Colour Evolution and Infrared Physics

Simon Plätzer
Institute of Physics — NAWI, University of Graz
Particle Physics - University of Vienna
At the
NAWI Graz
Parton Showers and Resummation Workshop Graz | 3 July 2024
https://particle.uni-graz.at/en/event-generators-and-resummation/

Accuracy of parton showers

Fragmentation is fine if we get collinear physics right.

Accuracy of Parton Showers

[Catani, Trentadue, Webber, Marchesini]

Fragmentation is fine if we get collinear physics right.

Global event shapes from coherent branching - for two jets.

$$
H\left(\alpha_{s}\right) \times \exp \left(L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots\right)
$$

LL - qualitative NLL - quantitative NNLL - precision

$$
\alpha_{s} L \sim 1
$$

Accuracy of Parton Showers

Fragmentation is fine if we get collinear physics right.

Global event shapes from coherent branching - for two jets.

$$
H\left(\alpha_{s}\right) \times \exp \left(L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots\right)
$$

LL - qualitative
NLL - quantitative NNLL - precision

$$
\alpha_{s} L \sim 1
$$

Accuracy of Parton Showers

Fragmentation is fine if we get collinear physics right.

Global event shapes from coherent branching - for two jets.

Coherence breaks down for nonglobal observables.

$$
\frac{\partial G_{a b}(t)}{\partial t}=-\int_{\text {in }} \frac{\mathrm{d} \Omega_{k}}{4 \pi} \omega_{a b}(k) G_{a b}(t)+\int_{\text {out }} \frac{\mathrm{d} \Omega_{k}}{4 \pi} \omega_{a b}(k)\left[G_{a k}(t) G_{k b}(t)-G_{a b}(t)\right]
$$

Full colour and interferences are central to go beyond

Colour reconnection and hadronization is about subleading-N.
So are shower accuracy and interference terms.

Colour factor algorithms

Coherent, NLL-accurate
dipole showers
[Gustafson] [PanScales '2I]
[Forshaw, Holguin, Plätzer '2I]

Colour ME corrections

Colour-exact real emissions as far as possible
[Plätzer, Sjödahl ' 12 , ‘'18]
[Höche, Reichelt '20]

Full amplitude evolution

Colour-exact real and virtual corrections
[Forshaw, Plätzer + ... '06, '13 ...]
[Nagy, Soper '07 ...]

Full colour and interferences are central to go beyond

Colour reconnection and hadronization is about subleading-N.
So are shower accuracy and interference terms.

Colour factor algorithms

Coherent, NLL-accurate
dipole showers
[Gustafson] [PanScales '2I]
[Forshaw, Holguin, Plätzer '2I]

Colour ME corrections

Colour-exact real emissions as far as possible
[Plätzer, Sjödahl ' 12 , ‘18]
[Höche, Reichelt '20]

Full amplitude evolution

Colour-exact real and virtual corrections
[Forshaw, Plätzer + ... '06,' 13 ...]
[Nagy, Soper '07 ...]

Amplitude evolution

Markovian algorithm at the amplitude level: Iterate gluon exchanges and emission.
Different histories in amplitude and conjugate amplitude needed to include interference.

CVolver solves evolution equations in colour flow space. Flexible for dedicated resummation and new parton showers.

```
One-loop structures ... [Plätzer 'I3]
Soft evolution ... [Angeles, De Angelis, Forshaw, Plätzer, Seymour - 'I8]
Soft + collinear evolution ... [Forshaw, Holguin, Plätzer - 'I9]
Two-loop structures ... [Plätzer, Ruffa - '2I]
First Monte Carlo implementation ... [De Angelis, Forshaw, Plätzer - '2I]
Emissions beyond leading order ... [Löschner, Plätzer, Simpson-Dore - '20]
```


