i\neq i}} \overline{u}_{j}(s) \right)_{\mu} \left(\left(s\right)_{\mu} \left(s\right)_{\mu$$

$$d_{\mu\nu}(q) = -\eta^{\mu\nu} + \frac{n^{\mu}q^{\nu} + n^{\nu}q^{\mu}}{n \cdot q}$$
Squaring amplitudes Uniform power counting

Want to know which amplitudes are relevant for soft/collinear limits when squaring:

- Determine squared amp (i.e. diff. xsec), but keep control at amplitude level
- 1. Carry out **spin/helicity sums** to replace spinors/ polarization vectors
- 2. Introduce **projectors** to disentangle amplitude and conjugate amplitude
- 3. Can now study soft/collinear scaling of internal and external lines on same footing at amplitude level

 $\sum_{\substack{s, \lambda}} \left(\begin{array}{c} & & & \\ & & \\ \end{array} \right)_{\mu} \left(\begin{array}{c} & \\$

• Decompose momenta into forward, backward and transverse direction:

 $q_{i}^{\mu} = z_{i} \, \frac{p_{i}^{\mu}}{p_{i}} + y_{i}^{\mu} n^{\mu} + k_{\perp,i}^{\mu}$

• Decompose momenta into forward, backward and transverse direction:

 $q_{i}^{\mu} = z_{i} \, p_{i}^{\mu} + y_{i} n^{\mu} + k_{\perp,i}^{\mu}$

• Can decompose quark and gluon lines on same footing leading to **effective Feynman rules**:

• Create table of soft and collinear scaling of lines

Scaling of hard lines:					Scaling	Scaling of emissions:		
	h	h+c	h+s	h+c+s		s	с	S+0
⊶⊥⊸	λ	λ	λ	λ (bal.)	Ļ	1 λ	λ	λ
	0	λ	λ	λ (unbal.)				
•	λ^2	λ^2	λ	λ (bal.)	Ŷ	1	λ^2	λ
	0	λ^2	λ	λ (unbal.)	Å			

• Create table of soft and collinear scaling of lines

• Create table of soft and collinear scaling of lines

• Determine **leading amplitudes** (table shows scaling of amplitude numerator)

 One emission kernel as partitioned collection of leading amplitudes

- One emission kernel as partitioned collection of leading amplitudes
- Lightcone gauge: leading collinear from selfenergy-like diagrams

Soft singular $\mathbb{U}_{(ij)} = \mathbb{P}_{(ij)}$ ~ ⊡ <u>_</u>0 Leading collinear

$$\langle s | \hat{P}_{qq}(z) | s' \rangle = \delta_{s,s'} C_F \left[(d-2)(1-z) + \frac{4z^2}{1-z} + 4z \right]$$

- One emission kernel as partitioned collection of leading amplitudes
- Lightcone gauge: leading collinear from selfenergy-like diagrams
- Cross-talk between soft divergent contributions
 - Soft singular term from splitting function cancels
 - Eikonal remains

Soft singular $\mathbb{U}_{(ij)} = \mathbb{P}_{(ij)}$

Leading collinear

$$\langle s | \hat{P}_{qq}(z) | s' \rangle = \delta_{s,s'} C_F \left[(d-2)(1-z) + \frac{4z^2}{1-z} + 4z \right]$$

- One emission kernel as partitioned collection of leading amplitudes
- Lightcone gauge: leading collinear from selfenergy-like diagrams
- Cross-talk between soft divergent contributions
 - **Soft singular** term from splitting function cancels
 - Eikonal remains
- Kernel depends on momentum mapping, e.g. transverse recoil distribution

Dependence on transverse recoil

- Assignment of transverse recoil is not unique
 - ➡ Choice needs to be translated to PS

Dependence on transverse recoil

- Assignment of transverse recoil is not unique
 - Choice needs to be translated to PS
- Form of our kernel changes for different choices of transverse recoil!

Dependence on transverse recoil

 $q_i = z_i p^{\mu} + y_i n^{\mu} + k_{\perp,i}^{\mu}$ $Q Q Q Q q_j = z_j p^{\mu} + y_j n^{\mu} + k_{\perp,j}^{\mu}$ q_k

- Assignment of transverse recoil is not unique
 - Choice needs to be translated to PS
- Form of our kernel changes for different choices of transverse recoil!
- Still leads to the same splitting functions etc.

