Electroweak Sudakov Logarithms

Axel Maas
$2^{\text {nd }}$ of July 2024
Parton Showers and Resummation Graz
Austria

NAWI Graz
Natural Sciences
Österreichischer Wissenschaftsfonds

The issue in gauge theories

Incoming or outgoing gauged particle

The issue in gauge theories

Can emit soft

The issue in gauge theories

Can emit soft

- Resummation yields (double) Sudakov logarithms: $\ln ^{2} \frac{S}{\Lambda}$
- Can dominate the cross sections
- Quick rise can obstruct convergence

Resolution in gauge theories

- Involved particle is a gauge singlet

Resolution in gauge theories

Incoming or outgoing gauge singlet

- Involved particle is a gauge singlet

Resolution in gauge theories

- Involved particle is a gauge singlet

Resolution in gauge theories

- Involved particle is a gauge singlet
- Cancellations between real and virtual corrections
- Cancel Sudakov logarithms

Resolution in gauge theories

- Involved particle is a gauge singlet
- Cancellations between real and virtual corrections
- Cancel Sudakov logarithms
- Initial state: Bloch-Nordsieck theorem/Initial state and final state: Kinoshita-Lee-Naunberg theorem
- Required: Inclusive in the gauge charge

Invalidation in electroweak physics

[Ciafaloni et al.'00,'22 Bauer et al.'18]

- Brout-Englert-Higgs effect "breaks" gauge symmetry

Invalidation in electroweak physics

[Ciafaloni et al.'00,'22

- Brout-Englert-Higgs effect "breaks" gauge symmetry
- States like leptons become asymptotic states

Invalidation in electroweak physics

- Brout-Englert-Higgs effect "breaks" gauge symmetry
- States like leptons become asymptotic states
- BN and KLN theorems violated

Invalidation in electroweak physics

- Brout-Englert-Higgs effect "breaks" gauge symmetry
- States like leptons become asymptotic states
- BN and KLN theorems violated
- Double Sudakov logarithms suppressed: $\ln ^{2} \frac{s}{m_{W}^{2}}$
- Negligble at small energies

Invalidation in electroweak physics

- Brout-Englert-Higgs effect "breaks" gauge symmetry
- States like leptons become asymptotic states
- BN and KLN theorems violated
- Double Sudakov logarithms suppressed: $\ln ^{2} \frac{s}{m_{W}^{2}}$
- Negligble at small energies
- At LC@TeV: Same order as strong interactions
- Swamped by jets of vector bosons and Higgs

Is this inevitable?

Is this inevitable?

- No!

Is this inevitable?

- No! - field theory to the rescue

Is this inevitable?

- No! - field theory to the rescue
- Problem: Asymptotic particles not a gauge singlet
- Because of breaking the gauge symmetry

Is this inevitable?

- No! - field theory to the rescue
- Problem: Asymptotic particles not a gauge singlet
- Because of breaking the gauge symmetry
- But there is no physical gauge-symmetry

- Forbidden by Elitzur's theorem
- Just a figure of speech
- Actually just ordinary gauge-fixing

Is this inevitable?

- No! - field theory to the rescue
- Problem: Asymptotic particles not a gauge singlet
- Because of breaking the gauge symmetry
- But there is no physical gauge-symmetry breaking EElitur 75 , osterwalder \& Seler P 7 , fradkin $\&$ Shenker 78$]$
- Forbidden by Elitzur's theorem
- Just a figure of speech
- Actually just ordinary gauge-fixing
- But it is well established?

Is this inevitable?