Amplitude evolution

$$
\mathbf{A}_{n}(q)=\int_{q}^{Q} \frac{\mathrm{~d} k}{k} \mathrm{P} e^{-\int_{q}^{k} \frac{\mathrm{~d} k^{\prime}}{k^{\prime}} \boldsymbol{\Gamma}\left(k^{\prime}\right)} \mathbb{D}_{n}(k) \mathbf{A}_{n-1}(k) \mathbb{D}_{n}^{\dagger}(k) \overline{\mathrm{P}} e^{-\int_{q}^{k} \frac{\mathrm{~d} k^{\prime}}{k^{\prime}} \boldsymbol{\Gamma}^{\dagger}\left(k^{\prime}\right)}
$$

$$
\mathbb{D}^{(1,0)} \circ \mathbb{D}^{(1,0) \dagger}=\frac{\alpha_{S}}{2 \pi} \sum_{i, j} \omega_{i j} \mathbf{T}_{i}^{a} \circ \mathbf{T}_{j}^{\dagger b} \quad \boldsymbol{\Gamma}^{(1)}=\frac{\alpha_{s}}{2 \pi} \sum_{i<j} \int \mathrm{~d} \Omega \omega_{i j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}
$$

Colour flows

Gluon emission

$\mathbf{D}_{n}(k)$

Explicit suppression in I/N

Systematically expand around large-N limit summing towers of terms enhanced by $\alpha_{S} N$

Gluon exchange

$$
\mathrm{P} e^{-\int_{q}^{k} \frac{\mathrm{~d} k^{\prime}}{k^{\prime}} \boldsymbol{\Gamma}\left(k^{\prime}\right)}\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

$$
[\tau|\boldsymbol{\Gamma}| \sigma\rangle=\left(\alpha_{s} N\right)\left[\tau\left|\boldsymbol{\Gamma}^{(1)}\right| \sigma\right\rangle+\left(\alpha_{s} N\right)^{2}\left[\tau\left|\boldsymbol{\Gamma}^{(2)}\right| \sigma\right\rangle+\ldots
$$

$$
\left[\tau\left|\boldsymbol{\Gamma}^{(1)}\right| \sigma\right\rangle=\left(\Gamma_{\sigma}^{(1)}+\frac{1}{N^{2}} \rho^{(1)}\right) \delta_{\sigma \tau}+\frac{1}{N} \Sigma_{\sigma \tau}^{(1)}
$$

Colour flows

Gluon emission
$\mathbf{D}_{n}(k)$

Explicit suppression in I/N

π

Gluon exchange

$$
\mathrm{P} e^{-\int_{q}^{k} \frac{\mathrm{~d} k^{\prime}}{k^{\prime}} \Gamma\left(k^{\prime}\right)}
$$

$$
[\tau|\boldsymbol{\Gamma}| \sigma\rangle=\left(\alpha_{s} N\right)\left[\tau\left|\boldsymbol{\Gamma}^{(1)}\right| \sigma\right\rangle+\left(\alpha_{s} N\right)^{2}\left[\tau\left|\boldsymbol{\Gamma}^{(2)}\right| \sigma\right\rangle+\ldots
$$

[Plätzer, Ruffa - '2I]
dipole flips - implicit suppression in I/N

Systematic construction? Hadronization? Higher orders?

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathbf{1}_{n} u\left(p_{1}, \ldots, p_{n}\right)
$$

Jet cross sections

CVolver algorithm

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathbf{1}_{n} u\left(p_{1}, \ldots, p_{n}\right)
$$

Jet cross sections

CVolver algorithm

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathbf{1}_{n} u\left(p_{1}, \ldots, p_{n}\right)
$$

Jet cross sections

CVolver algorithm

Different resolution variables

Power corrections and link to SCET resummation of NGL

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathbf{1}_{n} u\left(p_{1}, \ldots, p_{n}\right)
$$

Jet cross sections

CVolver algorithm

Different resolution variables

Power corrections and link to SCET resummation of NGL

Factorisation and evolution

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

The role of the IR cutoff

Just a technical parameter?

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

- If a shower exploits unitarity, then implicit virtual corrections essentially use a cutoff-dependent renormalisation scheme. [Hoang, Plätzer, Samitz - JHEP 10 (2018) 200]

My approach:"renormalise" bare colour operators.
[Plätzer - JHEP 07 (2023) I26]

$$
\begin{aligned}
& \text { Subtract IR divergencies } \quad \mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right] \\
& \text { in unresolved regions } \\
& \text { Re-arrange to resum } \\
& \text { IR enhancements } \quad \mathbf{M}_{n} Z_{g}^{n}=\mathcal{Z}_{n}\left[\mathbf{A}\left(\mu_{S}\right), \mu_{S}\right]
\end{aligned}
$$

- Even if we include explicit virtual contributions, a cutoff is present. This is independent of the UV renormalisation scheme, and impacts the structure of the resummation.

