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Complexity of Collider Events

Disentangle short and long distance physics

* Processes with colored partons result in high
multiplicity events
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Complexity of Collider Events

Disentangle short and long distance physics

* Processes with colored partons result in high
multiplicity events

* Impossible to do in fixed order

* Luckily, we can disentangle process into different ,_
energy regimes (factorization): ’

- Hard interaction O ~ O(100 GeV to TeV)
-« Parton Shower Q — u ~ O(1 GeV)

- Hadronization y — A < O(1 GeV)
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Quest for precision

...and current status [CMS at Higgs working group — "21]

Integrated luminosity

e Partons showers make up bigger part of uncertainty budget on Photon dentification
oton energy scale and smearing
Per photon energy resolution estimate
Jet energy scale and resolution
Lepton ID and reconstruction

b tagging

MET

Other experimental uncertainties
Branching fraction

ggH scales

)
]
=)

ggH p;' modelling |——]
g |
1
|

MVBF

[

ggH jet multiplicity

ggH VBF-like region

qqgH scales and migrations

VH lep scales and migrations

Top associated scales and migrations |
ggH in top associated categories
PDF and o, normalisation [—]
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Quest for precision

.dll rren
and current status [CMS at Higgs working group — ’21]

Integrated luminosity [

Photon identification []
Photon energy scale and smearing [
Per photon energy resolution estimate

e Lack of systematic expansion: Jet energy scale and resolution F——]

Lepton ID and reconstruction

no formal estimate for accuracy/precision b tagaing
MET

o Partons showers make up bigger part of uncertainty budget

-

uVBF

e Unfortunate reality: estimation of PS error often just from Other experimental uncertainties
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Quest for precision

...and current status

o Partons showers make up bigger part of uncertainty budget

e Lack of systematic expansion:
no formal estimate for accuracy/precision

« Unfortunate reality: estimation of PS error often just from
comparing different MC generators

e Although we know:
different types of showers give different levels of accuracy
depending on observable: global vs. non-global

= “Ultimate” goal: formal tools to show accuracy of PS,
eventually Next-to-Leading-Log @ Next-to-Leading-
Colour accurate shower for all global and non-global
observables
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Parton Shower Activity

Progress in improving the PS accuracy

e Assessing the logarithmic accuracy of a shower
Herwig [1904.11866, 2107.04051], Deductor [2011.04777], Forshaw, Holguin, Platzer [2003.06400]
PanScales [1805.09327, 2002.11114], Alaric [2110.05964], ...

* Triple collinear / double soft splittings
Dulat, Héche, Krauss, Gellersen, Prestel [1705.00982, 1705.00742, 1805.03757, 2110.05964]
Li & Skands [1611.00013], Loschner, Platzer, Simpson Dore [2112.14454], ...

* Matching to fixed-order see Alexander’s talk

NLO; i.e. Frixione & Webber [0204244], Nason [0409146], ...
NNLO; i.e. UNNLOPS [1407.3773], MiNNLOps [1908.06987], Vincia [2108.07133], ...
NNNLO; Prestel [2106.03206], Bertone, Prestel [2202.01082]

e Colour (and spin) correlations see simon’s talk
Forshaw, Holguin, Platzer, Sjédahl [1201.0260, 1808.00332, 1905.08686, 2007.09648, 2011.15087]
Deductor [0706.0017, 1401.6364, 1501.00778, 1902.02105], Herwig [1807.01955], Platzer & Ruffa [2012.15215]
PanScales [2011.10054, 2103.16526, 2111.01161], ...

e Electroweak corrections
Vincia [2002.09248, 2108.10786], Pythia [1401.5238], Herwig [2108.10817], ...

