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b) Vorgabe für Publikation von WissenschafterInnen, die den Kooperationen NAWI Graz und 
BioTechMed-Graz zuzuordnen sind 

Für Publikationen einer Autorin bzw. eines Autors, die/der beiden Kooperationen – NAWI Graz und 
BioTechMed-Graz – zuzuordnen sind, ist folgendes Schema zu wählen: NAWI Graz ist im Kontext der 
Stammaffiliation zu ergänzen, BioTechMed-Graz wird als zweite, separate Affiliation angeführt (siehe 
auch Richtlinie RL 92000 APFP 071-01 der Technischen Universität Graz). 
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4. Das Logo 

a) Allgemeines 

NAWI Graz-Logo 4C:  

NAWI Graz-Logo s/w:  
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Accuracy of parton showers

Fragmentation is fine if we get 
collinear physics right.
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Global event shapes from coherent 
branching — for two jets.

Fragmentation is fine if we get 
collinear physics right.

[Catani, Trentadue, Webber, Marchesini ….]
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Accuracy of Parton Showers
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Global event shapes from coherent 
branching — for two jets.

Fragmentation is fine if we get 
collinear physics right.

Coherence breaks down for non-
global observables.

[Banfi, Marchesini, Smye ’02]

contribution to the non-global logarithms:
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where the hard partons have momenta pa and pb, ti = (N↵s/⇡) ln(Ei/⇢) and we used the
notation !

i

ab
= !ab(q̂i).

The ⌃n can also be obtained by iteratively solving the BMS equation, as we will now
illustrate. The BMS equation can be written as follows,
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and our observable corresponds to
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which gives the desired result after integrating over 0 < t < tQ. The next iteration gives
⌃2, i.e. we substitute gij(t) on the RHS of the BMS equation by g
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Full colour and interferences are central to go beyond

Colour reconnection and hadronization is about subleading-N.
So are shower accuracy and interference terms.

Colour factor algorithms Colour ME corrections Full amplitude evolution

[Gustafson] [PanScales ‘21]
[Forshaw, Holguin, Plätzer ’21]

[Plätzer, Sjödahl ’12, ‘18]
[Höche, Reichelt ’20]

Coherent, NLL-accurate 
dipole showers

Colour-exact real 
emissions as far as possible

Colour-exact real and 
virtual corrections

[Forshaw, Plätzer + … ’06, ’13 …]
[Nagy, Soper ’07 …]
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Amplitude evolution

One-loop structures … [Plätzer ’13]
Soft evolution … [Angeles, De Angelis, Forshaw, Plätzer, Seymour – ‘18]
Soft + collinear evolution … [Forshaw, Holguin, Plätzer – ’19]
Two-loop structures … [Plätzer, Ruffa — ’21]
First Monte Carlo implementation … [De Angelis, Forshaw, Plätzer —  ’21]
Emissions beyond leading order … [Löschner, Plätzer, Simpson-Dore — ’20]

Markovian algorithm at the amplitude level: Iterate gluon exchanges and emission.
Different histories in amplitude and conjugate amplitude needed to include interference.
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CVolver solves evolution equations in 
colour flow space. Flexible for dedicated 
resummation and new parton showers.



Amplitude evolution
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Simplest case: Eikonal current
Simplest case: soft exchanges
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The colour-flow Kronecker deltas obtained in the first line of equation (4.5) are an expression

for the quantity hc|�̃i, which now has to be compared to hc|�i which equals the first expression

in brackets in the upper equation. One can observe that, in order for the two permutations

� and ⌧ to match, one has to swap the colour indices ci and cj in the ⌧ -permutation. The

action of swapping the colour indices and then comparing to ⌧ is described by the expression of

�⌧(a,b)��(a,b)(ci,cj) - the two elements (a, b) have to be swapped such that the permutations ⌧ and

� match and in this case the elements (a, b) are (ci, cj), respectively.

For the case of a quark line i and an anti-quark line j it is necessary to distinguish two dif-

ferent cases for the basis permutation �. In addition to the case described above where the

colour indices are connected to any other anti-colour indices of the permutation �, one now has

to explicitly consider a colour-connection between the lines i and j, i.e. between the colour/anti-

colour indices of c0i and c0j . These two possibilities lead to
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where in this case the elements ci and ��1(cj) = c0m have to be swapped such that the permuta-

tions ⌧ and � match.

However, for the second possibility of the basis permutation � no swap is necessary, instead one

obtains
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! N��⌧�ci��1(cj) .

In the case of a colour-connection between the lines i and j one finds that the permutations �

and ⌧ match (��⌧ ), the �ci��1(cj) specifies the colour-connection of the basis. Further, there is a

factor of N, due to the “colour-loop”.

In the same way the cases of two anti-quark lines i, j and of an anti-quark line i and a quark line

j can be treated. When considering gluon lines there are no additional contributions specific to

gluon lines at one-loop level, i.e. they can be built from the combined quark/anti-quark cases
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Figure 2: Colour-line diagrams for the emission of a soft gluon from a hard quark line i,
colour labels are explicitly written.
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Figure 3: Colour-line diagrams for the emission of a soft gluon from a hard anti-quark line
i.

as a combination with a generator, i.e.
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(3.13) which has been chosen to replace the factor of
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In Figure 2 the two expressions of colour-flow Kronecker deltas in equation (3.13) are depicted

in terms of colour-line/colour-flow diagrams.

The two parts in this result come from the usage of the Fierz identity, which implements the

fact that the SU(N) gluon propagator has been decomposed into a U(N) and a U(1) part. The

latter symbolises a gluon which is colour-connected to itself, this contribution gets subtracted

from the U(N) gluon colour-flow. The dashed line of the second diagram in Figure 2 is used to

represent this U(1) part, it is suppressed in the number of colours.

When considering a soft gluon emission o↵ an anti-quark one finds the similar result of
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where, in the colour-line notation, this result can be depicted by the flow of colour in the way

one can see in Figure 3. Finally, for a hard gluon line i radiating a soft gluon one finds
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where the �
↵c0i
�ci

and �
↵ci
�c0i

Kronecker deltas can be dropped, as they simply describe the “spectator”

colour lines, i.e. there occurs no change in the colour label, which can be seen from the colour-

line diagrams in Figure 4. Note that in this case there is a gluon propagator, for this reason one

writes an additional generator (tc) in equation (3.15), which has been extracted from the vertex

in the hard process, such that one can ensure that all of the adjoint indices in the expression

are contracted.

It turns out that for the triple gluon vertex one finds a simplified colour structure, since all of
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Gluon emission Gluon exchange

divergence in E only (collinear divergences in !(ij) will cancel with the real emission when

calculating a full cross section). At leading order, !(ij) is independent of the scales µ and

E, and only depends on the hard parton’s directions of motion rather than their energies.

We find in the case of two outgoing or two incoming lines that
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In this case, we have assumed an ordering in energy, though other ordering variables are

possible and will give rise to di↵erent forms of the anomalous dimension; we therefore

discuss the loop integrals without making a reference to a particular ordering variable or

observable. Explicit results for energy and p? ordering will be presented in an upcoming

publication.

In the colour flow basis, the same quantity takes the form
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which is readily verified by using the decomposition of the colour charge correlators in the

colour flow basis
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�i�j�(ab),(cicj) + �̄i�̄j�(ab),(��1(c̄i)��1(c̄j))

��i�̄j�(ab),(ci��1(c̄j)) � �̄i�j�(ab),(cj��1(c̄i))

⌘
.

(2.8)

In fact, we define the coe�cients �(1)
� , ⇢(1) and ⌃(1)

⌧� through this relation; implementa-

tions performing this calculation are available from the authors. We shall obtain similar

identities for the colour structures required for the evolution in the next order. At this

point it is important to remark that we can explicitly identify what the leading, colour

diagonal contributions are, and how the very sparse elements in the o↵-diagonal part of

the anomalous dimension matrix can be addressed e�ciently. This knowledge allows for an

e�cient Monte Carlo in colour space as well as a systematic expansion around the large-N

limit mentioned earlier.

While, in a perturbative expansion, one would treat the diagonal, 1/N2 suppressed bit

as a correction this turns out not to be a viable approach in the presence of collinear contri-

butions: in this case, dropping the 1/N2 contribution amounts to e↵ectively replacing CF

by CA/2 in the quark splitting function, which would thus not properly take into account

logarithmic contributions of soft- and hard-collinear origin. For this reason we stress that

an appropriate expansion around the large-N limit would actually need to be seen as an

expansion around the colour diagonal part (also referred to as d0 approximations in [15]),

something which will be of great importance when discussing the colour structures appear-

ing the two-loop case. Also note that the 1/N2 suppression in the one-loop anomalous

dimension might possibly be overcome since ⇢ contains a sum over all pairs of quarks and

antiquarks, not only colour connected dipoles.
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[Plätzer – ’13] — diagrams from [Ruffa, MSc thesis 2020]

squared of the single emission diagrams can be schematically illustrated as

�����

i

j

+

i

j

�����

2

= +

+ 2Re

0

@

1

A ,

(4.34)

where the first and the second diagram do not give a contribution in the soft limit in Feynman-

gauge due to the on-shellness of the external lines, whereas the third one gives

= �g2 (�Ti ·Tj)µ
2"
Z µs

0
d⇧k

pi · pj
[pi · k][�pj · k]

=
↵s

⇡
(2⇡)2"(�Ti ·Tj)

Z µs

0

dE

E

⇣ µ

E

⌘2"
Z

d⌦(d�2)

4⇡

ni · nj

(ni · n)(nj · n)
.

(4.35)

The phase-space integral is given by d⇧k = ddk
(2⇡)d�1 �(k

2)✓(k0) and the upper integration bound-

ary is taken to be the soft scale µs. Consequently, the radiative part of the virtual diagram

squared is exactly minus the real emission diagram; the infrared divergences cancel.

Note again that if an unordered colour sum is introduced one has to include a factor of 1/2 for

the single emission contribution as well.

4.4 Di↵erent momentum flow

If one takes the external momentum pi to be outgoing and pj incoming, the one-loop integral

now reads

i

j

pi + k

pj + k

k = (�Ti ·Tj)

Z
ddk

i⇡d/2

µ2" (ig2) 4(pi · pj)

[2pi · k + 2i0(p0i )
2][2pj · k + 2i0(p0j )

2][k2 + 2i0(k0)2]
, (4.36)

which leads to the conclusion that when using the FTT in this case, due to the sign structure

of the propagators, all lines have to be cut. Diagrammatically, this gives

i

j

= �

2

64
i

j

+

i

j

+

i

j

+

i

j

+

i

j

+

i

j

3

5 .