Building shower and resummation algorithms

\#

Factorisation of amplitudes and power expansions.

[Löschner, Plätzer, Ruffa, Sjödahl - '20+]

Building shower and resummation algorithms

Building shower and resummation algorithms

[Löschner, Plätzer, Ruffa, Sjödahl — '20+]
NLL parton showers - Herwig 7 dipole shower
[Forshaw, Holguin, Plätzer - '20+] [Holguin, Plätzer, Seymour, Sule - wip]

$$
H\left(\alpha_{s}\right) \times \exp \left(L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots\right)
$$

$$
\text { LL - qualitative } \quad \text { NLL - quantitative } \quad \text { NNLL - precision }
$$

Amplitude evolution and resummation algorithms.

- Started with non-global logarithms.
[Forshaw, Plätzer et al. - 'I8+]
- Establishing links to JIMWLK, EFT, direct QCD resummation.

Building and constraining hadronization models

Hadron correlations not predicted or simplistic, baryon rates not right, cutoff dependence uncontrolled (fitted together with strong coupling), uncertainties not quantified ... impact to ML more than worrying.

Building and constraining hadronization models

Towards a smooth matching of shower and hadronization at the infrared cutoff — inspired by coherent branching.
[Hoang, Jin, Plätzer, Samitz — 2404.09856]

Hadron correlations not predicted or simplistic, baryon rates not right, cutoff dependence uncontrolled (fitted together with strong coupling), uncertainties not quantified ... impact to ML more than worrying.

Building and constraining hadronization models

Hadron correlations not predicted or simplistic, baryon rates not right, cutoff dependence uncontrolled (fitted together with strong coupling), uncertainties not quantified ... impact to ML more than worrying.

Redefinitions of "bare" operators

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

$$
\mathbf{M}_{n} \rightarrow \alpha_{s}^{n}\left(\mathbf{M}_{n}^{(0)}+\alpha_{s}\left[\mathbf{M}_{n}^{(1)}-\mathbf{X}_{n}^{(1)} \mathbf{M}_{n}^{(0)}-\mathbf{M}_{n}^{(0)} \mathbf{X}_{n}^{(1) \dagger}-\mathbb{F}^{(1,0)} \mathbf{M}_{n-1}^{(0)} \mathbb{F}_{n}^{(1,0) \dagger}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

$$
\mathbf{M}_{n} \rightarrow \alpha_{s}^{n}\left(\mathbf{M}_{n}^{(0)}+\alpha_{s}\left[\mathbf{M}_{n}^{(1)}-\mathbf{X}_{n}^{(1)} \mathbf{M}_{n}^{(0)}-\mathbf{M}_{n}^{(0)} \mathbf{X}_{n}^{(1) \dagger}-\mathbb{F}^{(1,0)} \mathbf{M}_{n-1}^{(0)} \mathbb{F}_{n}^{(1,0) \dagger}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

unresolved emission

$$
/
$$

at leading power

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

$$
\mathbf{M}_{n} \rightarrow \alpha_{s}^{n}\left(\mathbf{M}_{n}^{(0)}+\alpha_{s}\left[\mathbf{M}_{n}^{(1)}-\mathbf{X}_{n}^{(1)} \mathbf{M}_{n}^{(0)}-\mathbf{M}_{n}^{(0)} \mathbf{X}_{n}^{(1) \dagger}-\mathbb{F}^{(1,0)} \mathbf{M}_{n-1}^{(0)} \mathbb{F}_{n}^{(1,0) \dagger}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

unresolved emission at leading power
loop divergence at
leading power, no
unresolved emission

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

Infer subtractions from singular behaviour.
Complete by re-defining hard process.

$$
\mathbf{M}_{n} Z_{g}^{n}=\mathcal{Z}_{n}\left[\mathbf{A}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{Z}_{n} \mathbf{A}_{n} \mathbf{Z}_{n}^{\dagger}+\sum_{s=1}^{n} \alpha_{S}^{s} \mathbf{E}_{n}^{(s)} \mathbf{A}_{n-s} \mathbf{E}_{n}^{(s) \dagger}
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

inverse to

$$
\mathbf{M}_{n} Z_{g}^{n}=\mathcal{Z}_{n}\left[\mathbf{A}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{Z}_{n} \mathbf{A}_{n} \mathbf{Z}_{n}^{\dagger}+\sum_{s=1}^{n} \alpha_{S}^{s} \mathbf{E}_{n}^{(s)} \mathbf{A}_{n-s} \mathbf{E}_{n}^{(s) \dagger}
$$