Super-active field of research:
taken from Melissa van Bleekveld’s talk at the CERN workshop on parton showers for future colliders.
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Building blocks of parton showers

Soft and collinear factorization

» Leading contributions from emissions in soft and collinear regions:

1 1

(gi+9)*  2¢Pq%(1 — cos6y)
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Building blocks of parton showers

Soft and collinear factorization

e Leading contributions from emissions in soft and collinear regions:

1 1

(gi+q)*  240°q%(1 — cos 6;)

» Factorization in soft and collinear limits for m hard partons
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Building blocks of parton showers

Soft and collinear factorization

e Leading contributions from emissions in soft and collinear regions:

1 1

(gi+q)*  240°q%(1 — cos 6;)

» Factorization in soft and collinear limits for m hard partons

|m) ,

q; soft

4ru€ag(m| 13(ij)q lq \m) 5 (g;q;) collinear
i 4
(m+1|m+1)~ 4 g q
— 8yt 2T, - T i Tk
s ; (m| T T, (- 4y - q))

-
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Building blocks of parton showers

Soft and collinear factorization

e Leading contributions from emissions in soft and collinear regions:

1 1

= <
(g +g)*  2g7q)(1 —cos6;) 0

» Factorization in soft and collinear limits for m hard partons

m+1|m+1) ~ <

-

» Example for splitting function:

<S | qu(Z) | S,> = 5s,s’CF

47t,u ag(m | P(’J) (> g;) collinear 9
q;-
— 8’ aS§<m|T Tk(q, q])(q - [m),  gjsoft
1+ 22
—e(1-2)
- i
k3 n*
' =zph + k' - -
Z 2p-n
k2 n#
=(1 -z Ho— H —
(I —=2)p (I R
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Building blocks of parton showers

Soft and collinear factorization

e Leading contributions from emissions in soft and collinear regions:

1 1
= <
(g;+4q)*  2qPq(1 — cosby) 0
» Factorization in soft and collinear limits for m hard partons
druay P q:qj ., (g;,q)) collinear 9
m+1|m+1)~ < y
—8ap’e T, Ty——t . soft
S~ ats ; bR G g ) > 40
» Example for splitting function:
A , 1422
<S | qu(Z) | s > = 5s,s’CF - 8(1_Z)
—< di
2
« Use this to define Sudakov form factor/splitting kernel A(#y, 7) in PS emission probability : g = ph 4+ K — ﬁ n
i 1 z 2p - n
.. dt % a(Z’ t) - 2
dP(1st emission at t) = — P(z,t)dz X ki  nt
), 2m g'=(1-2p" -k -
) J l-z2p-n
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Building blocks of parton showers

Splitting kernel example: Catani-Seymour

» Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel
(e.g. by inference of large N -limit to construct kernel)

2 |
ij,k(pla coosPpp) = — 24 qjm< | Tizj
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Building blocks of parton showers

Splitting kernel example: Catani-Seymour

» Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel
(e.g. by inference of large N -limit to construct kernel)

TU'Tk ~—~ ~
DijaPrs oo Pr) = = 5= n( Pl == Vi Pl 1) = Lo s Bom+ 1)
q; - 4q; i
’ 2¢e 2 5 5
and e.g. <S|V,-j,k|5> = 8au“aCr —(I+Z)—e(1 =2)| oy

1 —Z(1 = y;ix)

[Catani, Seymour '97]
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Building blocks of parton showers

Splitting kernel example: Catani-Seymour

» Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel
(e.g. by inference of large N -limit to construct kernel)

T Tk r-.\:l ~
med l-j’kl‘P)m, W)= |1,...,0j,....k, ....m+1)
i " 4j i

DyalPrs P = = 5

2
and e.g. (slV kls)—87r,u ‘agCp —z—y )—(1"‘21')—8(1—21') Osy'
— iU = Vijk

» Reproduce both limits with smooth interpolation.

87t 2e D) . @.) collinear
1 V. H q; - g (4, 6]]) |Catani, Seymour '97]
.. l‘] k e 1 2 q; " 9x . . .
qi " g, 167[/1 as TU Gt T g; soft, non-singular in (j || &)
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Building blocks of parton showers

Splitting kernel example: Catani-Seymour

» Can capture soft and collinear limits simultaneously using Catani-Seymour-dipole kernel
(e.g. by inference of large N -limit to construct kernel)

T Tk r-.\:l ~
med l-j,kl‘P)m, W)= |1,...,0j,....k, ....m+1)
i " 4j i

DyalPrs P = = 5

and e.g. (s | V,-j’kls’) = 87r,Lt28aSCF [ —(1+z)—e(1l- Z,-)] )

1 —Z(1 = y;ix)

» Reproduce both limits with smooth interpolation.