- No! - field theory to the rescue
- Problem: Asymptotic particles not a gauge singlet
- Because of breaking the gauge symmetry
- But there is no physical gauge-symmetry breaking Ellitur' 75 , ostemalder \& Seierer7, Fradkin \& Shenker 78$]$
- Forbidden by Elitzur's theorem
- Just a figure of speech
- Actually just ordinary gauge-fixing
- But it is well established?
- Actually, a coincidence of the standard model
- Subleading effects save the day

A toy model

A toy model: Higgs sector of the SM

A toy model: Higgs sector of the SM

- Consider an SU(2) with a fundamental scalar

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c}
\end{gathered}
$$

- Ws $W_{\mu}^{a} \mathbb{W}$
- Coupling g and some numbers $f^{a b c}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws $W_{\mu}^{a} \mathbb{W}$
- Higgs h_{i} h
- Coupling g and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$

A toy model: Higgs sector of the SM

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Ws W_{μ}^{a} W
- Higgs h_{i} h
- Couplings g, v, λ and some numbers $f^{a b c}$ and $t_{a}^{i j}$
- Parameters selected for a BEH effect

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{v} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local $\operatorname{SU}(2)$ gauge symmetry $W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$

A toy model: Symmetries

- Consider an $\operatorname{SU}(2)$ with a fundamental scalar
- Essentially the standard model Higgs

$$
\begin{gathered}
L=-\frac{1}{4} W_{\mu \nu}^{a} W_{a}^{\mu \nu}+\left(D_{\mu}^{i j} h^{j}\right)^{+} D_{i k}^{\mu} h_{k}+\lambda\left(h^{a} h_{a}^{+}-v^{2}\right)^{2} \\
W_{\mu \nu}^{a}=\partial_{\mu} W_{v}^{a}-\partial_{\nu} W_{\mu}^{a}+g f_{b c}^{a} W_{\mu}^{b} W_{v}^{c} \\
D_{\mu}^{i j}=\delta^{i j} \partial_{\mu}-i g W_{\mu}^{a} t_{a}^{i j}
\end{gathered}
$$

- Local SU(2) gauge symmetry
$W_{\mu}^{a} \rightarrow W_{\mu}^{a}+\left(\delta_{b}^{a} \partial_{\mu}-g f_{b c}^{a} W_{\mu}^{c}\right) \phi^{b}$ $h_{i} \rightarrow h_{i}+g t_{a}^{i j} \phi^{a} h_{j}$
- Global SU(2) custodial (flavor) symmetry
- Acts as (right-)transformation on the scalar field only $W_{\mu}^{a} \rightarrow W_{\mu}^{a}$ $h \rightarrow h \Omega$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel

Textbook approach

- Choose parameters to get a Brout-Englert-Higgs effect
- Minimize the classical action
- Choose a suitable gauge and obtain 'spontaneous gauge symmetry breaking': SU(2) $\rightarrow 1$
- Get masses and degeneracies at treelevel
- Perform perturbation theory

Physical spectrum

Perturbation theory
$0 \quad$ Mass

Physical spectrum

Perturbation theory
Scalar
$\backsim \Delta$ fixed charge

Custodial singlet

Physical spectrum

Perturbation theory

Scalar Vector

$\backsim \wedge$ fixed charge gauge triplet

- Both custodial singlets

Physical states

- No "real" breaking

Physical states

- No "real" breaking
- Physical particles are gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant

Physical states

- No "real" breaking
- Physical particles are gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Physical states

- No "real" breaking
- Physical particles are gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)

Physical spectrum

Perturbation theory

Scalar Vector

\backsim 』 fixed charge gauge triplet

Both custodial singlets

Remember: Experiment tells that somehow the left is correct!

Physical spectrum
Perturbation theory
Composite (bound) states
n ${ }^{\wedge}$ fixed charge gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct

Physical spectrum
Perturbation theory
Composite (bound) states
$\backsim \wedge$ fixed charge gauge triplet

Scalar	Vector
$\sim \Delta$ fixed charge	gauge triplet

Experiment tells that somehow the left is correct Theory say the right is correct There must exist a relation that both are correct

Physical particles

- JPC and custodial charge only quantum numbers

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods!