$$
\begin{aligned}
& \sum_{n} \alpha_{0}^{n} \int \operatorname{Tr}\left[\mathbf{M}_{n} \mathbf{U}_{n}\right] \mathrm{d} \phi_{n}=\sum_{n} \alpha_{S}^{n} \int \operatorname{Tr}\left[\mathcal{Z}_{n}\left[\mathbf{A}\left(\mu_{S}\right), \mu_{S}\right] \mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]\right] \mathrm{d} \phi_{n}= \\
& \sum_{n} \alpha_{S}^{n} \int \operatorname{Tr}\left[\mathbf{A}_{n}\left(\mu_{S}\right) \mathbf{S}_{n}\left(\mu_{S}\right)\right] \mathrm{d} \phi_{n}
\end{aligned}
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

Subtractions necessitate a resolution: what is it we call 'unresolved'? Encompass all singular regions!
resolution function for (cut) loop momenta

$$
\left.\begin{array}{l}
\mathbf{X}_{n}^{(1)}=\hat{\mathbf{V}}_{n}^{(1)}\left[\Xi_{n, 1}\right] \\
\mathbf{F}_{n}^{(1,0)} \circ \mathbf{F}_{n}^{(1,0) \dagger}=\mathbf{D}_{n}^{(1,0)} \circ \mathbf{D}_{n}^{(1,0) \dagger} \Theta_{n, 1} \\
\text { resolution function for real emission }
\end{array} \hat{\mathbf{V}}_{n}^{(l)}\left[\Xi_{n, l}\right]=\sum_{\alpha} \int \mathcal{I}_{n, \alpha}^{(l)}\left(p_{1}, \ldots, p_{n} ; k_{1}, \ldots, k_{l}\right) \Xi_{n, l}^{(\alpha)} \prod_{i=1}^{l} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} k_{i}\right]\right)
$$

Redefinitions of "bare" operators

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$

$$
\mathbf{U}_{n}=\mathcal{X}_{n}\left[\mathbf{S}\left(\mu_{S}\right), \mu_{S}\right]=\mathbf{X}_{n}^{\dagger} \mathbf{S}_{n} \mathbf{X}_{n}-\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{F}_{n+s}^{(s) \dagger} \mathbf{S}_{n+s} \mathbf{F}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

Subtractions necessitate a resolution: what is it we call 'unresolved'? Encompass all singular regions!
resolution function for (cut) loop

$$
\begin{aligned}
& \mathbf{X}_{n}^{(1)}=\hat{\mathbf{V}}_{n}^{(1)}\left[\Xi_{n, 1}\right] \\
& \mathbf{F}_{n}^{(1,0)} \circ \mathbf{F}_{n}^{(1,0) \dagger}=\mathbf{D}_{n}^{(1,0)} \circ \mathbf{D}_{n}^{(1,0) \dagger}
\end{aligned}
$$

Continues to higher orders ...

$$
\begin{aligned}
& \mathbf{X}_{n}^{(2)}=\hat{\mathbf{V}}_{n}^{(2)}\left[\Xi_{n, 2}\right]-\hat{\mathbf{V}}_{n}^{(1)}\left[\Xi_{n, 1}\right] \hat{\mathbf{V}}_{n}^{(1)} \\
& \mathbf{F}_{n}^{(1,1)} \circ \mathbf{F}_{n}^{(1,0) \dagger}=\mathbf{D}_{n}^{(1,1)}\left[\Xi_{n-1,1,1}\right] \mathbf{D}_{n}^{(1,0) \dagger} \Theta_{n, 1} \\
&+\mathbf{D}_{n}^{(1,1)}\left[1-\Xi_{n-1,1]} \circ \mathbf{D}_{n}^{(1,0)} \Theta_{n, 1}+\mathbf{D}_{n}^{(1,1)}\left[\Xi_{n-1,1} \circ \mathbf{D}_{n}^{(1,0) \dagger}\left(1-\Theta_{n, 1}\right)\right.\right. \\
&-\hat{\mathbf{V}}_{n}^{(1)}\left[\Xi_{n-1,1}\right] \mathbf{D}_{n}^{(1,0)} \circ \mathbf{D}_{n}^{(1,0) \dagger}+\mathbf{D}_{n}^{(1,0)} \hat{\mathbf{V}}_{n-1}^{(1)} \circ \mathbf{D}_{n}^{(1,0) \dagger} \Theta_{n, 1} \\
& \mathbf{F}_{n}^{(2,0)} \circ \mathbf{F}_{n}^{(2,0) \dagger}=\mathbf{D}_{n}^{(2,0)} \circ \mathbf{D}_{n}^{(2,0) \dagger} \Theta_{n, 2}-\mathbf{D}_{n}^{(1,0)} \mathbf{D}_{n-1}^{(1,0)} \circ \mathbf{D}_{n-1}^{(1,0) \dagger} \mathbf{D}_{n}^{(1,0) \dagger} \Theta_{n, 1}
\end{aligned}
$$