87t 2e D) . @.) collinear
1 V. H qi" 4 (4 6]]) |Catani, Seymour '97]
.. l‘] k e 1 2 q; " 9x . . .
qi " g, 167[/1 as TU Gt T g; soft, non-singular in (j || &)

» Soft result is partitioned:
A A q; - i N q;* qi
Gi-g) - a) QG- q+q-9 q-9)q-q) g9+ q) g 9 9(gi+ q) - g
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Dipole Shower

Pros and Cons

e Smooth interpolation of soft and collinear regions
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Dipole Shower
Pros and Cons
e Smooth interpolation of soft and collinear regions

e Better accounting for changes in color structure
using dipole-type soft gluon evolution as
compared to e.q. angular ordering
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Dipole Shower

Pros and Cons

e Smooth interpolation of soft and collinear regions

e Better accounting for changes in color structure
using dipole-type soft gluon evolution as
compared to e.q. angular ordering

e Correct LL@Leading Color (LC) for non-global,
but issues in NLL@LC and LL@NLC for global
observables
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Dipole Shower

Pros and Cons

e Smooth interpolation of soft and collinear regions

e Better accounting for changes in color structure
using dipole-type soft gluon evolution as
compared to e.q. angular ordering

e Correct LL@Leading Color (LC) for non-global,
but issues in NLL@LC and LL@NLC for global
observables

» Kernel carries non-trivial color structure T;; - T}
which enters exponential

= Difficult to deal with in MC

= |/N_- effects possibly become comparable to
sub-leading logs, i.e. ~10% effects
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Dipole Shower

Pros and Cons

e Smooth interpolation of soft and collinear regions

e Better accounting for changes in color structure
using dipole-type soft gluon evolution as
compared to e.q. angular ordering

e Correct LL@Leading Color (LC) for non-global,
but issues in NLL@LC and LL@NLC for global
observables

» Kernel carries non-trivial color structure T;; - T}
which enters exponential

= Difficult to deal with in MC

= |/N_- effects possibly become comparable to
sub-leading logs, i.e. ~10% effects

» Want: algorithmic construction of kernel
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Towards high accuracy

e Goal: construct (multi-)emission kernels
algorithmically, inspired by Catani-Seymour
dipoles, i.e. smooth interpolation between collinear
and soft:

= QOrganize kernels into collinear sectors
= Partition soft contributions into those sectors
= Allow for general momentum mapping

= Adapts to momentum mapping, e.g. transverse
recoil scheme
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Towards high accuracy

factorized emission phase space

!

A, ~ exp[ — Z JdCI)n ,%f,(,f)]

e Goal: construct (multi-)emission kernels c /
algorithmically, inspired by Catani-Seymour sum over collinear sectors
dipoles, i.e. smooth interpolation between collinear Multi-emission kernel
and soft:

= QOrganize kernels into collinear sectors
= Partition soft contributions into those sectors
= Allow for general momentum mapping

= Adapts to momentum mapping, e.g. transverse
recoil scheme
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Towards high accuracy

e Goal: construct (multi-)emission kernels
algorithmically, inspired by Catani-Seymour
dipoles, i.e. smooth interpolation between collinear
and soft:

= QOrganize kernels into collinear sectors
= Partition soft contributions into those sectors
= Allow for general momentum mapping

= Adapts to momentum mapping, e.g. transverse
recoil scheme

e Possibility to study the difference between iterating
the single- vs. multi-emission approximation.
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factorized emission phase space

!

A, ~ exp[ — Z JdCI)n %,(f)]

C
. / /
sum over collinear sectors . 7
Multi-emission kernel

T
/—/\

a | . /a
;99\995 |
2 |

| 1000000 1

1 Q000 IM) 1 (M| 2
|
b |

: : | : b

D, I, S S D}

[Forshaw, Holguin, Platzer—JHEP 09 (2020) 014]



Multi-Emission Kernels

Results

[S. Dore, ML, S. Platzer; arXiv:2112.14454]
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Multi-Emission Kernels

Results

[S. Dore, ML, S. Platzer; arXiv:2112.14454]
» Partitioning algorithms
= two options: fractional and subtractive

= spread soft contributions over kernels
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Multi-Emission Kernels