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

➡ "Non-iterated" topologies included

Triple collinear limit

Reproduction of the **triple collinear limit** using our power counting when tracing:

- "Non-iterated" topologies included
- Exhibition of factorization for two collinear gluons

Double soft decomposition

Double soft decomposition

• Decomposition of the **two emission soft gluon current** squared:

$$\begin{split} \mathcal{S}_{ij}(q_1, q_2) &= \mathcal{P}\left(B_{l21i}^{(6)}\right) \times 2S_{ij}(S_{j1} + 2S_{j2})N_{j12} \\ &- \mathcal{P}\left(X_{i12j}^{(1)}\right) \times S_{ij}^2 \\ &+ \mathcal{P}\left(A_{i12j}^{(3)}\right) \times 2S_{ij}(S_{j1} - 3S_{j2})N_{i12}N_{j12} \\ &- \mathcal{P}\left(A_{i12j}^{(2)}\right) \times 2S_{ij}^2N_{i12}N_{j12} \\ &+ \mathcal{P}\left(A_{i12j}^{(5)}\right) \times 2(1 - \varepsilon)(S_{i1}S_{j2} + S_{i2}S_{j1})N_{i12}N_{j12} + (1 \leftrightarrow 2). \end{split}$$

Double soft decomposition

• Decomposition of the **two emission soft gluon current** squared:

$$\begin{split} \mathcal{S}_{ij}(q_1, q_2) &= \mathcal{P}\left(B_{l21i}^{(6)}\right) \times 2S_{ij}(S_{j1} + 2S_{j2})N_{j12} \\ &- \mathcal{P}\left(X_{i12j}^{(1)}\right) \times S_{ij}^2 \\ &+ \mathcal{P}\left(A_{i12j}^{(3)}\right) \times 2S_{ij}(S_{j1} - 3S_{j2})N_{i12}N_{j12} \\ &- \mathcal{P}\left(A_{i12j}^{(2)}\right) \times 2S_{ij}^2N_{i12}N_{j12} \\ &+ \mathcal{P}\left(A_{i12j}^{(5)}\right) \times 2(1 - \varepsilon)(S_{i1}S_{j2} + S_{i2}S_{j1})N_{i12}N_{j12} + (1 \leftrightarrow 2). \end{split}$$

Can partition this topology-wise using our partitioning algorithms

• Parton Showers are indispensable for **understanding collider pheno**, but can be limiting factor in analyses **uncertainty budget**

- Parton Showers are indispensable for **understanding collider pheno**, but can be limiting factor in analyses **uncertainty budget**
- Path to higher accuracy PS: generalized construction of CS-like kernels
 - Density-operator formalism to study iterative behavior of emissions
 - ➡ Set of **power counting rules** to single out leading amplitudes
 - Two partitioning algorithms to separate overlapping singularities
 - Momentum mapping for exposing collinear and soft factorization for multiple emission

- Parton Showers are indispensable for **understanding collider pheno**, but can be limiting factor in analyses **uncertainty budget**
- Path to higher accuracy PS: generalized construction of CS-like kernels
 - Density-operator formalism to study iterative behavior of emissions
 - ➡ Set of **power counting rules** to single out leading amplitudes
 - Two partitioning algorithms to separate overlapping singularities
 - Momentum mapping for exposing collinear and soft factorization for multiple emission
- Eventually: develop Monte Carlo algorithm to sample over sets of soft and collinear amplitudes

- Parton Showers are indispensable for **understanding collider pheno**, but can be limiting factor in analyses **uncertainty budget**
- Path to higher accuracy PS: generalized construction of CS-like kernels
 - Density-operator formalism to study iterative behavior of emissions
 - ➡ Set of **power counting rules** to single out leading amplitudes
 - Two partitioning algorithms to separate overlapping singularities
 - Momentum mapping for exposing collinear and soft factorization for multiple emission
- Eventually: develop Monte Carlo algorithm to sample over sets of soft and collinear amplitudes

Thank you!

Al imagination of a "future parton shower"

Contact

Deutsches Elektronen-Synchrotron DESY Maximilian Löschner Theory Group maximilian.loeschner@desy.de

www.desy.de

...and hadronization models

• Fixed order results for jet observables can deviate significantly from data (even at lepton colliders)

Fig. 5.13. (1-T), where T is the thrust, in e^+e^- annihilation.