Evolution equations

Hard factor reproduces CVolver algorithm and

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$ predicts key features of second order evolution.

$$
\partial_{S} \mathbf{S}_{n}=-\tilde{\boldsymbol{\Gamma}}_{S, n}^{\dagger} \mathbf{S}_{n}-\mathbf{S}_{n} \tilde{\mathbf{\Gamma}}_{S, n}+\sum_{s \geq 1} \alpha_{S}^{s} \int \tilde{\mathbf{R}}_{S, n+s}^{(s) \dagger} \mathbf{S}_{n+s} \tilde{\mathbf{R}}_{S, n+s}^{(s)} \prod_{i=n+1}^{n+s}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

$$
\partial_{S} \mathbf{A}_{n}=\boldsymbol{\Gamma}_{n, S} \mathbf{A}_{n}+\mathbf{A}_{n} \boldsymbol{\Gamma}_{n, S}^{\dagger}-\sum_{s \geq 1} \alpha_{S}^{s} \mathbf{R}_{S, n}^{(s)} \mathbf{A}_{n-s} \mathbf{R}_{S, n}^{(s) \dagger}
$$

Evolution equations

Hard factor reproduces CVolver algorithm and predicts key features of second order evolution.

Constructing evolution algorithms

Hard factor reproduces CVolver algorithm and

$$
\sigma=\sum_{n, m} \iint \operatorname{Tr}_{n}\left[\mathbf{M}_{n} \mathbf{U}_{n m}\right] \mathrm{d} \phi_{m} u\left(\phi_{m}\right)
$$ predicts key features of second order evolution.

Subtract iterated contribution in ordered phase space.

$$
\begin{aligned}
\mathbf{R}_{n}^{(2,0)} \circ \mathbf{R}_{n}^{(2,0) \dagger}= & \left(\hat{\mathbf{D}}_{n}^{(0,2)} \circ \hat{\mathbf{D}}_{n}^{(0,2) \dagger} \hat{\Theta}_{n, 2}-\hat{\mathbf{D}}_{n}^{(0,1)} \hat{\mathbf{D}}_{n-1}^{(0,1)} \circ \hat{\mathbf{D}}_{n-1}^{(0,1) \dagger} \hat{\mathbf{D}}_{n}^{(0,1) \dagger} \hat{\Theta}_{n-1,1} \hat{\Theta}_{n, 1}\right) \\
& \times \theta\left(E_{n-1}-\mu_{S}\right) \delta\left(E_{n}-\mu_{s}\right) \\
& +\hat{\mathbf{D}}_{n}^{(0,2)} \circ \hat{\mathbf{D}}_{n}^{(0,2) \dagger} \hat{\Theta}_{n, 2} \theta\left(E_{n}-\mu_{S}\right) \delta\left(E_{n-1}-\mu_{S}\right)
\end{aligned}
$$

Use full double gluon matrix element outside.

Similar consequences for virtual corrections.

What structures are admissible?

Subtracted ("renormalised") observable defines a very general criterion of infrared safety: finiteness means the bare observable must admit cancellations local in momentum and colour space.

$$
\mathbf{S}_{n}=\mathbf{Z}_{n}^{\dagger} \mathbf{U}_{n} \mathbf{Z}_{n}+\sum_{s=1}^{\infty} \alpha_{S}^{s} \int \mathbf{E}_{n+s}^{(s) \dagger} \mathbf{U}_{n+s} \mathbf{E}_{n+s}^{(s)} \prod_{i=n+1}^{n+s} \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{i}\right] \tilde{\delta}\left(p_{i}\right)
$$

This structure is ubiquitous if we talk about electroweak final states (in isospin space) and if we want to predict fully detailed and exclusive final states as needed for an event generator.