(4.37)

It turns out that the single eikonal cut of momentum (pi · k) gives the same result as already

determined in equation (4.23) and due to the symmetry in i and j the cut of momentum

(pj · k) does so as well. In accordance with the previous consideration of the double cuts in

38

performed. This can e↵ectively compensate the 1/N suppression. On the other hand, when one

takes into account collinear contributions, the quark splitting function has a colour factor of

CF = N2
�1

2N , performing the large-N limit would now lead to a replacement of CF by CA
2 . This

is, however, not done in the collinear sector.

4.3 Kinematic part of the loop-diagram

Concerning the kinematic part it is convenient to rewrite the loop integral as a phase-space type

integral using the Feynman tree theorem such that it is possible to combine it with the single

emission diagram in order to be able to explicitly observe the cancellation of IR divergences.

Using Feynman rules, one obtains for the one-loop diagram in Feynman gauge

i

j

pi + k

k

pj � k

= (�Ti ·Tj)

Z
ddk

i⇡d/2

µ2" (ig2) 4(pi · pj)

[2pi · k + 2i0(p0i )
2][�2pj · k + 2i0(p0j )

2][k2 + 2i0(k0)2]

= (�Ti ·Tj)⌦
(1)
ij ,

(4.10)

where the external momenta are assumed to be both outgoing. In the case that there are ad-

ditional hard lines, a sum for the colour structure has to be introduced, such that soft gluon

exchanges are are taken into account between all the possible hard lines, the sum then runs from

i, j = 1, ..., n with i 6= j where n is the total number of hard lines.

In the following calculation it is convenient to use a Sudakov decomposition for the loop mo-

mentum,

kµ = ↵pµi + �pµj + kµ
?
. (4.11)

The forward and backward components can be chosen to be

pi =

r
pi · pj
2

⇣
1,~0(d�2)

?
, 1
⌘

,

pj =

r
pi · pj
2

⇣
1,~0(d�2)

?
,�1

⌘
,

where pi · pj > 0. With this choice, the transverse part is then uniquely determined as k? =

p?(0,~n
(d�2)
? , 0) with ~n2

?
= 1. In terms of these variables the measure translates to

µ2"ddk = dp?p?✓(p?) (pi · pj)

✓
µ

p?

◆2"

d↵ d� d⌦(d�3) , (4.12)

see appendix A for the details on the Jacobian determinant in this case.

The Feynman tree theorem now instructs one to evaluate the cut diagrams - in the presence of

eikonal propagators one finds a radiative cut, an absorptive cut in the eikonal momentum (pi ·k)

and the combined double cut (cf. equation (3.49)). Schematically, the required cuts if both hard
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Figure 2: Colour-line diagrams for the emission of a soft gluon from a hard quark line i,
colour labels are explicitly written.
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Figure 3: Colour-line diagrams for the emission of a soft gluon from a hard anti-quark line
i.

as a combination with a generator, i.e.
p
TR("⇤)

�c̄n
↵cn

= "⇤a(t
a)�c̄n

↵cn
. The factor of �i in equation

(3.13) which has been chosen to replace the factor of
p
TR will be explained shortly.

In Figure 2 the two expressions of colour-flow Kronecker deltas in equation (3.13) are depicted

in terms of colour-line/colour-flow diagrams.

The two parts in this result come from the usage of the Fierz identity, which implements the

fact that the SU(N) gluon propagator has been decomposed into a U(N) and a U(1) part. The

latter symbolises a gluon which is colour-connected to itself, this contribution gets subtracted

from the U(N) gluon colour-flow. The dashed line of the second diagram in Figure 2 is used to

represent this U(1) part, it is suppressed in the number of colours.

When considering a soft gluon emission o↵ an anti-quark one finds the similar result of

�cn
/�c̄n

i
�c̄��i �ci

= �"⇤a(t
a)

↵c0i
�ci

= ��̄i("
⇤)

�cn
↵cn

✓
�
↵c0i
�cn

�↵cn
�ci

�
1

N
�
↵c0i
�ci

�↵cn
�cn

◆
, (3.14)

where, in the colour-line notation, this result can be depicted by the flow of colour in the way

one can see in Figure 3. Finally, for a hard gluon line i radiating a soft gluon one finds

�cn
/�c̄n

i
�c̄��i /�c��i �ci

/�c̄i

= �"⇤a"
⇤

bif
abc 1

p
TR

(tc)
↵c0i
�ci

= ("⇤)
�cn
↵cn

("⇤)
�ci
↵ci

✓
�i�

↵c0i
�ci

�↵cn
�c0i

�
↵ci
�cn

� �̄i�
↵c0i
�cn

�↵cn
�ci

�
↵ci
�c0i

◆
,

(3.15)

where the �
↵c0i
�ci

and �
↵ci
�c0i

Kronecker deltas can be dropped, as they simply describe the “spectator”

colour lines, i.e. there occurs no change in the colour label, which can be seen from the colour-

line diagrams in Figure 4. Note that in this case there is a gluon propagator, for this reason one

writes an additional generator (tc) in equation (3.15), which has been extracted from the vertex

in the hard process, such that one can ensure that all of the adjoint indices in the expression

are contracted.

It turns out that for the triple gluon vertex one finds a simplified colour structure, since all of
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The present work is structured as follows: In Sec. 2 we will first review basic principles

of soft gluon evolution in colour space, and in particular at the leading order using one-loop

soft exchanges and single emission Eikonal currents. We will also review that the colour

structures obtained at this level give rise to a systematic expansion around the leading-N

limit. In Sec. 3 we will then perform a detailed analysis of the colour structures encountered

in the two-loop, and the one-loop one-emission cases using the colour flow basis which has

proven to be computationally advantageous; it also closely connects to the language actual

parton shower algorithms are formulated in. In Sec. 4 we will then outline our approach to

the virtual contributions, and in particular we will detail the algorithmic way of casting the

virtual corrections into phase-space-type integrals by means of the Feynman tree theorem

[36, 37], which we generalise to account for Eikonal propagators, as well as complications

appearing at two loops such as propagators raised to higher powers. Detailed formulae of

our results are collected in several appendices and will serve as input to future work which

we discuss in a summary and outlook in Sec. 5.

2 Soft gluon evolution and the colour flow basis

Amplitude evolution algorithms like the approach outlined in [7], and the resummation of

non-global logarithms [3], proceed through evolution equations in colour space which govern

the contribution to the cross section originating from n hard partons. They generically are

expected to be of the form

E
@

@E
An(E) = �n(E)An(E) +An(E)�†

n(E)�
X

k

R(k)
n (E)An�k(E)R(k),†

n (E) , (2.1)

while the final cross section is a trace over the hard function An and a soft function

Sn, which determine the final state configurations on which the observable can then be

evaluated,

�[u] =
X

n

Z
Tr [AnSn]u(q1, ..., qn)d�(q1, ..., qn|Q) . (2.2)

Here q1, ..., qn denote the final state particles and d� is the associated phase space mea-

sure which can be approximated for soft emissions for which momentum conservation is a

sub-leading e↵ect. The evolution equation (2.1) comprises the soft anomalous dimension

matrices �n as well as emission operators R(k)
n which describe how k partons are emitted

from an n � k parton state. Both � and R have perturbative expansions and originate

after diagrammatic recursions in the soft limit have appropriately been subtracted and

renormalised. Upon taking matrix elements in between di↵erent colour flows ⌧,� [5, 14],

the virtual corrections can be expressed as an expansion in the ’t Hooft coupling

[⌧ |�|�i = (↵sN)[⌧ |�(1)|�i+ (↵sN)2[⌧ |�(2)|�i+ ... . (2.3)

For a jet cross section at leading order Sn is the identity operator in colour space, and the

evolution of An is driven by iterating single, soft emissions and the one-loop soft anomalous

dimension, which results from a combination of the real emission and virtual contributions
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Systematically expand around large-N limit 
summing towers of terms enhanced by ↵SN
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and are thus part of the permutation �,

�
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c��k
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�
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= �
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�c0m

�
↵cj

�c0
k

(4.5)

! �⌧(a,b)��(a,b)(ci,cj) .

The colour-flow Kronecker deltas obtained in the first line of equation (4.5) are an expression

for the quantity hc|�̃i, which now has to be compared to hc|�i which equals the first expression

in brackets in the upper equation. One can observe that, in order for the two permutations

� and ⌧ to match, one has to swap the colour indices ci and cj in the ⌧ -permutation. The

action of swapping the colour indices and then comparing to ⌧ is described by the expression of

�⌧(a,b)��(a,b)(ci,cj) - the two elements (a, b) have to be swapped such that the permutations ⌧ and

� match and in this case the elements (a, b) are (ci, cj), respectively.

For the case of a quark line i and an anti-quark line j it is necessary to distinguish two dif-

ferent cases for the basis permutation �. In addition to the case described above where the

colour indices are connected to any other anti-colour indices of the permutation �, one now has

to explicitly consider a colour-connection between the lines i and j, i.e. between the colour/anti-

colour indices of c0i and c0j . These two possibilities lead to

�

c��i
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cjc��j
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↵c0i
�c0

k
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(4.6)

! �⌧(a,b)��(a,b)(ci,��1(cj)) ,

where in this case the elements ci and ��1(cj) = c0m have to be swapped such that the permuta-

tions ⌧ and � match.

However, for the second possibility of the basis permutation � no swap is necessary, instead one

obtains

�

c��i ci

cjc��j
=

✓
�
↵c0i
�c0j

◆✓
�
↵ci
�cj

�
�c0j
↵c0j

�
↵c0j
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�
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◆
= N�
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�cj

(4.7)

! N��⌧�ci��1(cj) .

In the case of a colour-connection between the lines i and j one finds that the permutations �

and ⌧ match (��⌧ ), the �ci��1(cj) specifies the colour-connection of the basis. Further, there is a

factor of N, due to the “colour-loop”.

In the same way the cases of two anti-quark lines i, j and of an anti-quark line i and a quark line

j can be treated. When considering gluon lines there are no additional contributions specific to

gluon lines at one-loop level, i.e. they can be built from the combined quark/anti-quark cases
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where in this case the elements ci and ��1(cj) = c0m have to be swapped such that the permuta-

tions ⌧ and � match.

However, for the second possibility of the basis permutation � no swap is necessary, instead one

obtains
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In the case of a colour-connection between the lines i and j one finds that the permutations �

and ⌧ match (��⌧ ), the �ci��1(cj) specifies the colour-connection of the basis. Further, there is a

factor of N, due to the “colour-loop”.