Results Azimuthally averaged single emission kernel
300F \
. . 200} | l
[S. Dore, ML, S. Platzer; arXiv:2112.14454] o 1 -\ ;
X . i \ ‘
eg e . . . 100 | !
o Partitioning algorithms S ; L 1 originl
. . . e e . “—01_ partition
= two options: fractional and subtractive 05 10 15 20 25 30 - P
I B
-100

= spread soft contributions over kernels
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[ ] [ ] [ ]
Multi-Emission Kernels
Results Azimuthally averaged single emisgion kernel

300
[S. Dore, ML, S. Platzer; arXiv:2112.14454] I
SuSn 100

 Partitioning algorithms

original

= two options: fractional and subtractive

: : ~100}
= spread soft contributions over kernels

1 1

eraged two emission amplitude

.
X .
Original azimuthally averaged two emission amplitude S . S S S Partitioned azimuthally av¢
(1212 PR

partition to

>
@l DA 2
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Multi-Emission Kernels

Results

[S. Dore, ML, S. Platzer; arXiv:2112.14454] 1

 Partitioning algorithms

200 |

SitSn 100¢

Azimuthally averaged single emission kernel
300F 4

= two options: fractional and subtractive

-100F

= spread soft contributions over kernels

« Momentum mapping

Original azimuthally averaged two emission amplitude

= Parameterization of how collinear limit is
approached and transverse recoil is
spread for multiple emissions

o

et "“v&!‘v
G

1

1

partition to
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Multi-Emission Kernels

Results Azimuthally averaged single emission kernel
300F \
. . 200f | l
[S. Dore, ML, S. Platzer; arXiv:2112.14454] 1 | ;
oA x v : ool \ ‘
o Partitioning algorithms =i ; L 1 originl
: : : Py T =81 partitioned
= two options: fractional and subtractive 05 10 15 20 25 30 P
I 6;
, , ~100f} |
= spread soft contributions over kernels
« Momentum mapping 1 L
Original azimuthally averaged two emission amplitude SZ1S1 2 SIISIZ Partitioned azimuthally averaged two emission amplitude

= Parameterization of how collinear limit is
approached and transverse recoil is
spread for multiple emissions

TOVNAR
1 '\\\\““
t\\\‘\\\\\\

 Amplitude level power counting

= extract leading soft/collinear
contributions

partition to

>
@l DA 2
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Squaring amplitudes

Uniform power counting

Want to know which amplitudes are relevant for
soft/collinear limits when squaring:

= Determine squared amp (i.e. diff. xsec), but
keep control at amplitude level
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Squaring amplitudes

Uniform power counting

Want to know which amplitudes are relevant for
soft/collinear limits when squaring:

= Determine squared amp (i.e. diff. xsec), but
keep control at amplitude level

1. Carry out spin/helicity sums to replace spinors/
polarization vectors
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Squaring amplitudes . 24, U,
Uniform power counting —>
= ZA e ¢t (K\ E\,h\ Y
~ !

&M

) V(—et—
Want to know which amplitudes are relevant for
soft/collinear limits when squaring: _ —>— (ﬁ/:)d&—b—
= Determine squared amp (i.e. diff. xsec), but N ‘i&t%’ ) —
keep control at amplitude level —t— y ——
LN
1. Carry out spin/helicity sums to replace spinors/
polarization vectors /_7 W \ A ——>—
- ('l v \
2. Introduce projectors to disentangle amplitude o duly) 400) doly)
i\

and conjugate amplitude (
Jug P < ﬂ/v\i ‘J’SW( ﬁ(u
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Squaring amplitudes . 24, U,
Uniform power counting —>
= SE’A e ¢t (K\ E\,h\ Y
~ !