Observables singular at his level are genuine non-perturbative.

What structures are admissible?

Subtracted ("renormalised") observable defines a very general criterion of infrared safety: finiteness means the bare observable must admit cancellations local in momentum and colour space.

$$
\begin{aligned}
& \mathbf{S}_{n}=\mathbf{1}_{n} u\left(p_{1}, \ldots, p_{n}\right) \quad \text { intrared resolution vs observable } \\
& -\alpha_{s} \int \mu_{R}^{2 \epsilon}\left[\mathrm{~d} p_{n+1}\right] \tilde{\delta}\left(p_{n+1}\right) \hat{\mathbf{D}}_{n+1}^{(1,0) \dagger} \hat{\mathbf{D}}_{n+1}^{(1,0)} \Theta_{n, 1}\left[u\left(p_{1}, \ldots, p_{n}, p_{n+1}\right)-u\left(p_{1}, \ldots, p_{n}\right)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

This structure is ubiquitous if we talk about electroweak final states (in isospin space) and if we want to predict fully detailed and exclusive final states as needed for an event generator.

Observables singular at his level are genuine non-perturbative.

What structures are admissible?

Hadronization models would start by studying clusters.
Colour reconnection and cluster fission present.

Hadronization and the interface to showers lacks:

- comprehensive uncertainty estimates
- predictivity
- extrapolation across different energy regimes
- links to analytic models ...

NB: Machine learned models will only continue to parametrize our ignorance.

- comprehensive uncertainty estimates
- predictivity
- extrapolation across different energy regimes
- links to analytic models ...

NB: Machine learned models will only continue to parametrize our ignorance.

[figure by Jan Priedigkeit]
Hadronization and the interface to showers lacks:

[figure by Jan Priedigkeit]

- extrapolation across different energy regimes
- links to analytic models ...

NB: Machine learned models will only continue to parametrize our ignorance.

Most needed when hadronizing the unknown: strongly interacting dark matter.

[Kulkarni, Massouminia, Plätzer, Stafford — in preparation]

Looking ahead - Foundations

Generally we need to understand exclusive processes and factorisation, and (renormalised) LSZ and projections onto physical (singlet) final states.

$$
\begin{aligned}
K_{i, s}^{\mu} & =\Lambda^{\mu}{ }_{\nu}\left(Q_{i, s}^{\nu}+\delta_{i, s} n_{i, s}^{\nu}\right) \\
q_{i}^{\mu} & =\Lambda^{\mu}{ }_{\nu}\left(\alpha p_{i}^{\nu}+\frac{\left(1-\alpha^{2}\right) M_{i}^{2}+p_{i} \cdot Q_{i, s}}{2 \alpha n_{i, s} \cdot p_{i}} n_{i, s}^{\nu}\right)-K_{i, s}^{\mu}
\end{aligned}
$$

$$
\left(Z_{\Phi}^{-1 / 2} \prod_{i=1}^{n} Z_{\phi_{i}}^{-1 / 2}\right) \bar{X}^{\alpha}\left(\vec{P}, M \mid p_{1}, \ldots, p_{n}\right) u_{\alpha}^{j_{1}, \ldots, j_{n}}=P, \alpha-\square \underbrace{p_{1}, j_{1}}_{p_{n}, j_{n}}
$$

Composite particle scattering - for FMS as well as to study exclusive processes.

Looking ahead — Spin

Generally we need to understand exclusive processes and factorisation and projections onto physical (singlet) final states - including spin.

Find a basis of spin structures, together with isospin and colour.

Essentially a basis of
Could this point to a more general version

$$
\mathbf{1} \quad \sigma^{\mu} \quad \frac{1}{2}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)
$$

Electroweak bosons now mix different chiral basis states.

Colour space evolution equations are an exiting theoretical tool to build parton shower and resummation algorithms, and an important subject in their own right to study structures we can expect from QCD evolution.

For event generators, parton shower accuracy is crucial, but hadronization is the elephant in the room. Together with parton showers we need to get this back on top of the agenda.

Factorisation of infrared physics will also teach us about the development of hadronization models and colour reconnection, but also the possible connections to other evolution equations like JIMWLK.

The framework outlined here has significant room for extensions and further analytic and simulation work, either in or beyond the large-N limit.

Thank you