In the same way the cases of two anti-quark lines i, j and of an anti-quark line i and a quark line

j can be treated. When considering gluon lines there are no additional contributions specific to

gluon lines at one-loop level, i.e. they can be built from the combined quark/anti-quark cases
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Figure 2: Colour-line diagrams for the emission of a soft gluon from a hard quark line i,
colour labels are explicitly written.
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Figure 3: Colour-line diagrams for the emission of a soft gluon from a hard anti-quark line
i.
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. The factor of �i in equation

(3.13) which has been chosen to replace the factor of
p
TR will be explained shortly.

In Figure 2 the two expressions of colour-flow Kronecker deltas in equation (3.13) are depicted

in terms of colour-line/colour-flow diagrams.

The two parts in this result come from the usage of the Fierz identity, which implements the

fact that the SU(N) gluon propagator has been decomposed into a U(N) and a U(1) part. The

latter symbolises a gluon which is colour-connected to itself, this contribution gets subtracted

from the U(N) gluon colour-flow. The dashed line of the second diagram in Figure 2 is used to

represent this U(1) part, it is suppressed in the number of colours.

When considering a soft gluon emission o↵ an anti-quark one finds the similar result of
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where, in the colour-line notation, this result can be depicted by the flow of colour in the way

one can see in Figure 3. Finally, for a hard gluon line i radiating a soft gluon one finds
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(3.15)

where the �
↵c0i
�ci

and �
↵ci
�c0i

Kronecker deltas can be dropped, as they simply describe the “spectator”

colour lines, i.e. there occurs no change in the colour label, which can be seen from the colour-

line diagrams in Figure 4. Note that in this case there is a gluon propagator, for this reason one

writes an additional generator (tc) in equation (3.15), which has been extracted from the vertex

in the hard process, such that one can ensure that all of the adjoint indices in the expression

are contracted.

It turns out that for the triple gluon vertex one finds a simplified colour structure, since all of
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divergence in E only (collinear divergences in !(ij) will cancel with the real emission when

calculating a full cross section). At leading order, !(ij) is independent of the scales µ and

E, and only depends on the hard parton’s directions of motion rather than their energies.

We find in the case of two outgoing or two incoming lines that

!(ij) =
(2⇡)2✏

⇡

"Z
d⌦(d�2)

4⇡

ni · nj

ni · n n · nj
� i⇡

Z
d⌦(d�3)

2⇡

#
. (2.6)

In this case, we have assumed an ordering in energy, though other ordering variables are

possible and will give rise to di↵erent forms of the anomalous dimension; we therefore

discuss the loop integrals without making a reference to a particular ordering variable or

observable. Explicit results for energy and p? ordering will be presented in an upcoming

publication.

In the colour flow basis, the same quantity takes the form

[⌧ |�(1)|�i =
✓
�(1)
� +

1

N2
⇢(1)

◆
��⌧ +

1

N
⌃(1)
�⌧ , (2.7)

which is readily verified by using the decomposition of the colour charge correlators in the

colour flow basis

[⌧ |Ti ·Tj |�i = �N�⌧�


�i�̄j�ci,��1(c̄j) + �̄i�j�cj ,��1(c̄i) +

1

N2
(�i � �̄i)(�j � �̄j)

�

+
X

(ab)

�⌧(ab),�
⇣
�i�j�(ab),(cicj) + �̄i�̄j�(ab),(��1(c̄i)��1(c̄j))

��i�̄j�(ab),(ci��1(c̄j)) � �̄i�j�(ab),(cj��1(c̄i))

⌘
.

(2.8)

In fact, we define the coe�cients �(1)
� , ⇢(1) and ⌃(1)

⌧� through this relation; implementa-

tions performing this calculation are available from the authors. We shall obtain similar

identities for the colour structures required for the evolution in the next order. At this

point it is important to remark that we can explicitly identify what the leading, colour

diagonal contributions are, and how the very sparse elements in the o↵-diagonal part of

the anomalous dimension matrix can be addressed e�ciently. This knowledge allows for an

e�cient Monte Carlo in colour space as well as a systematic expansion around the large-N

limit mentioned earlier.

While, in a perturbative expansion, one would treat the diagonal, 1/N2 suppressed bit

as a correction this turns out not to be a viable approach in the presence of collinear contri-

butions: in this case, dropping the 1/N2 contribution amounts to e↵ectively replacing CF

by CA/2 in the quark splitting function, which would thus not properly take into account

logarithmic contributions of soft- and hard-collinear origin. For this reason we stress that

an appropriate expansion around the large-N limit would actually need to be seen as an

expansion around the colour diagonal part (also referred to as d0 approximations in [15]),

something which will be of great importance when discussing the colour structures appear-

ing the two-loop case. Also note that the 1/N2 suppression in the one-loop anomalous

dimension might possibly be overcome since ⇢ contains a sum over all pairs of quarks and

antiquarks, not only colour connected dipoles.
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squared of the single emission diagrams can be schematically illustrated as

�����

i

j

+

i

j

�����

2

= +

+ 2Re

0

@

1

A ,

(4.34)

where the first and the second diagram do not give a contribution in the soft limit in Feynman-

gauge due to the on-shellness of the external lines, whereas the third one gives

= �g2 (�Ti ·Tj)µ
2"
Z µs

0
d⇧k

pi · pj
[pi · k][�pj · k]

=
↵s

⇡
(2⇡)2"(�Ti ·Tj)

Z µs

0

dE

E

⇣ µ

E

⌘2"
Z

d⌦(d�2)

4⇡

ni · nj

(ni · n)(nj · n)
.

(4.35)

The phase-space integral is given by d⇧k = ddk
(2⇡)d�1 �(k

2)✓(k0) and the upper integration bound-

ary is taken to be the soft scale µs. Consequently, the radiative part of the virtual diagram

squared is exactly minus the real emission diagram; the infrared divergences cancel.

Note again that if an unordered colour sum is introduced one has to include a factor of 1/2 for

the single emission contribution as well.

4.4 Di↵erent momentum flow

If one takes the external momentum pi to be outgoing and pj incoming, the one-loop integral

now reads

i

j

pi + k

pj + k

k = (�Ti ·Tj)

Z
ddk

i⇡d/2

µ2" (ig2) 4(pi · pj)

[2pi · k + 2i0(p0i )
2][2pj · k + 2i0(p0j )

2][k2 + 2i0(k0)2]
, (4.36)

which leads to the conclusion that when using the FTT in this case, due to the sign structure

of the propagators, all lines have to be cut. Diagrammatically, this gives

i

j

= �

2

64
i

j

+

i

j

+

i

j

+

i

j

+

i

j

+

i

j

3

5 .

(4.37)

It turns out that the single eikonal cut of momentum (pi · k) gives the same result as already

determined in equation (4.23) and due to the symmetry in i and j the cut of momentum

(pj · k) does so as well. In accordance with the previous consideration of the double cuts in

38

performed. This can e↵ectively compensate the 1/N suppression. On the other hand, when one

takes into account collinear contributions, the quark splitting function has a colour factor of

CF = N2
�1

2N , performing the large-N limit would now lead to a replacement of CF by CA
2 . This

is, however, not done in the collinear sector.

4.3 Kinematic part of the loop-diagram

Concerning the kinematic part it is convenient to rewrite the loop integral as a phase-space type

integral using the Feynman tree theorem such that it is possible to combine it with the single

emission diagram in order to be able to explicitly observe the cancellation of IR divergences.

Using Feynman rules, one obtains for the one-loop diagram in Feynman gauge

i

j

pi + k

k

pj � k

= (�Ti ·Tj)

Z
ddk

i⇡d/2

µ2" (ig2) 4(pi · pj)

[2pi · k + 2i0(p0i )
2][�2pj · k + 2i0(p0j )

2][k2 + 2i0(k0)2]

= (�Ti ·Tj)⌦
(1)
ij ,

(4.10)

where the external momenta are assumed to be both outgoing. In the case that there are ad-

ditional hard lines, a sum for the colour structure has to be introduced, such that soft gluon

exchanges are are taken into account between all the possible hard lines, the sum then runs from

i, j = 1, ..., n with i 6= j where n is the total number of hard lines.

In the following calculation it is convenient to use a Sudakov decomposition for the loop mo-

mentum,

kµ = ↵pµi + �pµj + kµ
?
. (4.11)

The forward and backward components can be chosen to be

pi =

r
pi · pj
2

⇣
1,~0(d�2)

?
, 1
⌘

,

pj =

r
pi · pj
2

⇣
1,~0(d�2)

?
,�1

⌘
,

where pi · pj > 0. With this choice, the transverse part is then uniquely determined as k? =

p?(0,~n
(d�2)
? , 0) with ~n2

?
= 1. In terms of these variables the measure translates to

µ2"ddk = dp?p?✓(p?) (pi · pj)

✓
µ

p?

◆2"

d↵ d� d⌦(d�3) , (4.12)

see appendix A for the details on the Jacobian determinant in this case.

The Feynman tree theorem now instructs one to evaluate the cut diagrams - in the presence of

eikonal propagators one finds a radiative cut, an absorptive cut in the eikonal momentum (pi ·k)

and the combined double cut (cf. equation (3.49)). Schematically, the required cuts if both hard
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dk0
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cn cn cn
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Figure 2: Colour-line diagrams for the emission of a soft gluon from a hard quark line i,
colour labels are explicitly written.

cn cn cn
cn

c��i ci c��i ci

Figure 3: Colour-line diagrams for the emission of a soft gluon from a hard anti-quark line
i.

as a combination with a generator, i.e.
p
TR("⇤)

�c̄n
↵cn

= "⇤a(t
a)�c̄n

↵cn
. The factor of �i in equation

(3.13) which has been chosen to replace the factor of
p
TR will be explained shortly.

In Figure 2 the two expressions of colour-flow Kronecker deltas in equation (3.13) are depicted

in terms of colour-line/colour-flow diagrams.

The two parts in this result come from the usage of the Fierz identity, which implements the

fact that the SU(N) gluon propagator has been decomposed into a U(N) and a U(1) part. The

latter symbolises a gluon which is colour-connected to itself, this contribution gets subtracted

from the U(N) gluon colour-flow. The dashed line of the second diagram in Figure 2 is used to

represent this U(1) part, it is suppressed in the number of colours.