• Emission of partons and subsequent hadronization can not be neglected

Fig. 5.13. $(1-T)_r$, where T is the thrust, in e^+e^- annihilation.

20

ρ

 Fixed order results for jet observables can deviate **significantly from data** (even at lepton colliders)

Why Parton Showers?

...and hadronization models

- Emission of partons and subsequent hadronization can not be neglected
- May even change qualitative behavior of distributions.

• Attaching emissions to internal lines is sub-leading in soft/collinear limits

• Attaching emissions to internal lines is sub-leading in soft/collinear limits

- Powerful result:
 - Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of contributions and color charge conservation

$$\sum_{i \in \text{ext.}} \mathbf{T}_i | \mathcal{M}(p_1, \dots, p_m) \rangle = 0$$

Sidenote: [S. Weinberg, PRB, 1964]

- Attaching emissions to internal lines is sub-leading in soft/collinear limits
- Powerful result:
 - Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of contributions and color charge conservation

$$\sum_{i \in \text{ext.}} \mathbf{T}_i | \mathscr{M}(p_1, \dots, p_m) \rangle = 0$$

• Color charge operators: unified language for different partons types

Sidenote: [S. Weinberg, PRB, 1964]

- Attaching emissions to internal lines is sub-leading in soft/collinear limits
- Powerful result:
 - Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of contributions and color charge conservation

$$\sum_{i \in \text{ext.}} \mathbf{T}_i | \mathscr{M}(p_1, \dots, p_m) \rangle = 0$$

• Color charge operators: unified language for different partons types

Sidenote: [S. Weinberg, PRB, 1964]

• Work in **lightcone gauge**: more complicated gluon propagator, but decouple ghost contributions (only physical polarization propagate)

Building blocks of parton showers

Attaching emissions

• Additional propagator factors from attaching emissions lead to enhanced soft and collinear regions in phase space:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

$$dP(\text{1st emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$
Attaching emissions

• Additional propagator factors from attaching emissions lead to enhanced soft and collinear regions in phase space:

$$\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$$

$$dP(\text{1st emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$

Attaching emissions

 Additional propagator factors from attaching emissions lead to enhanced soft and collinear regions in phase space:

 $\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$

• Enhancement compensates for additional powers of couplings

schematically for one emission (where
$$t \in \{\theta, p_{\perp}, ...\}$$
):

$$\int d\sigma_{+1} \sim \sigma_0 \frac{\alpha_S}{2\pi} \int_{t_0}^{t} \frac{dt_j}{t_j} \int_{Q^2}^{\mu^2} \frac{dE_j^2}{E_j^2} = \sigma_0 \frac{\alpha_S}{2\pi} \log\left(\frac{t}{t_0}\right) \log\left(\frac{\mu^2}{Q^2}\right)$$

$$\underbrace{\sim \mathcal{O}(1)}$$

$$dP(1st \text{ emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$

Attaching emissions

 Additional propagator factors from attaching emissions lead to enhanced soft and collinear regions in phase space:

 $\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$

• Enhancement compensates for additional powers of couplings

schematically for one emission (where
$$t \in \{\theta, p_{\perp}, ...\}$$
):

$$\int d\sigma_{+1} \sim \sigma_0 \frac{\alpha_S}{2\pi} \int_{t_0}^{t} \frac{dt_j}{t_j} \int_{Q^2}^{\mu^2} \frac{dE_j^2}{E_j^2} = \sigma_0 \frac{\alpha_S}{2\pi} \log\left(\frac{t}{t_0}\right) \log\left(\frac{\mu^2}{Q^2}\right)$$

$$\sim \mathcal{O}(1)$$

- Large logarithms for $\mu^2 \ll Q^2$, $t \ll t_0$ may add significant correction to fixed order result σ_0

$$dP(\text{1st emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$

Attaching emissions

 Additional propagator factors from attaching emissions lead to enhanced soft and collinear regions in phase space:

 $\frac{1}{(q_i + q_j)^2} = \frac{1}{2q_i^0 q_j^0 (1 - \cos \theta_{ij})}$

Enhancement compensates for additional powers of couplings

schematically for one emission (where
$$t \in \{\theta, p_{\perp}, ...\}$$
):

$$\int d\sigma_{+1} \sim \sigma_0 \frac{\alpha_S}{2\pi} \int_{t_0}^{t} \frac{dt_j}{t_j} \int_{Q^2}^{\mu^2} \frac{dE_j^2}{E_j^2} = \sigma_0 \frac{\alpha_S}{2\pi} \log\left(\frac{t}{t_0}\right) \log\left(\frac{\mu^2}{Q^2}\right)$$

$$\underbrace{\sim \mathcal{O}(1)}$$

 q_i

- Large logarithms for $\mu^2 \ll Q^2$, $\,t \ll t_0$ may add significant correction to fixed order result σ_0
- Job of the parton shower: reproduce this behavior by generating emissions according to an appropriate probability distribution

$$dP(\text{1st emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$

Multiple emissions

QED example

• Single collinear photon emission gives **factorized result**:

$$\sigma_{2+1} = \sigma_2(t_0) \int_{t_0}^t dt' \frac{1}{t'} \int_{z_-}^{z_+} dz \frac{\alpha}{2\pi} \hat{P}_{\gamma}(z) = \sigma_2(t_0) \int_{t_0}^t dt' W(t')$$

Multiple emissions

QED example

• Single collinear photon emission gives **factorized result**:

$$\sigma_{2+1} = \sigma_2(t_0) \int_{t_0}^t dt' \frac{1}{t'} \int_{z_-}^{z_+} dz \frac{\alpha}{2\pi} \hat{P}_{\gamma}(z) = \sigma_2(t_0) \int_{t_0}^t dt' W(t')$$

• Attach a collinear emission to each external charged line:

$$W_{n} = \int \left(\left| O_{n} \right|^{2} + \left| O_{n} \right|^{2} \right) d\Phi_{n} / \left| O_{n} \right|^{2} = 2 \int_{t_{0}}^{t} dt' W(t').$$

Multiple emissions

QED example

• Single collinear photon emission gives **factorized result**:

$$\sigma_{2+1} = \sigma_2(t_0) \int_{t_0}^t dt' \frac{1}{t'} \int_{z_-}^{z_+} dz \frac{\alpha}{2\pi} \hat{P}_{\gamma}(z) = \sigma_2(t_0) \int_{t_0}^t dt' W(t')$$

- Attach a collinear emission to each external charged line:
- Now attach second emission:

where we use
$$\int_{t_0}^{t} dt_1 \dots \int_{t_0}^{t_{n-1}} dt_n W(t_1) \dots W(t_n) = \frac{1}{n!} \left(\int_{t_0}^{t} dt' W(t') \right)^n$$

ed
$$W_{\lambda} = \int \left(\left| \begin{array}{c} \left| \end{array}\right| \right|^{2} + \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \end{array}\right| \right|^{2} \right| \right| \right| \right|^{2} \right|^{2} \right) d\Phi_{\lambda} / \left| \begin{array}{c} \left| \end{array}\right| \right|^{2} + \left| \begin{array}{c} \left| \begin{array}{c} \left| \right| \right| \right|^{2} \right| \right| \right| \right|^{2} \right|^{2} \right) d\Phi_{\lambda} d\Phi_{\lambda} d\Phi_{\lambda} / \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \right| \right| \right|^{2} \right| \right|^{2} \right|^{2} \right|^{2} \\ = 2^{1} \int_{t_{0}}^{t} dt_{\lambda} \int_{t_{0}}^{t_{1}} dt_{\lambda} W(t_{\lambda}) W(t_{\lambda}) = \frac{2^{1}}{2!} \left(\int dt W(t) \right)^{2} \\ \end{bmatrix}$$

Multiple emissions

QED example

• Single collinear photon emission gives **factorized result**:

$$\sigma_{2+1} = \sigma_2(t_0) \int_{t_0}^t dt' \frac{1}{t'} \int_{z_-}^{z_+} dz \frac{\alpha}{2\pi} \hat{P}_{\gamma}(z) = \sigma_2(t_0) \int_{t_0}^t dt' W(t')$$

- Attach a collinear emission to each external charged line:
- Now attach second emission:

where we use
$$\int_{t_0}^{t} dt_1 \dots \int_{t_0}^{t_{n-1}} dt_n W(t_1) \dots W(t_n) = \frac{1}{n!} \left(\int_{t_0}^{t} dt' W(t') \right)^n$$