&M

) V(—et—
Want to know which amplitudes are relevant for
soft/collinear limits when squaring: _ —>— (ﬁ’;)d&—»—
= Determine squared amp (i.e. diff. xsec), but —nt dw(%‘ ) N
keep control at amplitude level SV ;/ e

1. Carry out spin/helicity sums to replace spinors
polarization vectors

2. Introduce projectors to disentangle amplitude
and conjugate amplitude

3. Can now study soft/collinear scaling of internal
and external lines on same footing at
amplitude level
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Power Counting

Sudakov decomposition

e Decompose momenta into forward, backward and transverse direction:

q' =z pF+yn'+k /
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Power Counting

Sudakov decomposition

 Decompose momenta into forward, backward and transverse direction:

q' =z pF+yn'+k /

o Can decompose quark and gluon lines on same footing leading to
effective Feynman rules:

=] | =§,, 2Q0o[ 1Qor = d"(p;),
——f—— = S Pl Hﬁ’lﬂ 2000 000, = Sr i B n*n?
200 ~ (21pi-n)? ’
I
kH nY 4+ ntkY
_ n =k¢,1, R = i I i
VA ZIpi-n
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Power Counting

Soft and collinear scaling

e Create table of soft and collinear scaling of lines

Eedietnardlines: Scaling of emissions:

h h+c h+s h+c+s

S Cc S+C

0 A A A (unbal.)

T P . ) (bal s
L oe 1 X
.

e Dk A A (bal.) + 1 2 b

R A2 A A (unbal.)
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Power Counting

Soft and collinear scaling

e Create table of soft and collinear scaling of lines

Scaling of hard lines:

Scaling of emissions:

h h+c h+s h+c+s
8§ ¢ 8jC
—}— A A A A (bal.) i
1 A A
0 A A A (unbal.) °
—Ji— B )2 A A (bal.) + 1 22N
R A2 A A (unbal.)
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Power Counting

Soft and collinear scaling

e Create table of soft and collinear scaling of lines

e thardines: Scaling of emissions:

h h+¢c h+s h+c+s

S Cc S+C

0 A A A (unbal.)

T P A ) (bl -
B e 1 A
.

B )2 A A (bal.) + 1. A

R A2 A A (unbal.)

e Determine leading amplitudes
(table shows scaling of amplitude numerator)
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One emission Kernel

6L —L e — {1
. .

Uiz) = Prij) + 9
—{F —{1— [HS]

* One emission kernel as partitioned collection of
leading amplitudes
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One emission Kernel

U(z'j)Z]P’(ij)( ' + By
—{F —{1— [HS]

* One emission kernel as partitioned collection of
leading amplitudes

 Lightcone gauge: leading collinear from self-
energy-like diagrams

Leading collinear
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One emission Kernel

Soft singular

.- [ —{ — [ [
U(z'j):ﬂ”(z‘j)( '
— [ ] [

* One emission kernel as partitioned collection of
leading amplitudes

 Lightcone gauge: leading collinear from self-
energy-like diagrams

» Cross-talk between soft divergent contributions
» Soft singular term from splitting function cancels

 Eikonal remains
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One emission Kernel

Soft singular

(e —{ — H. H [
’
Uiy = P (
— [ ] [

* One emission kernel as partitioned collection of
leading amplitudes

 Lightcone gauge: leading collinear from self-
energy-like diagrams

» Cross-talk between soft divergent contributions
» Soft singular term from splitting function cancels
* Eikonal remains

* Kernel depends on momentum mapping, e.g.
transverse recoil distribution
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One emission Kernel

Dependence on transverse recoil

e Assignment of transverse recoil is not unique

= Choice needs to be translated to PS
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One emission Kernel w= 2Pk,

Dependence on transverse recoil
g =z; p*+ynt +

dk

e Assignment of transverse recoil is not unique
= Choice needs to be translated to PS Balanced Unbalanced

» Form of our kernel changes for different
choices of transverse recoil! kM + —0 k M+ £ 0
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One emission Kernel w= 2Pk,

Dependence on transverse recoil
g =z; p*+ynt +

dk

e Assignment of transverse recoil is not unique
= Choice needs to be translated to PS Balanced Unbalanced

» Form of our kernel changes for different
choices of transverse recoil! k,

o Still leads to the same splitting functions etc.
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Example multi emission result

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:
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Example multi emission result

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

-
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Example multi emission result

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

-

= “Non-iterated” topologies included
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Example multi emission result

Triple collinear limit

Reproduction of the triple collinear limit using our power counting when tracing:

- -
’ /
1

= “Non-iterated” topologies included

= Exhibition of factorization for two collinear gluons
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15



Example multi emission Result

Double soft decomposition
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Example multi emission Result

Double soft decomposition
§ @66%666

« Decomposition of the two emission soft gluon current squared:

Sij(qgi,q2) = P (Bl(giz) x 28;5(Sj1 + 2S8;2) Nj12
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Example multi emission Result

Double soft decomposition
§ @666%666

« Decomposition of the two emission soft gluon current squared:

Sij(qg1,q2) = P (Bz(z(?i) x 28;5(Sj1 + 2S8;2) Nj12

« Can partition this topology-wise using our partitioning algorithms

DESY. | Multi-Emission Kernels for Parton Showers | Maximilian Léschner
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Conclusion

e Parton Showers are indispensable for understanding collider pheno,
but can be limiting factor in analyses uncertainty budget
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Conclusion

e Parton Showers are indispensable for understanding collider pheno,
but can be limiting factor in analyses uncertainty budget

e Path to higher accuracy PS: generalized construction of CS-like
kernels

= Density-operator formalism to study iterative behavior of
emissions

= Set of power counting rules to single out leading amplitudes

= Two partitioning algorithms to separate overlapping
singularities

= Momentum mapping for exposing collinear and soft
factorization for multiple emission
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Conclusion

e Parton Showers are indispensable for understanding collider pheno,
but can be limiting factor in analyses uncertainty budget

e Path to higher accuracy PS: generalized construction of CS-like
kernels

= Density-operator formalism to study iterative behavior of
emissions

= Set of power counting rules to single out leading amplitudes

= Two partitioning algorithms to separate overlapping
singularities

= Momentum mapping for exposing collinear and soft
factorization for multiple emission

. develop Monte Carlo algorithm to sample over sets of
soft and collinear amplitudes
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Conclusion

e Parton Showers are indispensable for understanding collider pheno,
but can be limiting factor in analyses uncertainty budget

e Path to higher accuracy PS: generalized construction of CS-like
kernels

= Density-operator formalism to study iterative behavior of
emissions

= Set of power counting rules to single out leading amplitudes

= Two partitioning algorithms to separate overlapping
singularities

= Momentum mapping for exposing collinear and soft i || ‘ /

factorization for multiple emission o
Al imagination of a

« Eventually: develop Monte Carlo algorithm to sample over sets of future parton shower

soft and collinear amplitudes

Thank you!
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Why Parton Showers?

...and hadronization models

» Fixed order results for jet observables can deviate
significantly from data (even at lepton colliders)
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[Ellis, Stirling, Webber; “Pink Book”; 1996]
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Why Parton Showers?

...and hadronization models

» Fixed order results for jet observables can deviate
significantly from data (even at lepton colliders)
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Why Parton Showers?

...and hadronization models

0.20

» Fixed order results for jet observables can deviate
significantly from data (even at lepton colliders)

e Emission of partons and subsequent hadronization can
not be neglected
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Why Parton Showers?

...and hadronization models
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C

Fig. 5.13. (1 —T'), where T is the thrust, in e*2~ annihilation.

e Emission of partons and subsequent hadronization can
not be neglected

« May even change qualitative behavior of distributions
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[Ellis, Stirling, Webber; “Pink Book”; 1996]
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Helpful Facts & Tools
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Helpful Facts & Tools

e Attaching emissions to internal lines is sub-leading in soft/collinear limits
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Helpful Facts & Tools

Sidenote: [S. Weinberg, PRB, 1964]

e Attaching emissions to internal lines is sub-leading in soft/collinear limits
» Powerful result:

» Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of
contributions and color charge conservation

Z T,| A (py,....p,) =0

i e ext.
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Helpful Facts & Tools

Sidenote: [S. Weinberg, PRB, 1964]

e Attaching emissions to internal lines is sub-leading in soft/collinear limits

e Powerful result:

» Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of
contributions and color charge conservation

Z T,| A (py,....p,) =0

i e ext.

 Color charge operators: unified Ianguage for different partons types

T, = Tg@ T, = T(%Ci

faCC

l

T;=C, T, T,=T;-T, (i#))
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Helpful Facts & Tools

Sidenote: [S. Weinberg, PRB, 1964]

e Attaching emissions to internal lines is sub-leading in soft/collinear limits

e Powerful result:

» Attaching soft/collinear emissions to all external legs leads to gauge-invariant set of
contributions and color charge conservation

Z T,| A (py,....p,) =0

i e ext.

e Color charge operators: unified language for different partons types

e @ @.