When considering a soft gluon emission o↵ an anti-quark one finds the similar result of

�cn
/�c̄n

i
�c̄��i �ci

= �"⇤a(t
a)

↵c0i
�ci

= ��̄i("
⇤)

�cn
↵cn

✓
�
↵c0i
�cn

�↵cn
�ci

�
1

N
�
↵c0i
�ci

�↵cn
�cn

◆
, (3.14)

where, in the colour-line notation, this result can be depicted by the flow of colour in the way

one can see in Figure 3. Finally, for a hard gluon line i radiating a soft gluon one finds

�cn
/�c̄n

i
�c̄��i /�c��i �ci

/�c̄i

= �"⇤a"
⇤

bif
abc 1

p
TR

(tc)
↵c0i
�ci

= ("⇤)
�cn
↵cn

("⇤)
�ci
↵ci

✓
�i�

↵c0i
�ci

�↵cn
�c0i

�
↵ci
�cn

� �̄i�
↵c0i
�cn

�↵cn
�ci

�
↵ci
�c0i

◆
,

(3.15)

where the �
↵c0i
�ci

and �
↵ci
�c0i

Kronecker deltas can be dropped, as they simply describe the “spectator”

colour lines, i.e. there occurs no change in the colour label, which can be seen from the colour-

line diagrams in Figure 4. Note that in this case there is a gluon propagator, for this reason one

writes an additional generator (tc) in equation (3.15), which has been extracted from the vertex

in the hard process, such that one can ensure that all of the adjoint indices in the expression

are contracted.

It turns out that for the triple gluon vertex one finds a simplified colour structure, since all of
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The present work is structured as follows: In Sec. 2 we will first review basic principles

of soft gluon evolution in colour space, and in particular at the leading order using one-loop

soft exchanges and single emission Eikonal currents. We will also review that the colour

structures obtained at this level give rise to a systematic expansion around the leading-N

limit. In Sec. 3 we will then perform a detailed analysis of the colour structures encountered

in the two-loop, and the one-loop one-emission cases using the colour flow basis which has

proven to be computationally advantageous; it also closely connects to the language actual

parton shower algorithms are formulated in. In Sec. 4 we will then outline our approach to

the virtual contributions, and in particular we will detail the algorithmic way of casting the

virtual corrections into phase-space-type integrals by means of the Feynman tree theorem

[36, 37], which we generalise to account for Eikonal propagators, as well as complications

appearing at two loops such as propagators raised to higher powers. Detailed formulae of

our results are collected in several appendices and will serve as input to future work which

we discuss in a summary and outlook in Sec. 5.

2 Soft gluon evolution and the colour flow basis

Amplitude evolution algorithms like the approach outlined in [7], and the resummation of

non-global logarithms [3], proceed through evolution equations in colour space which govern

the contribution to the cross section originating from n hard partons. They generically are

expected to be of the form

E
@

@E
An(E) = �n(E)An(E) +An(E)�†

n(E)�
X

k

R(k)
n (E)An�k(E)R(k),†

n (E) , (2.1)

while the final cross section is a trace over the hard function An and a soft function

Sn, which determine the final state configurations on which the observable can then be

evaluated,

�[u] =
X

n

Z
Tr [AnSn]u(q1, ..., qn)d�(q1, ..., qn|Q) . (2.2)

Here q1, ..., qn denote the final state particles and d� is the associated phase space mea-

sure which can be approximated for soft emissions for which momentum conservation is a

sub-leading e↵ect. The evolution equation (2.1) comprises the soft anomalous dimension

matrices �n as well as emission operators R(k)
n which describe how k partons are emitted

from an n � k parton state. Both � and R have perturbative expansions and originate

after diagrammatic recursions in the soft limit have appropriately been subtracted and

renormalised. Upon taking matrix elements in between di↵erent colour flows ⌧,� [5, 14],

the virtual corrections can be expressed as an expansion in the ’t Hooft coupling

[⌧ |�|�i = (↵sN)[⌧ |�(1)|�i+ (↵sN)2[⌧ |�(2)|�i+ ... . (2.3)

For a jet cross section at leading order Sn is the identity operator in colour space, and the

evolution of An is driven by iterating single, soft emissions and the one-loop soft anomalous

dimension, which results from a combination of the real emission and virtual contributions
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Systematically expand around large-N limit 
summing towers of terms enhanced by ↵SN
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depicted with the basis permutation � separated from the rest of the diagram by the dashed

line and the (anti-)colour labels are explicitly written for the hard lines. The translation

of the diagram to the Kronecker deltas which compare the permutations � and ⌧ , i.e. a

translation to the corresponding parts of the matrix elements of the colour correlators, is

given.

An example of a contribution to the matrix element [⌧ |(Ti · Tj)(Ti · Tj)|�i (cf. Eq.

(A.5)) is given by the colour-flow diagram

ci

cj

c��i
�

c��j
! N2��⌧�ci��1(cj) , (3.4)

due to the colour connection in � this is enhanced by a factor of N2. The diagonal structure

⇢� contains a three-parton correlation from the Feynman diagram involving three hard lines

and a triple gluon vertex, it gives a colour flow of

c��i
c��k

c��j

ci

cj

clc��l

�
! �i�̄j�l��⌧�ci��1(cj) , (3.5)

and it is part of the matrix element [⌧ |TgTiTjTl|�i (cf. Eq. (A.7)). For the gluon vertex

we have defined that Tabc
g ⌘ ifabc. For an example of the coe�cient ⌃̂(2)

�⌧ , which has a

colour connection in � and where a single swap of colour labels has to be performed in

order for the permutations � and ⌧ to match, consider

�

cjc��j

clc��l

c��k
cic��i
! N�cj��1(ci)��⌧(a,b)�(a,b)(cj ,cl) , (3.6)

where this colour flow pertains to the matrix element [⌧ |TgTiTjTl|�i as well. The double

swap coe�cients ⌃00(2)
�⌧ can be exemplified by

� c��i ci

cjc��j

c��k
c��m

c��l
c��r

cl

! ��⌧(a,b)(b,c)�(a,b)(ci,��1(cj))�(b,c)(��1(cj),��1(cl)) , (3.7)

in this case a colour label has to be swapped twice such that the permutations � and ⌧

match. This colour flow is part of the matrix element [⌧ |(Ti · Tl)(Ti · Tj)|�i (cf. Eq.

(A.8)).

3.2 One-loop, one-emission contributions

Similarly to the two-loop contribution we can analyze the one-loop one emission contri-

butions at the level of the amplitude. Notice that at the level of the cross section the
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Figure 14: Two-loop Feynman diagrams involving two external lines, whose amplitudes do
not contribute in the soft limit.
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Figure 15: Two-loop diagrams for two and three hard, external lines, which contribute in
the soft limit.

(iv) = �µ2"
Z

ddk

i⇡d/2

(
(2⇡i)�̃(k)

[pi · (k + q) + i0][pi · k + i0][�pj · k + i0]

+
(2⇡i)�(pi · k)

[k2 + i0][pi · (k + q) + i0][�pj · k + i0]
+

(2⇡i)2�̃(k)�(pi · k)

[pi · (k + q) + i0][�pj · k]

+
(2⇡i)�(pi · k)

[(k � q)2 + i0][pi · (k � q) + i0][pj · (q � k) + i0]

�
, (5.20)

(v) = �µ2"
Z

ddk

i⇡d/2

(
(2⇡i)�̃(k)

[pi · (k + q) + i0][�pj · k + i0]
+

(2⇡i)�(pi · k)

[(k � q)2 + i0][pj · (q � k) + i0]

)
.

(5.21)

5.1.2 Two-loop order

The same procedure which has been carried out at one-loop/one-emission level in the previous

section can also be performed at two-loop level. In this case, however, there are no contributions

in the soft limit in Feynman gauge from Feynman diagrams which involve only a single hard,

external line. Additionally, the diagrams in Figure 14 vanish in the soft limit in Feynman gauge.

The two-loop diagrams which lead to a non-vanishing contribution in the soft limit are depicted

in Figure 15. The corresponding amplitudes to these diagrams are given in Feynman gauge in

the following.
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Systematic construction? Hadronization? Higher orders?

d� ⇠ Tr
h
PS(Q ! µ)dH(Q)PS

†(Q ! µ)Had(µ ! ⇤)
i
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Factorisation and evolution
ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
n̄iY

j=1

�̃(p̄ij , m̄
2
i )[dp̄ij ] . (8.5)
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:
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to a sum over degrees of freedom within the n constituent particles from which we could
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A
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where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function
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denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary
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renormalizations for the final state m, and the integrations over the o↵-shell constituent
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Jet cross sections

we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Only in the case of jet cross sections with Sn = 1nu(p1, ..., pn) we have

Un = 1nu(p1, ..., pn)

� ↵s

Z
µ2✏
R [dpn+1]�̃(pn+1)D̂

(1,0)†
n+1 D̂(1,0)

n+1⇥n,1 [u(p1, ..., pn, pn+1)� u(p1, ..., pn)] +O(↵2
s)

(6.7)

reproducing the genuine (power suppressed) di↵erence in the observables. Notice that, in

the case for the jet cross section, the procedure above is exactly the same as adding the

O(↵S) term to a calculations defined in terms of Un only to provide infrared subtractions

compatible with the behaviour of the observable. In this case, the resolution criterion

⇥ must be accordingly synchronized with the observable in question. In the case of a

prototypical non-global observable we can write

u(p1, ..., pn, pn+1) = (✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in))u(p1, ..., pn) , (6.8)

and the quantity to analyze is thus

⇥n,1 (u(p1, ..., pn, pn+1)� u(p1, ..., pn)) =
�
1� ✓(p0n+1 � µS)⇥�(nn+1)

�
⇥

�
✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in)� 1

�
u(p1, ..., pn) , (6.9)

where we have generically identified the collinear cuto↵ prescription with ⇥�(nn+1) and the

emission’s direction with nn+1. We assume that the observable probes a veto on energies

less than ⇢ in the angular out region, complementary to the in region. If we identify the

energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.