Physical particles

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice

Physical particles

- J JC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods! - Lattice
- Standard lattice spectroscopy problem
- Standard methods
- Smearing, variational analysis, systematic error analysis etc.
- Very large statistics ($>10^{5}$ configurations)

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet
Mass

- Both custodial singlets

$$
h(x)^{+} h(x) \quad \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singlet- Both custodial singlets Custodial singlet

$$
h(x)^{+} h(x) \text { h }
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { dixed charge gauge triplet }}$

Gauge-invariant
Scalar singlet

- Both custodial singlets Custodial singlet

Physical spectrum

Both custodial singlets Custodial singlet

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet

$$
\operatorname{trt}^{a} \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n ${ }^{\wedge}$ fixed charge gauge triplet

Gauge-invariant

 Scalar singletVector
singlet

- Both custodial singlets Custodial singlet Triplet

$$
\operatorname{tr} @ \frac{h^{+}}{\sqrt{h^{+} h}} D_{\mu} \frac{h}{\sqrt{h^{+} h}}
$$

Physical spectrum

Perturbation theory
Scalar Vector
n $\sqrt{\text { d }}$ fixed charge gauge triplet

Gauge-invariant
Scalar singlet

Equal!

Custodial singlet Triplet
Vector
singlet

Both custodial singlets

Physical spectrum

Perturbation theory
Scalar Vector
n
\sum^{n}
^ fixed charge gauge triplet

- Equal!

Equal!

- Both custodial singlets Custodial singlet Triplet

Why?

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH

How to make predictions

- JPC and custodial charge only quantum numbers
- Different from perturbation theory
- Operators limited to asymptotic, elementary, gauge-dependent states
- Formulate gauge-invariant, composite operators
- Bound state structure - non-perturbative methods?
- But coupling is still weak and there is a BEH
- Perform double expansion ${ }_{\text {FFroblich etal: } 80, \text { Mas }{ }^{122]}}$
- Vacuum expectation value (FMS mechanism)
- Standard expansion in couplings
- Together: Augmented perturbation theory

Augmented perturbation theory

1) Formulate gauge-invariant operator

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Higgs field

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

(h) n

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

Augmented perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle \\
& +\left\langle\boldsymbol{\eta}^{+}(x) \boldsymbol{\eta}(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound state

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle}{\left.\frac{\gamma \eta}{}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

Trivial two-particle state
4) Compare poles on both sides

Augmented perturbation theory

[Fröhlich et al.'80,'81
Maas'12,'17]

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state mass

$$
\begin{aligned}
& \frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)} v^{2} \eta^{+}(x) \eta(y)
\end{aligned}
$$

Higgs mass
4) Compare poles on both sides

Augmented perturbation theory

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& \quad+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle \quad \text { Standard }
\end{aligned}
$$

Perturbation Theory
3) Standard perturbation theory Bound state mass

$$
\frac{\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle}{+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)}
$$

4) Compare poles on both sides

Augmented perturbation theory

Mrohlich et al.'80,'81
Maas \& Sond

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

What about this?
3) Standard perturbation theory

$$
\begin{aligned}
& \left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$$
\begin{aligned}
&\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
&+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{aligned}
$$

Consequences: The Higgs

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Consequences: The Higgs

$\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle$
$+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle$

Consequences: The Higgs

Consequences: The Higgs

Physical thresholds

Consequences: The Higgs

Gauge-dependrent

Consequences: The Higgs

Consequences: The Higgs

Gauge-dependent Unphysical features: Positivity violation Additional thresholds

Not a consequence of instability: Occurs even for an asymptotically stable Higgs in a toy theory

Consequences: The Higgs

Consequences: The Higgs

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes LO: Standard perturbation theory

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes LO, NLO: Standard perturbation theory

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes LO, NLO: Standard perturbation theory

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes LO, NLO: Standard perturbation theory

Consequences: The Higgs

Same structure repeats itself in decays and scattering processes LO, NLO: Standard perturbation theory

Augmented perturbation theory only augments Feynman rules

What about the vector?

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$

What about the vector?