• Note: **no interferences**, iteration taken in probabilistic manner. Want to check this approximation explicitly

Sudakov Form Factor

Iterating the single emission result

• Generalize to *n* emissions by induction:

Iterating the single emission result

• Generalize to *n* emissions by induction:

$$W_2(t) = \frac{2^2}{2!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^2 \longrightarrow W_n(t) = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^n$$

Iterating the single emission result

• Generalize to *n* emissions by induction:

$$W_2(t) = \frac{2^2}{2!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^2 \longrightarrow W_n(t) = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^n$$

• So for the cross-section for one or more emissions, we get

Iterating the single emission result

• Generalize to *n* emissions by induction:

$$W_2(t) = \frac{2^2}{2!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^2 \longrightarrow W_n(t) = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^n$$

• So for the cross-section for one or more emissions, we get

$$\sigma_{>2} = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^k = \sigma_2(t_0) \left[\exp\left(2\int_{t_0}^t \mathrm{d}t' \, W(t')\right) - 1 \right] = \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1\right)$$

Iterating the single emission result

• Generalize to *n* emissions by induction:

$$W_2(t) = \frac{2^2}{2!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^2 \longrightarrow W_n(t) = \frac{2^n}{n!} \left(\int_{t_0}^t \mathrm{d}t' \, W(t') \right)^n$$

• So for the cross-section for one or more emissions, we get

$$\sigma_{>2} = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^t dt' W(t') \right)^k = \sigma_2(t_0) \left[\exp\left(2\int_{t_0}^t dt' W(t')\right) - 1 \right] = \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1\right)$$

• Where we defined the Sudakov Form Factor:

$$\Delta(t_0, t) = \exp\left[-\int_{t_0}^t \mathrm{d}t' W(t')\right]$$

Sudakov Form Factor

... and how to interpret it

... and how to interpret it

• Sum over all possibilities for emissions:

$$\sigma_{all} = \sigma_2 + \sigma_{>2} = \sigma_2 + \sigma_2 \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \Longrightarrow \Delta^2(t_0, t) = \frac{\sigma_2}{\sigma_{all}} = \frac{\sigma_2}{\left| \begin{array}{c} \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1 \\ \sigma_1 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_1 \\ \sigma_2 \\ \sigma_2 \\ \sigma_1 \\ \sigma_1$$

... and how to interpret it

• Sum over all possibilities for emissions:

$$\sigma_{\text{all}} = \sigma_2 + \sigma_{>2} = \sigma_2 + \sigma_2 \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \Longrightarrow \Delta^2(t_0, t) = \frac{\sigma_2}{\sigma_{\text{all}}} = \frac{|\mathcal{O}_{\mathsf{r}}|^2}{|\mathcal{O}_{\mathsf{r}}|^2 + |\mathcal{O}_{\mathsf{r}}|^2 + \dots + |\mathcal{O}_{\mathsf{r}}|^2}$$

- So $\Delta(t_0, t)$ corresponds to the **probability of having no emissions** on **one leg** in the range $t \rightarrow t_0$ (hard scale to lower resolution scale)
 - \rightarrow Note: we find $\Delta^2 = \text{Prob.}^2$ because we studied two independent charged legs

... and how to interpret it

$$\sigma_{\mathsf{all}} = \sigma_2 + \sigma_{>2} = \sigma_2 + \sigma_2 \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right) \Longrightarrow \ \Delta^2(t_0, t) = \frac{\sigma_2}{\sigma_{\mathsf{all}}} = \frac{1}{|t_0|}$$

- So $\Delta(t_0, t)$ corresponds to the **probability of having no emissions** on **one leg** in the range $t \rightarrow t_0$ (hard scale to lower resolution scale)
 - → Note: we find Δ^2 = Prob.² because we studied two independent charged legs
- Result: **probability density to sample over** (what e.g. HERWIG does to determine how to emit partons):

$$dP(1st \text{ emission at } t) = \frac{dt}{t} \int_{z_{-}}^{z_{+}} \frac{\alpha(z,t)}{2\pi} \hat{P}(z,t) dz \times \exp[-\Delta(t_{0},t)]$$