7 Aspects of a Hadronization Model

We will now focus on the evolution equation for Sn. In fact it is interesting to make explicit

that this object is expected to convert the hard partons plus n emissions into m hadrons

– 14 –
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:
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where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put
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The introduction of infrared subtractions provides us with a measure of accuracy, and

possibly the structure of hadronization corrections which we briefly discuss in the next

section. At the lowest order Eq. 2.6 implies that

Un = Sn � ↵SX
(1)†
n Sn � ↵SSnX

(1)
n
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(1,0)
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R [dpn+1]�̃(pn+1) +O(↵2

s) . (6.5)

Up to this order we have a one-to-one correspondence between subtraction terms and virtual

and real corrections, see Sec. 2. Notice that even if we assume unitarity in connecting V̂(1)
n

and D̂(1,0)†
n � D̂(1,0)

n in the sense that we choose ⌅ = ⇥ and
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we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Jet cross sections are the special case in which we would either start from Un =

1nu(p1, ..., pn), or demand Sn = 1nu(p1, ..., pn). By the redefinition of Un the cross section

would then be re-arranged accordingly, where the di↵erence to the original cross section

in terms of Un would have been encoded in the soft factor Sn. If we demand that Sn =

1nu(p1, ..., pn) such as to reproduce the previous algorithms in [4], then we can invert

Un = 1nu(p1, ..., pn)

� ↵s

Z
µ2✏
R [dpn+1]�̃(pn+1)D̂

(1,0)†
n+1 D̂(1,0)

n+1⇥n,1 [u(p1, ..., pn, pn+1)� u(p1, ..., pn)] +O(↵2
s)

(6.7)

reproducing the genuine (power suppressed) di↵erence in the observables, i.e. essentially

we would then be implementing a slicing method. Notice that, in the case for the jet cross

section, the procedure above is exactly the same as adding the O(↵S) term to a calculations

defined in terms of Un only to provide infrared subtractions compatible with the behaviour
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that there is no reason to assume that Sn will trigger colour conservation, only An needs
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the case for the jet cross section, the procedure above is exactly the same as adding the

O(↵S) term to a calculations defined in terms of Un only to provide infrared subtractions

compatible with the behaviour of the observable. In this case, the resolution criterion

⇥ must be accordingly synchronized with the observable in question. In the case of a

prototypical non-global observable we can write

u(p1, ..., pn, pn+1) = (✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in))u(p1, ..., pn) , (6.8)

and the quantity to analyze is thus
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where we have generically identified the collinear cuto↵ prescription with ⇥�(nn+1) and the

emission’s direction with nn+1. We assume that the observable probes a veto on energies

less than ⇢ in the angular out region, complementary to the in region. If we identify the

energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.

7 Aspects of a Hadronization Model

We will now focus on the evolution equation for Sn. In fact it is interesting to make explicit

that this object is expected to convert the hard partons plus n emissions into m hadrons
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to a sum over degrees of freedom within the n constituent particles from which we could
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we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Jet cross sections are the special case in which we would either start from Un =

1nu(p1, ..., pn), or demand Sn = 1nu(p1, ..., pn). By the redefinition of Un the cross section

would then be re-arranged accordingly, where the di↵erence to the original cross section

in terms of Un would have been encoded in the soft factor Sn. If we demand that Sn =

1nu(p1, ..., pn) such as to reproduce the previous algorithms in [4], then we can invert

Un = 1nu(p1, ..., pn)
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Z
µ2✏
R [dpn+1]�̃(pn+1)D̂

(1,0)†
n+1 D̂(1,0)

n+1⇥n,1 [u(p1, ..., pn, pn+1)� u(p1, ..., pn)] +O(↵2
s)

(6.7)

reproducing the genuine (power suppressed) di↵erence in the observables, i.e. essentially

we would then be implementing a slicing method. Notice that, in the case for the jet cross

section, the procedure above is exactly the same as adding the O(↵S) term to a calculations

defined in terms of Un only to provide infrared subtractions compatible with the behaviour
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emission’s direction with nn+1. We assume that the observable probes a veto on energies

less than ⇢ in the angular out region, complementary to the in region. If we identify the

energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.
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observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Jet cross sections are the special case in which we would either start from Un =
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energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.
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The introduction of infrared subtractions provides us with a measure of accuracy, and

possibly the structure of hadronization corrections which we briefly discuss in the next

section. At the lowest order Eq. 2.6 implies that

Un = Sn � ↵SX
(1)†
n Sn � ↵SSnX

(1)
n

� ↵S

Z
F(1,0)†
n+1 Sn+1F

(1,0)
n+1µ

2✏
R [dpn+1]�̃(pn+1) +O(↵2

s) . (6.5)

Up to this order we have a one-to-one correspondence between subtraction terms and virtual

and real corrections, see Sec. 2. Notice that even if we assume unitarity in connecting V̂(1)
n

and D̂(1,0)†
n � D̂(1,0)

n in the sense that we choose ⌅ = ⇥ and
Z

D̂(1,0)†
n+1 D̂(1,0)

n+1⇥n,1µ
2✏
R [dpn+1]�̃(pn+1) = �

1

2
V̂(1)

n [⇥n,1] (6.6)

we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Jet cross sections are the special case in which we would either start from Un =

1nu(p1, ..., pn), or demand Sn = 1nu(p1, ..., pn). By the redefinition of Un the cross section

would then be re-arranged accordingly, where the di↵erence to the original cross section

in terms of Un would have been encoded in the soft factor Sn. If we demand that Sn =

1nu(p1, ..., pn) such as to reproduce the previous algorithms in [4], then we can invert

Un = 1nu(p1, ..., pn)

� ↵s

Z
µ2✏
R [dpn+1]�̃(pn+1)D̂

(1,0)†
n+1 D̂(1,0)

n+1⇥n,1 [u(p1, ..., pn, pn+1)� u(p1, ..., pn)] +O(↵2
s)

(6.7)

reproducing the genuine (power suppressed) di↵erence in the observables, i.e. essentially

we would then be implementing a slicing method. Notice that, in the case for the jet cross

section, the procedure above is exactly the same as adding the O(↵S) term to a calculations

defined in terms of Un only to provide infrared subtractions compatible with the behaviour
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reproducing the genuine (power suppressed) di↵erence in the observables. Notice that, in

the case for the jet cross section, the procedure above is exactly the same as adding the

O(↵S) term to a calculations defined in terms of Un only to provide infrared subtractions

compatible with the behaviour of the observable. In this case, the resolution criterion

⇥ must be accordingly synchronized with the observable in question. In the case of a

prototypical non-global observable we can write

u(p1, ..., pn, pn+1) = (✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in))u(p1, ..., pn) , (6.8)

and the quantity to analyze is thus

⇥n,1 (u(p1, ..., pn, pn+1)� u(p1, ..., pn)) =
�
1� ✓(p0n+1 � µS)⇥�(nn+1)

�
⇥

�
✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in)� 1

�
u(p1, ..., pn) , (6.9)

where we have generically identified the collinear cuto↵ prescription with ⇥�(nn+1) and the

emission’s direction with nn+1. We assume that the observable probes a veto on energies

less than ⇢ in the angular out region, complementary to the in region. If we identify the

energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.

7 Aspects of a Hadronization Model

We will now focus on the evolution equation for Sn. In fact it is interesting to make explicit

that this object is expected to convert the hard partons plus n emissions into m hadrons
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My approach: “renormalise” bare colour operators.

Subtract IR divergencies 
in unresolved regions

implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n

↵n
S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
n̄iY

j=1

�̃(p̄ij , m̄
2
i )[dp̄ij ] . (8.5)
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FIG. 1. Illustration of the various regions of validity of our parametrization. As seen from, eq. (21) the condition pi·Qi,s ⌧ pi·ni,s

is fulfilled if either both Qi+ and Qi� are small (the genuinely soft region) or if Ei � Mi and Qi� ! 0 (the hard collinear
region) or if Ei ⌧ Mi and Qi� ! �Qi+ (the threshold region).

Phase space factorization can be obtained systematically at leading power for such kinematic mappings as shown in
[12]. We note that we can uniquely invert the mapping and obtain an expression of Qi,s if we have fixed pi and ni,s.
This also means that we can use this definition also when Ki,s and Kj,s are not independent, e.g. for a one-loop
exchange in between two legs i and j we have Ki,s = �Kj,s = k. Notice that we have chosen a backward direction
ni,s di↵erently per hard momentum pi.

Kinematic regions

The kinematic regions covered by our parametrization are best illustrated for one hard line and a specific frame,
where

pi =

✓q
E2

i +M2
i ,~0?, Ei

◆
ni,s =

ni,s · pi

Ei +
p

E2
i +M2

i

⇣
1,~0?,�1

⌘
Qi,s =

⇣
Q(+)

i,s +Q(�)
i,s , ~Q(?)

i,s , Q(+)
i,s �Q(�)

i,s

⌘
.

(20)
Our expansion is valid if

pi ·Qi,s =
q

E2
i +M2

i (Q
(+)
i,s +Q(�)

i,s ) + Ei(Q
(�)
i,s �Q(+)

i,s ) ⌧ pi,s · ni,s = Si,s . (21)

The regions of validity contain a Glauber-type region in which Qi,s becomes purely transverse, along with the regions
depicted in figure 1.

Propagators and external wave functions

An important ingredient to our factorization formula is to demonstrate, subject to the kinematic parametrization
above, that

1X

n=0

 
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

⌃(qi +Ki,s)

!n
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

=
1

2pi ·Qi,s

 (⇤pi,Mi) ̄(⇤pi,Mi)

1� ⌃0(M2
i )

+O(�) , (22)

where the derivative of the (physical part of the) self-energy ⌃(p2) (or, accordingly the transverse self-energy at
vanishing k2 for a massless boson) provides the proper wave function renormalization for the amplitude we factor
to. To illustrate this let us first consider Goldstone bosons in an R⇠ gauge, with a free propagator i/(k2 � ⇠M̃2

R,i),

where M̃2
R,i = M2

R,i + iMR,i�R,i in a complex mass scheme [29, 30], and the introduction of �R,i needs to be added
back as additional insertions of two-point functions. This does not provide any change to our main argument. The
propagators of the physical scalar can be obtained by putting ⇠ = 1. If the scalar has a one-particle irreducible
two-point function �i⌃S(k2), the resummed propagator is

1

(qi +Ki,s)2 � ⇠M̃2
R,i � ⌃S((qi +Ki,s)2)

=

⇢ 1
2pi·Qi,s

1
1�⌃0(M2

i )
+O(�) ⇠ = 1 and ⌃S(k2) = ⌃(k2)

O(�) otherwise
(23)

[Löschner, Plätzer, Ruffa, Sjödahl — ’20+]
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is fulfilled if either both Qi+ and Qi� are small (the genuinely soft region) or if Ei � Mi and Qi� ! 0 (the hard collinear
region) or if Ei ⌧ Mi and Qi� ! �Qi+ (the threshold region).

Phase space factorization can be obtained systematically at leading power for such kinematic mappings as shown in
[12]. We note that we can uniquely invert the mapping and obtain an expression of Qi,s if we have fixed pi and ni,s.
This also means that we can use this definition also when Ki,s and Kj,s are not independent, e.g. for a one-loop
exchange in between two legs i and j we have Ki,s = �Kj,s = k. Notice that we have chosen a backward direction
ni,s di↵erently per hard momentum pi.