1) Formulate gauge-invariant operator

$$
1^{-} \text {triplet: }\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle
$$

2) Expand Higgs field around fluctuations $h=v+\eta$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\sharp} h\right)(x)\left(\tau^{j} h^{+} D_{\sharp} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\sharp}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=\nu^{2} c_{i j}^{a b}\left\langle W_{u}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{u}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{u}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots \\
=v^{2}\left\langle W_{\mu}^{i} W_{\mu}^{j}\right\rangle+\ldots
\end{gathered}
$$

Matrix from group structure
c projects custodial states to gauge states

What about the vector?

1) Formulate gauge-invariant operator 1- triplet: $\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle$
2) Expand Higgs field around fluctuations $h=v+\eta$

$$
\left\langle\left(\tau^{i} h^{+} D_{\mu} h\right)(x)\left(\tau^{j} h^{+} D_{\mu} h\right)(y)\right\rangle=v^{2} c_{i j}^{a b}\left\langle W_{\mu}^{a}(x) W^{b}(y)^{\mu}\right\rangle+\ldots
$$

c projects custodial states to gauge states

Exactly one gauge boson for every physical state

Physical states

- No "real" breaking
- Physical particles are gauge-invariant particles
- Cannot be the elementary particles
- Non-Abelian nature is relevant
- Need more than one particle: Composite particles
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Has nothing to do with weak coupling
- Think QED (hydrogen atom!)
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left.\left.\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array}\right) \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array}\right)_{i}(x)$

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left.\left(\left.\begin{array}{cc}n_{2}-h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{l}v_{L} \\ l_{L}\end{array}\right)_{i}\right)_{i}$
- Gauge-invariant state
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\left(\left.\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \right\rvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\right)\left(\begin{array}{l}0 \\ 0\end{array}\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state
$\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array} \left\lvert\, \begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{i}(x)^{+}\right\|\left(\begin{array}{cc}h_{2} & -h_{1} \\ h_{1}^{*} & h_{2}^{*}\end{array}\left|\begin{array}{c}v_{L} \\ l_{L}\end{array}\left\|_{j} \mid\right\|_{j}(y)\right.\right.\right.\right.$
- Gauge-invariant state, but custodial doublet

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left(\left|\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\right| \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|_{i}(x)+\left\{\left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}| | \begin{array}{l}
v_{L} \\
l_{L}
\end{array} \|\left._{j}\right|_{j}(y) \underset{v^{2}}{\approx}\left(\left.\begin{array}{l}
h=v+\eta \\
l_{L} \\
l_{L}
\end{array}\right|_{i}(x)+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\|\left(\begin{array} { c c }
{ h _ { 2 } } & { - h _ { 1 } } \\
{ h _ { 1 } ^ { * } } & { h _ { 2 } ^ { * } }
\end{array} | | \begin{array} { l }
{ v _ { L } } \\
{ l _ { L } }
\end{array} \| _ { i } (x) + \| \left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\left|\begin{array}{c}
v_{L} \\
l_{L}
\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}
h=v+\eta \\
\approx \\
v^{2}
\end{array}\left|\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\|\left(\begin{array} { c c }
{ h _ { 2 } } & { - h _ { 1 } } \\
{ h _ { 1 } ^ { * } } & { h _ { 2 } ^ { * } }
\end{array} | | \begin{array} { l }
{ v _ { L } } \\
{ l _ { L } }
\end{array} \| _ { i } (x) + \| \left(\begin{array}{cc}
h_{2} & -h_{1} \\
h_{1}^{*} & h_{2}^{*}
\end{array}\left|\begin{array}{c}
v_{L} \\
l_{L}
\end{array}\left\|_{j}\right\|_{j}(y)\right| \begin{array}{c}
h=v+\eta \\
\approx \\
v^{2}
\end{array}\left|\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{i}(x)^{+}+\left(\left.\begin{array}{l}
v_{L} \\
l_{L}
\end{array}\right|_{j}(y)+O(\eta)\right.\right.\right.
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Extends non-trivially to hadrons

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

- Supports FMS prediction

Flavor on the lattice

- Only mock-up standard model
- Compressed mass scales
- One generation
- Degenerate leptons and neutrinos
- Dirac fermions: left/righthanded non-degenerate
- Quenched
- Same qualitative outcome
- FMS construction
- Mass defect
- Flavor and custodial symmetry patterns