T=-T¢ T=T, Ti=r"
id" (k)
2 -2 T.=T.- L WYLy =
T =C7, T, Tj—Tj T, GG#)) A (k) 21 ie
. T i . U,V %
Work.ln I|.ghtcone gauge: more co.mpollcated gluon propagator, but decouple ghost UK = — ' + k*n* + n*k 220
contributions (only physical polarization propagate) n-k ’
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Building blocks of parton showers

Attaching emissions

» Additional propagator factors from attaching emissions lead to enhanced soft

and collinear regions in phase space:
1 1 4q;

(gi+g)*  2qPq(1 — cos6;)

qx

dP(1st emission at ) = — P(z,t)dz X exp[—A(1,, 1)]
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Building blocks of parton showers

Attaching emissions

» Additional propagator factors from attaching emissions lead to enhanced soft

and collinear regions in phase space:
1 1 4q;

(gi+g)*  2qPq(1 — cos6;)

qx

. . dt “ a(Z, t) -
dP(1st emission at 1) = — P(z,t)dz X exp[—A(1,, 1)]
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Building blocks of parton showers

Attaching emissions

» Additional propagator factors from attaching emissions lead to enhanced soft

and collinear regions in phase space:
1 1 4q;

(gi+g)*  2qPq(1 — cos6;)

 Enhancement compensates for additional powers of couplings 9

schematically for one emission (wheret € {0,p,, ... }):

t oo s
[~ e [ T35 - o (L Yo (2
Yo%)y J B P f 02
Iy Q?
~0O(1) dx

dP(1st emission at 1) = — P(z,t)dz X exp[—A(1,, 1)]
T 22

dr r+ a(z, 1) -
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Building blocks of parton showers

Attaching emissions

» Additional propagator factors from attaching emissions lead to enhanced soft

and collinear regions in phase space:
1 1 4q;

(gi+g)*  2qPq(1 — cos6;)

 Enhancement compensates for additional powers of couplings 9

schematically for one emission (wheret € {0,p,, ... }):

2
; [dy ' dE? ool L) p?
(0] ~ O = O0nh— 10 — O —_—
[ +1 027:[5- "Ef 05 g 0 g 0?
5 0
~ qx

« Large logarithms for ,u2 < Qz, t < I may add significant correction to fixed
order result g,

dP(1st emission at 1) = — P(z,t)dz X
4 T 22

dr r+ a(z, 1) -
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Building blocks of parton showers

Attaching emissions

» Additional propagator factors from attaching emissions lead to enhanced soft

and collinear regions in phase space:
1 1 4q;

(gi+g)*  2qPq(1 — cos6;)

 Enhancement compensates for additional powers of couplings 9

schematically for one emission (wheret € {0,p,, ... }):

2
; [dy ' dE? ool L) p?
(0] ~ O = O0nh— 10 — O —_—
[ +1 027:[5- "Ef 05 g 0 g 0?
5 0
~ qx

« Large logarithms for ,u2 < Qz, t < I may add significant correction to fixed
order result g,

e Job of the parton shower: reproduce this behavior by generating emissions
according to an appropriate probability distribution dr r+ a(z,t) A

dP(1st emission at ¢) = - P(z,t)dz X
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Multiple emissions
QED example

 Single collinear photon emission gives factorized
result:

t van t
1 o A
Iy Z_ Iy

DESY. | Multi-Emission Kernels for Parton Showers | Maximilian Léschner

[Lecture by S. Gieseke]
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Multiple emissions [Lecture by S. Gieseke]

QED example
 Single collinear photon emission gives factorized
result:
Bl t

Lo

» Attach a collinear emission to each external charged ) = m
line:

Yy \O:ZM\L)QITQA/)(): \1 =2 Jﬂ}w W L),
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Multiple emissions [Lecture by S. Gieseke]

QED example
 Single collinear photon emission gives factorized
result:
t t
) )

e Attach a collinear emission to each external charged ) m
line:

= ‘O:;\) 4/)01\1: 1§ft'wtf‘).
N

e Now attach second emission:
n NL= j\< A’;l
o

. | oz e e e oy
where we use Jdtl... Jdth(tl)...W(tn)=% Jdt’W(ﬂ) t £ . 3
. o =2t [ Paw, v o) = \(So%e ue) )
L Lo '
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Multiple emissions [Lecture by S. Gieseke]

QED example
 Single collinear photon emission gives factorized
result:
4 1
) )
1 +
e Attach a collinear emission to each external charged ) m O”dﬂ ' | O;’ \ )d@ /)O/r \’L -9 S\W W)
line: - ~ L '

N\

SR ([oae

=

e Now attach second emission:
y 1
-\-

. | < Jhea oy
where we use Jdtl... Jdth(tl)...W(tn)=% Jdt’W(I/) t £ . 3
. o =2t [ Paw, v o) = \(So% wlé))
L Lo '

e Note: no interferences, iteration taken in probabilistic
manner. Want to check this approximation explicitly
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Sudakov Form Factor

Iterating the single emission result

e Generalize to n emissions by induction:
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24



Sudakov Form Factor

Iterating the single emission result

e Generalize to n emissions by induction:

22
Ws(1) = EXl

Jz

)

dt’ W(t')

DESY. | Multi-Emission Kernels for Parton Showers | Maximilian Léschner

n

n!

Jt

)

dt’ W(¢')

[Lecture by S. Gieseke]
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Sudakov Form Factor [Lecture by S. Gieseke]

Iterating the single emission result

e Generalize to n emissions by induction:

22 t n t
W,(?) =E J di'w(i') | — W, (2) =m J dr’ W(t')

tO t()

e So for the cross-section for one or more emissions, we get
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Sudakov Form Factor

Iterating the single emission result

e Generalize to n emissions by induction:

22 t 2 n
W,(t) = — J di'Wi@) | — W,(1)=—
2! " n!
e So for the cross-section for one or more emissions, we get
o0 2k t k t
k=1 """ ) o
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n

J dt’ W(¢')

)

— 1] =0,(1y)

[Lecture by S. Gieseke]

1

— 1
A2(1y, 1)
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Sudakov Form Factor

Iterating the single emission result

e Generalize to n emissions by induction:

22 t 2 n
W,(t) = — J di'Wi@) | — W,(1)=—
2! " n!
e So for the cross-section for one or more emissions, we get
o0 2k t k t
k=1 """ ) I

e Where we defined the Sudakov Form Factor:

5

A(ty, 1) = exp —[ dr’ W(t)

)
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n

J dt’ W(¢')

)

— 1] =0,(1y)

[Lecture by S. Gieseke]

1

— 1
A2(1y, 1)
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Sudakov Form Factor

... and how to interpret it

e Sum over all possibilities for emissions:
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[Lecture by S. Gieseke]
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Sudakov Form Factor [Lecture by S. Gieseke]

... and how to interpret it

e Sum over all possibilities for emissions:

| 0, ‘O<
m—l — ANty ) = —— = CEE

Oall | O<

A

Og|| = 0+ 0,9, =0, + 0, .

A
+

A
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Sudakov Form Factor [Lecture by S. Gieseke]

... and how to interpret it

e Sum over all possibilities for emissions: 0

. 0

1
Cal =0 +o, =0+ ————1|= A¥(,0)=—=

A%(1y, 1) oall | O<

 So A(#y, t) corresponds to the probability of having no emissions

A

++\C§

A
+

A

on one leg in the range ¢ — £, (hard scale to lower resolution scale)

= Note: we find AZ = Prob.? because we studied two
independent charged legs
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Sudakov Form Factor [Lecture by S. Gieseke]

... and how to interpret it

e Sum over all possibilities for emissions: 0

. 0

1
Cal =0 +o, =0+ ————1|= A¥(,0)=—=

A%(1y, 1) oall | O<

 So A(#y, t) corresponds to the probability of having no emissions

A

++\C§

A
+

A

on one leg in the range ¢ — £, (hard scale to lower resolution scale)

= Note: we find AZ = Prob.? because we studied two
independent charged legs

e Result: probability density to sample over (what e.g. HERWIG does
to determine how to emit partons):

o dt [“ a(z, 1) A
dP(1st emission at ¢) = " P(z,0)dz X exp|— A1, 1)]

. 27
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