Kinematic regions

The kinematic regions covered by our parametrization are best illustrated for one hard line and a specific frame,
where

pi =

✓q
E2

i +M2
i ,~0?, Ei

◆
ni,s =

ni,s · pi

Ei +
p

E2
i +M2

i

⇣
1,~0?,�1

⌘
Qi,s =

⇣
Q(+)

i,s +Q(�)
i,s , ~Q(?)

i,s , Q(+)
i,s �Q(�)

i,s

⌘
.

(20)
Our expansion is valid if

pi ·Qi,s =
q

E2
i +M2

i (Q
(+)
i,s +Q(�)

i,s ) + Ei(Q
(�)
i,s �Q(+)

i,s ) ⌧ pi,s · ni,s = Si,s . (21)

The regions of validity contain a Glauber-type region in which Qi,s becomes purely transverse, along with the regions
depicted in figure 1.

Propagators and external wave functions

An important ingredient to our factorization formula is to demonstrate, subject to the kinematic parametrization
above, that

1X

n=0

 
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

⌃(qi +Ki,s)

!n
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

=
1

2pi ·Qi,s

 (⇤pi,Mi) ̄(⇤pi,Mi)

1� ⌃0(M2
i )

+O(�) , (22)

where the derivative of the (physical part of the) self-energy ⌃(p2) (or, accordingly the transverse self-energy at
vanishing k2 for a massless boson) provides the proper wave function renormalization for the amplitude we factor
to. To illustrate this let us first consider Goldstone bosons in an R⇠ gauge, with a free propagator i/(k2 � ⇠M̃2

R,i),

where M̃2
R,i = M2

R,i + iMR,i�R,i in a complex mass scheme [29, 30], and the introduction of �R,i needs to be added
back as additional insertions of two-point functions. This does not provide any change to our main argument. The
propagators of the physical scalar can be obtained by putting ⇠ = 1. If the scalar has a one-particle irreducible
two-point function �i⌃S(k2), the resummed propagator is

1

(qi +Ki,s)2 � ⇠M̃2
R,i � ⌃S((qi +Ki,s)2)

=

⇢ 1
2pi·Qi,s

1
1�⌃0(M2

i )
+O(�) ⇠ = 1 and ⌃S(k2) = ⌃(k2)

O(�) otherwise
(23)
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Amplitude evolution and resummation algorithms.
• Started with non-global logarithms.
• Establishing links to JIMWLK, EFT, direct QCD resummation.
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exchange in between two legs i and j we have Ki,s = �Kj,s = k. Notice that we have chosen a backward direction
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The regions of validity contain a Glauber-type region in which Qi,s becomes purely transverse, along with the regions
depicted in figure 1.

Propagators and external wave functions

An important ingredient to our factorization formula is to demonstrate, subject to the kinematic parametrization
above, that
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where the derivative of the (physical part of the) self-energy ⌃(p2) (or, accordingly the transverse self-energy at
vanishing k2 for a massless boson) provides the proper wave function renormalization for the amplitude we factor
to. To illustrate this let us first consider Goldstone bosons in an R⇠ gauge, with a free propagator i/(k2 � ⇠M̃2

R,i),

where M̃2
R,i = M2

R,i + iMR,i�R,i in a complex mass scheme [29, 30], and the introduction of �R,i needs to be added
back as additional insertions of two-point functions. This does not provide any change to our main argument. The
propagators of the physical scalar can be obtained by putting ⇠ = 1. If the scalar has a one-particle irreducible
two-point function �i⌃S(k2), the resummed propagator is

1

(qi +Ki,s)2 � ⇠M̃2
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Figure 12: To be written...[Why are there not orange dots?] Shall we include the cubic

tunings at all in our discussions?
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In Fig. 14 we show S
MC obtained from the default hadronization model over ` for

di↵erent k̂ for the reference shower cut scale Q0,ref = 1.25 GeV for the hard scales Q =

45 GeV (left panels), 91.2 GeV (middle panels) and 200 GeV (right panels). In Fig. 15 the

analogous results are displayed obtained from the dynamic hadronization model. The upper

panels show S
MC(`, {k̂, Q, Q0}) for several small k̂ values below 2 GeV, which is the range

where S
MC is still strongly depending on k̂. The lower panels show S

MC(`, {k̂, Q, Q0}) for
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In Fig. 14 we show S
MC obtained from the default hadronization model over ` for

di↵erent k̂ for the reference shower cut scale Q0,ref = 1.25 GeV for the hard scales Q =

45 GeV (left panels), 91.2 GeV (middle panels) and 200 GeV (right panels). In Fig. 15 the

analogous results are displayed obtained from the dynamic hadronization model. The upper

panels show S
MC(`, {k̂, Q, Q0}) for several small k̂ values below 2 GeV, which is the range

where S
MC is still strongly depending on k̂. The lower panels show S

MC(`, {k̂, Q, Q0}) for
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Redefinitions of “bare” operators

where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would

read

Mn = |M
(0)
n ihM

(1)
n |+ |M

(1)
n ihM

(0)
n | (2.4)

in terms of tree-level and one-loop amplitudes |M(0)
n i and |M

(1)
n i, respectively. In express-

ing the bare through the renormalized coupling at a renormalization scale µR,

↵0
�
4⇡µ2

�✏
= ↵S(µR)µ

2✏
RZg Zg =

X

l�0

↵l
SZ

(l)
g (2.5)

we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,

or remain all together. We will therefore start to individually remove these divergencies

with a subtraction formalism which we express by re-defining the observable operator as1

Un = X†
nSnXn �

1X

s=1

↵s
S

Z
F(s)†
n+sSn+sF

(s)
n+s

n+sY

i=n+1

µ2✏
R [dpi]�̃(pi) . (2.6)

In this redefinition,

Xn = 1�
X

k�1

↵k
SX

(k)
n and F(s)

n =
X

k�0

↵k
SF

(s,k)
n (2.7)

will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.

– 4 –

implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n

↵n
S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted

– 4 –

ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put
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where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would

read

Mn = |M
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n |+ |M
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n | (2.4)

in terms of tree-level and one-loop amplitudes |M(0)
n i and |M

(1)
n i, respectively. In express-

ing the bare through the renormalized coupling at a renormalization scale µR,
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we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,

or remain all together. We will therefore start to individually remove these divergencies

with a subtraction formalism which we express by re-defining the observable operator as1

Un = X†
nSnXn �

1X

s=1

↵s
S
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F(s)†
n+sSn+sF
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X
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↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n
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S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:
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to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
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where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s
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(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final
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denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put
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where each termM(l)
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for more details and aspects of this formalism) for n emissions, and together using l loops.
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we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators
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on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself
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to a sum over degrees of freedom within the n constituent particles from which we could
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states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put
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can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization
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density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:
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is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
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where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s
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(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum
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Redefinitions of “bare” operators

where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would

read
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we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,

or remain all together. We will therefore start to individually remove these divergencies

with a subtraction formalism which we express by re-defining the observable operator as1
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,
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1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
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where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n

↵n
S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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V(l). In this case it is understood that V, just as the emission operators, are the singu-

lar exchanges and emissions attached to external, on-shell legs. We then define X(2)
n =

V̂(2)
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n [⌅n,1]V̂
(1)
n in terms of the singular parts of the two-loop exchanges V̂2

(note that the X(1)
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n subtractions automatically adjust for the two loop case). By

the similar observations we need to use
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in terms of the full unresolved behaviour D(1,1)
n . The latter contains all one-loop corrections

to a single unresolved emission and thus relies on resolution criterion which we cannot

uniquely associate to a virtual exchange before or after the emission an thus choose to be

⌅n�1,1 by convention. Also notice that D(1,1)
n does not exactly coincide with the one-loop

soft gluon current of [15] which has some iterated contributions already removed, however

it can easily be constructued from there. On the very same note V̂(2) and D(2,0) are

understood to contain the full sum of contributing diagrams.

We assume throughout that the virtual counter terms are given by casting the loop

integrals into phase space type integrals (see [8] for an algorithmic way of such a cutting

procedure) and supplementing them by a resolution criterion. To this extent we write
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n [⌅n,l] =
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I
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µ2✏
R [dki] , (2.20)

where ↵ labels di↵erent cuts and ⌅(↵)
n,l is the analogue of ⇥n,k for the virtual corrections

(though we, again, might split this up into more terms, or combine cuts with each other).

Since any more complicated situation follows by generalization we again keep things simple

and refer to one function ⌅n,l in the following. I(l)n,↵(p1, ..., pn; k1, ..., kl) denotes the inte-

grand, which might include �-functions which pin down the loop momenta to particular

kinematic regions. They thus are distributions in general, including the i0 prescriptions.

3 Resummation

In the regions of unresolved emissions and exchanges we expect the hard density operator

to factorize as

MnZ
n
g = ZnAnZ

†
n +

nX

s=1

↵s
SE

(s)
n An�sE

(s)†
n (3.1)

where

Zn = 1 +
X

k�1

↵k
SZ

(k)
n E(s)

n =
X

k�0

↵k
SE

(s,k)
n . (3.2)

It is important to stress that this re-definition is to be thought of in the sense that we

renormalize the divergent density operator Mn and trade it o↵ for a finite, though possibly

logarithmically enhanced, object An from which we can hope to build up an algorithm for
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(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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Infer subtractions from singular behaviour.
Complete by re-defining hard process.

ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
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(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
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2
i )[dp̄ij ] . (8.5)
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Redefinitions of “bare” operators

V(l). In this case it is understood that V, just as the emission operators, are the singu-

lar exchanges and emissions attached to external, on-shell legs. We then define X(2)
n =

V̂(2)
n [⌅n,2] � V̂(1)

n [⌅n,1]V̂
(1)
n in terms of the singular parts of the two-loop exchanges V̂2

(note that the X(1)
n � X(1)†

n subtractions automatically adjust for the two loop case). By

the similar observations we need to use
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in terms of the full unresolved behaviour D(1,1)
n . The latter contains all one-loop corrections

to a single unresolved emission and thus relies on resolution criterion which we cannot

uniquely associate to a virtual exchange before or after the emission an thus choose to be

⌅n�1,1 by convention. Also notice that D(1,1)
n does not exactly coincide with the one-loop

soft gluon current of [15] which has some iterated contributions already removed, however

it can easily be constructued from there. On the very same note V̂(2) and D(2,0) are

understood to contain the full sum of contributing diagrams.

We assume throughout that the virtual counter terms are given by casting the loop

integrals into phase space type integrals (see [8] for an algorithmic way of such a cutting

procedure) and supplementing them by a resolution criterion. To this extent we write
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where ↵ labels di↵erent cuts and ⌅(↵)
n,l is the analogue of ⇥n,k for the virtual corrections

(though we, again, might split this up into more terms, or combine cuts with each other).