Spectrum: Lattice and predictions

- Supports FMS prediction - grant for unquenching '24-'28

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$ Standard Irrelevant at low energies

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
$\langle h e h e \mid X\rangle=\langle e e \mid X\rangle+\langle\eta \eta\rangle\langle e e \mid X\rangle+\langle e e\rangle\langle\eta \eta \mid X\rangle+\ldots$

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
\langle hehe $\mid X\rangle=\langle e e \mid X\rangle+\langle\eta \eta\rangle\langle e e \mid X\rangle+\langle e e\rangle\langle\eta \eta \mid X\rangle+\ldots$
- High energies: Weakly inclusive because of Higgs

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
\langle hehe $\mid X\rangle=\langle e e \mid X\rangle+\langle\eta \eta\rangle\langle e e \mid X\rangle+\langle e e\rangle\langle\eta \eta \mid X\rangle+\ldots$
- High energies: Weakly inclusive because of Higgs

$$
\sigma_{\bar{\Psi}_{L}^{2} \Psi_{L}^{2} \rightarrow X}^{L O}=\sigma_{\bar{I}_{L} l_{L} \rightarrow X}^{L O}+\sigma_{\bar{I}_{L} v_{L} \rightarrow X}^{L O}+\sigma_{\bar{v}_{L} l_{L} \rightarrow X}^{L O}+\sigma_{\bar{v}_{L} v_{L} \rightarrow X}^{L O}+\text { higher order }
$$

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
\langle hehe $\mid X\rangle=\langle e e \mid X\rangle+\langle\eta \eta\rangle\langle e e \mid X\rangle+\langle e e\rangle\langle\eta \eta \mid X\rangle+\ldots$
- High energies: Weakly inclusive because of Higgs
$\sigma_{\bar{\Psi}_{L}^{2} \Psi_{L}^{2} \rightarrow X}^{L O}=\sigma_{\bar{T}_{L} I_{L} \rightarrow X}^{L O}+\sigma_{\bar{I}_{L} v_{L} \rightarrow X}^{L O}+\sigma_{\bar{v}_{V_{L}} l_{X} \rightarrow X}^{L O}+\sigma_{\bar{v}_{L} v_{L} \rightarrow X}^{L O}+$ higher order
- Restores BN theorem and KLN theorem: No Sudakov

Invalidation in electroweak physics

- Particles are again (electroweak) gauge-singlets
- Low energy: FMS expansion
\langle hehe $\mid X\rangle=\langle e e \mid X\rangle+\langle\eta \eta\rangle\langle e e \mid X\rangle+\langle e e\rangle\langle\eta \eta \mid X\rangle+\ldots$
- High energies: Weakly inclusive because of Higgs
$\sigma_{\bar{\Psi}_{L}^{2} \Psi_{L}^{2} \rightarrow X}^{L O}=\sigma_{\bar{T}_{L} I_{L} \rightarrow X}^{L O}+\sigma_{\bar{I}_{L} v_{L} \rightarrow X}^{L O}+\sigma_{\bar{v}_{V_{L}} l_{X} \rightarrow X}^{L O}+\sigma_{\bar{v}_{L} v_{L} \rightarrow X}^{L O}+$ higher order
- Restores BN theorem and KLN theorem: No Sudakov
- Interesting consequences for PDFs/FFs

Summary

- Full gauge invariance also for weak interactions

Review: 1712.04721 Update: 2305.01960

Summary

- Full gauge invariance also for weak interactions
- Relevant for electroweak resummation at high energies (\rightarrow FCC/FLC)
- Comparable to strong corrections

Summary

- Full gauge invariance also for weak interactions
- Relevant for electroweak resummation at high energies (\rightarrow FCC/FLC)
- Comparable to strong corrections
- Effect suppressed at low energies because of standard model structure
- Different in BSM physics

Review: 1712.04721 Update: 2305.01960