Since any more complicated situation follows by generalization we again keep things simple

and refer to one function ⌅n,l in the following. I(l)n,↵(p1, ..., pn; k1, ..., kl) denotes the inte-

grand, which might include �-functions which pin down the loop momenta to particular

kinematic regions. They thus are distributions in general, including the i0 prescriptions.

3 Resummation

In the regions of unresolved emissions and exchanges we expect the hard density operator

to factorize as

MnZ
n
g = ZnAnZ

†
n +

nX

s=1

↵s
SE

(s)
n An�sE
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n (3.1)

where
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It is important to stress that this re-definition is to be thought of in the sense that we

renormalize the divergent density operator Mn and trade it o↵ for a finite, though possibly

logarithmically enhanced, object An from which we can hope to build up an algorithm for
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n
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S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum
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that the result will be dominated by those contributions which have all partonic lines put
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density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would

read
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in terms of tree-level and one-loop amplitudes |M(0)
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n i, respectively. In express-

ing the bare through the renormalized coupling at a renormalization scale µR,
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we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,

or remain all together. We will therefore start to individually remove these divergencies

with a subtraction formalism which we express by re-defining the observable operator as1
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,
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nY

i=1

µ2✏
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1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,
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onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement
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where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted
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where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would
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we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-
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will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,
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1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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measurement operator (which we can think of as anything in between a jet measurement,
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class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,
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onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense
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where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after
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what happens in a fixed-order calculation in which infrared divergences are subtracted
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where M̂n =
P

l�0 ↵
l
SM̂

(l)
n . The individual M̂(l)

n can then be found by a fixed-order expan-

sion. Including subtractions up to the two-‘loop’2 level, i.e. putting to zero all X(l)
n with

l > 2, and all F(s,l)
n � F(s,l0)

n with l + l0 + s > 2, we find
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where
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and
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g
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are the density operators with UV finite virtual corrections up to two loops.

Stree [Hn] = F(1,0)
n Hn�1F

(1,0)†
n + F(2,0)

n Hn�2F
(2,0)†
n (2.14)

provides subtractions for unresolved limits stemming from tree-level emission diagrams, for

which we can choose F(1,0)
n to be given by the single soft emission currentD(1,0)

n . Notice that

this is an over-subtraction in the double unresolved limit, where Hn�1 admits factorization

of another emission. We therefore need to take

F(1,0)
n � F(1,0)†

n = D(1,0)
n �D(1,0)†

n ⇥n,1 (2.15)

F(2,0)
n � F(2,0)†

n = D(2,0)
n �D(2,0)†

n ⇥n,2 �D(1,0)
n D(1,0)

n�1 �D(1,0)†
n�1 D(1,0)†

n ⇥n,1 (2.16)

in terms of the true unresolved behaviour D(2,0)
n as e.g. given by the soft gluon currents

[14], and a resolution criterion ⇥ which projects onto singular regions: ⇥n,k is supposed

to be one for any singular configuration of k out of n partons. These expressions need to

also be understood in the sense that we might split up the Eikonal currents into di↵erent

terms and e.g. use di↵erent ⇥ functions for di↵erent terms, though we will not make this

explicit for the sake of readability. Furthermore

S1-loop [Hn] = X(1)
n Hn +HnX

(1)†
n + F(1,1)

n Hn�1F
(1,0)†
n + F(1,0)

n Hn�1F
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n (2.17)

provides one-loop subtractions, and

S2-loop [Hn] = X(2)
n Hn +HnX

(2)†
n �X(1)

n HnX
(1)†
n (2.18)

provides two-loop subtractions. Similarly to what happened in the emission case, we need

to adjust X(1)
n to be given by the unresolved part of the one-loop exchange V̂(1)

n [⌅n,1],

where ⌅n,k refers to a restriction on unresolved loop momentum modes and we adopt the

convention that V̂(l) = (µ2
R/4⇡µ

2)l✏V(l) in terms of the bare, l-loop virtual exchanges

2In fact, emissions need to be counted as loops, since we are calculating a cross section.
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momenta are taken to be outgoing, correspond to
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The radiative cut, which leads to the real part of the one-loop integral, can be expressed as
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where, due to the choice of variables, the factor (pi · pj) is positive and thus can be dropped

in front of the i0-prescription. When evaluating the ↵-integration with the delta-function, one

finds an additional restriction for the ↵, � variables, namely ✓(↵�). Together with the ✓(↵+ �)

restriction from the cut, this leads to a ✓(↵)✓(�). As a result, one obtains

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0
d�

1

� + i0

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.15)

with a logarithmic divergence in �, the integration in � can be rewritten in terms of the angle ✓
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such that the collinear divergences still contained in ⌦(1)
ij,rad.cut become apparent. Because of

this, the soft anomalous dimension is formally divergent, however, the divergences are of collin-

ear origin only. One can choose an observable for which the collinear divergences cancel.

As an alternative choice of variables one can express the radiative cut of the one-loop integ-

ral in terms of rapidity ⌘ [18]
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. (4.18)

The variables of transverse momentum and (pseudo-)rapidity are preferably used to describe

processes of hadron-hadron collisions or lepton-hadron collisions [19]. Consult appendix A for

the Jacobian determinant in order to translate to rapidity and to find the variable definitions.

Yet another possible choice of variables is energy instead of transverse momentum. In e+-e�

collisions energy and solid angle are oftentimes the variables of choice. In terms of energy-
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finds an additional restriction for the ↵, � variables, namely ✓(↵�). Together with the ✓(↵+ �)

restriction from the cut, this leads to a ✓(↵)✓(�). As a result, one obtains

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0
d�

1

� + i0

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.15)

with a logarithmic divergence in �, the integration in � can be rewritten in terms of the angle ✓

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z 1

�1

d cos ✓

(1� cos ✓)(1 + cos ✓)

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.16)

such that the collinear divergences still contained in ⌦(1)
ij,rad.cut become apparent. Because of

this, the soft anomalous dimension is formally divergent, however, the divergences are of collin-

ear origin only. One can choose an observable for which the collinear divergences cancel.

As an alternative choice of variables one can express the radiative cut of the one-loop integ-

ral in terms of rapidity ⌘ [18]

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌘ d⌦(d�3) !(p?)

ij , (4.17)

where

!(p?)
ij =

p2?
2

pi · pj
(pi · k)(pj · k)

. (4.18)

The variables of transverse momentum and (pseudo-)rapidity are preferably used to describe

processes of hadron-hadron collisions or lepton-hadron collisions [19]. Consult appendix A for

the Jacobian determinant in order to translate to rapidity and to find the variable definitions.

Yet another possible choice of variables is energy instead of transverse momentum. In e+-e�

collisions energy and solid angle are oftentimes the variables of choice. In terms of energy-

34

V(l). In this case it is understood that V, just as the emission operators, are the singu-

lar exchanges and emissions attached to external, on-shell legs. We then define X(2)
n =

V̂(2)
n [⌅n,2] � V̂(1)

n [⌅n,1]V̂
(1)
n in terms of the singular parts of the two-loop exchanges V̂2

(note that the X(1)
n � X(1)†

n subtractions automatically adjust for the two loop case). By

the similar observations we need to use

F(1,1)
n � F(1,0)†

n = D(1,1)
n [⌅n�1,1] �D

(1,0)†
n ⇥n,1 (2.19)

+ D(1,1)
n [1� ⌅n�1,1] �D

(1,0)†
n ⇥n,1 +D(1,1)

n [⌅n�1,1] �D
(1,0)†
n (1�⇥n,1)

� V̂(1)
n [⌅n�1,1]D

(1,0)
n �D(1,0)†

n +D(1,0)
n V̂(1)

n�1 �D
(1,0)†
n ⇥n,1

in terms of the full unresolved behaviour D(1,1)
n . The latter contains all one-loop corrections

to a single unresolved emission and thus relies on resolution criterion which we cannot

uniquely associate to a virtual exchange before or after the emission an thus choose to be

⌅n�1,1 by convention. Also notice that D(1,1)
n does not exactly coincide with the one-loop

soft gluon current of [15] which has some iterated contributions already removed, however

it can easily be constructued from there. On the very same note V̂(2) and D(2,0) are

understood to contain the full sum of contributing diagrams.

We assume throughout that the virtual counter terms are given by casting the loop

integrals into phase space type integrals (see [8] for an algorithmic way of such a cutting

procedure) and supplementing them by a resolution criterion. To this extent we write

V̂(l)
n [⌅n,l] =

X

↵

Z
I
(l)
n,↵(p1, ..., pn; k1, ..., kl) ⌅

(↵)
n,l

lY

i=1

µ2✏
R [dki] , (2.20)

where ↵ labels di↵erent cuts and ⌅(↵)
n,l is the analogue of ⇥n,k for the virtual corrections

(though we, again, might split this up into more terms, or combine cuts with each other).

Since any more complicated situation follows by generalization we again keep things simple

and refer to one function ⌅n,l in the following. I(l)n,↵(p1, ..., pn; k1, ..., kl) denotes the inte-

grand, which might include �-functions which pin down the loop momenta to particular

kinematic regions. They thus are distributions in general, including the i0 prescriptions.

3 Resummation

In the regions of unresolved emissions and exchanges we expect the hard density operator

to factorize as

MnZ
n
g = ZnAnZ

†
n +

nX

s=1

↵s
SE

(s)
n An�sE

(s)†
n (3.1)

where

Zn = 1 +
X

k�1

↵k
SZ

(k)
n E(s)

n =
X

k�0

↵k
SE

(s,k)
n . (3.2)

It is important to stress that this re-definition is to be thought of in the sense that we

renormalize the divergent density operator Mn and trade it o↵ for a finite, though possibly

logarithmically enhanced, object An from which we can hope to build up an algorithm for
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resolution function for real emission

resolution function for (cut) loop momenta

Subtractions necessitate a resolution: what is it we call ‘unresolved’? Encompass all singular regions!



Redefinitions of “bare” operators
ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
n̄iY

j=1

�̃(p̄ij , m̄
2
i )[dp̄ij ] . (8.5)
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where each termM(l)
n refers to the product of an amplitude and its conjugate (see [2, 3, 8, 18]

for more details and aspects of this formalism) for n emissions, and together using l loops.

The sum of the amplitude’s and conjugate amplitude’s number of loops equals l and it is

understood that they are distributed symmetrically. For example a one-loop term would

read

Mn = |M
(0)
n ihM

(1)
n |+ |M

(1)
n ihM

(0)
n | (2.4)

in terms of tree-level and one-loop amplitudes |M(0)
n i and |M

(1)
n i, respectively. In express-

ing the bare through the renormalized coupling at a renormalization scale µR,

↵0
�
4⇡µ2

�✏
= ↵S(µR)µ

2✏
RZg Zg =

X

l�0

↵l
SZ

(l)
g (2.5)

we will remove the ultraviolet divergences involved in the calculation of Mn. However, sub-

ject to the structure of the observable, infrared divergencies might partially or fully cancel,

or remain all together. We will therefore start to individually remove these divergencies

with a subtraction formalism which we express by re-defining the observable operator as1

Un = X†
nSnXn �

1X

s=1

↵s
S

Z
F(s)†
n+sSn+sF

(s)
n+s

n+sY

i=n+1

µ2✏
R [dpi]�̃(pi) . (2.6)

In this redefinition,

Xn = 1�
X

k�1

↵k
SX

(k)
n and F(s)

n =
X

k�0

↵k
SF

(s,k)
n (2.7)

will be used as infrared counter-terms for virtual corrections in the n-parton amplitude,

and for s unresolved partons emitted from an n parton state, respectively. In general, we

can only demand S to define the physical observable for which we will be able to calculate

a finite cross section. However, if it is possible to demand that also U reflects a physical

measurement, then we can use Eq. 2.6 to assess the accuracy of the subtraction we perform.

Eq. 2.6 reflects by what amount the original definition of the measurement is altered with

respect to the re-defined one after subtraction, something which we will be discussing in

more detail in Sec. 6. We will in particular address this case in relation to hadronization

corrections for colour evolution and their connection to hadronization models in Sec. 7,

though a generalization to fragmentation functions and parton distribution functions will

become obvous by then, as well.

To see how the re-definition of the measurement Eq. 2.6 facilitates the task of providing

infrared subtractions we expand the cross section Eq. 2.1 in the renormalized coupling

Eq. 2.5,

�[Un] =
X

n

Z
↵n
S Tr

h
M̂nSn

i
d�(Q)

nY

i=1

µ2✏
R [dpi]�̃(pi) , (2.8)

1We suppress the explicit dependence on the emission’s momenta as far as no confusion arises; most of the

time this will be the case since we implicitly assume that recoil is either irrelevant or encoded in transforming

the hard system Q. For the case of soft gluon evolution this is mostly justified, and generalizations of our

formalism to include the full complexity of hard-collinear physics should be obvious and will be reported

on in future work.
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implications of the shear presence of a non-trivial Un are: we analyse to what extent we can

use the anticipated factorization to consistently construct evolution equations – and this

mainly means finite, iterative algorithms – to build up the hard scattering operator and the

measurement operator (which we can think of as anything in between a jet measurement,

fragmentation function, or a completely exclusive hadronization model), subject to a given

class of observables. Any finite algorithm, if it shall be based on events of fixed multiplicity,

necessarily involves an infrared resolution. The presence of this resolution, e.g. through

an infrared cuto↵ scale µS , shall be our starting point. We will devise re-definitions (or

renormalization transformations) from Mn and Un,

MnZ
n
g = Zn [A(µS), µS ] Un = Xn [S(µS), µS ]

onto finite density operators A(µS) = (A0(µS),A1(µS), ...) and e↵ective measurement

operators S(µS) = (S0(µS),S1(µS), ...) such that the cross section is invariant in the sense

that

X

n

↵n
0

Z
Tr [MnUn] d�n =

X

n

↵n
S

Z
Tr [Zn [A(µS), µS ]Xn [S(µS), µS ]] d�n =

X

n

↵n
S

Z
Tr [An(µS)Sn(µS)] d�n ,

where ↵0 = ↵SZg relates the bare and renormalized couplings, and µS is a resolution scale

(in fact, as we demonstrate below, a collection of resolutions scales), of which the final

cross sections needs to be independent in the same way as it is of the renormalization scale

(which we have supressed for simplicity in these introductory notes). Jet cross sections

would be recovered if Sn are the unit operators in colour space times a scalar measurement

function, and would then be represented by a scalar product matrix of overlaps of colour

states, see [4] for more details. The independence of the “bare” objects Mn and Un of the

scale µS will result in evolution equations for the An(µS) and Sn(µS), and also implies the

fact that the cross section is independent of the chosen resolution scale. Had we chosen

to work with vectors of density operators A rather their components An for each partonic

multiplicity, then the action of Z and X would in fact be matrices of colour charge operators

which are inverse to each other. While the former notation might look more transparent

on conceptual grounds, we here aim at a practical analysis, which is better based on the

density operators for individual partonic multiplicities and the cross feed between them,

mediated by the emission of additional partons. We should thus warn the reader that the

implementations of the re-definitions Z and X in the main text will appear in a more

complicated fashion than by representing them as simple linear operators acting on all the

density operators. However we exactly exploit the fact that X is inverse to Z, and we spell

out and prove this relation in very detail in the main text: We will actually determine

Z from X to be its inverse, possibly order-by-order in the strong coupling ↵S . X itself

needs to be determined to provide infrared subtractions to the hard density operator, after

ultraviolet renormalization, and its factorization properties. This step very much resembles

what happens in a fixed-order calculation in which infrared divergences are subtracted

– 4 –

X(1)
n = V̂(1)

n [⌅n,1]
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where M̂n =
P

l�0 ↵
l
SM̂

(l)
n . The individual M̂(l)

n can then be found by a fixed-order expan-

sion. Including subtractions up to the two-‘loop’2 level, i.e. putting to zero all X(l)
n with

l > 2, and all F(s,l)
n � F(s,l0)

n with l + l0 + s > 2, we find

M̂(0)
n = M(0)

n � Stree

h
M(0)

n

i
(2.9)

M̂(1)
n = M(1)

n,R � Stree

h
M(1)

n,R

i
� S1-loop

h
M(0)

n

i
(2.10)

M̂(2)
n = M(2)

n,R � Stree

h
M(2)

n,R

i
� S1-loop

h
M(1)

n,R

i
� S2-loop

h
M(0)

n

i
(2.11)

where

M(1)
n,R = M(1)

n + nZ(1)
g M(0)

n (2.12)

and

M(2)
n,R = M(2)

n + nZ(1)
g M(1)

n +

✓
n(n� 1)

2

⇣
Z(1)
g

⌘2
+ nZ(2)

g

◆
M(0)

n (2.13)

are the density operators with UV finite virtual corrections up to two loops.

Stree [Hn] = F(1,0)
n Hn�1F

(1,0)†
n + F(2,0)

n Hn�2F
(2,0)†
n (2.14)

provides subtractions for unresolved limits stemming from tree-level emission diagrams, for

which we can choose F(1,0)
n to be given by the single soft emission currentD(1,0)

n . Notice that

this is an over-subtraction in the double unresolved limit, where Hn�1 admits factorization

of another emission. We therefore need to take

F(1,0)
n � F(1,0)†

n = D(1,0)
n �D(1,0)†

n ⇥n,1 (2.15)

F(2,0)
n � F(2,0)†

n = D(2,0)
n �D(2,0)†

n ⇥n,2 �D(1,0)
n D(1,0)

n�1 �D(1,0)†
n�1 D(1,0)†

n ⇥n,1 (2.16)

in terms of the true unresolved behaviour D(2,0)
n as e.g. given by the soft gluon currents

[14], and a resolution criterion ⇥ which projects onto singular regions: ⇥n,k is supposed

to be one for any singular configuration of k out of n partons. These expressions need to

also be understood in the sense that we might split up the Eikonal currents into di↵erent

terms and e.g. use di↵erent ⇥ functions for di↵erent terms, though we will not make this

explicit for the sake of readability. Furthermore

S1-loop [Hn] = X(1)
n Hn +HnX

(1)†
n + F(1,1)

n Hn�1F
(1,0)†
n + F(1,0)

n Hn�1F
(1,1)†
n (2.17)

provides one-loop subtractions, and

S2-loop [Hn] = X(2)
n Hn +HnX

(2)†
n �X(1)

n HnX
(1)†
n (2.18)

provides two-loop subtractions. Similarly to what happened in the emission case, we need

to adjust X(1)
n to be given by the unresolved part of the one-loop exchange V̂(1)

n [⌅n,1],

where ⌅n,k refers to a restriction on unresolved loop momentum modes and we adopt the

convention that V̂(l) = (µ2
R/4⇡µ

2)l✏V(l) in terms of the bare, l-loop virtual exchanges

2In fact, emissions need to be counted as loops, since we are calculating a cross section.
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momenta are taken to be outgoing, correspond to

i

j

= �

2

64
i

j

+

i

j

+

i

j

3

75 . (4.13)

The radiative cut, which leads to the real part of the one-loop integral, can be expressed as

⌦(1)
ij,rad.cut = �i

↵s

⇡

(2⇡)2"µ2"

(2⇡)2

Z
ddk (2⇡i)�̃(k)

pi · pj
[pi · k + i0][�pj · k + i0]

=
↵s

⇡

(2⇡)2"

2⇡

Z
1

�1

d↵

Z
1

�1

d�

Z
1

0
dp?p?✓(p?)

✓
µ

p?

◆2" Z
d⌦(d�3)

�(2↵�(pi · pj)� p2
?
)✓(↵+ �)

[� + i0][�↵+ i0]
,

(4.14)

where, due to the choice of variables, the factor (pi · pj) is positive and thus can be dropped

in front of the i0-prescription. When evaluating the ↵-integration with the delta-function, one

finds an additional restriction for the ↵, � variables, namely ✓(↵�). Together with the ✓(↵+ �)

restriction from the cut, this leads to a ✓(↵)✓(�). As a result, one obtains

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0
d�

1

� + i0

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.15)

with a logarithmic divergence in �, the integration in � can be rewritten in terms of the angle ✓

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z 1

�1

d cos ✓

(1� cos ✓)(1 + cos ✓)

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.16)

such that the collinear divergences still contained in ⌦(1)
ij,rad.cut become apparent. Because of

this, the soft anomalous dimension is formally divergent, however, the divergences are of collin-

ear origin only. One can choose an observable for which the collinear divergences cancel.

As an alternative choice of variables one can express the radiative cut of the one-loop integ-

ral in terms of rapidity ⌘ [18]

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌘ d⌦(d�3) !(p?)

ij , (4.17)

where

!(p?)
ij =

p2?
2

pi · pj
(pi · k)(pj · k)

. (4.18)

The variables of transverse momentum and (pseudo-)rapidity are preferably used to describe

processes of hadron-hadron collisions or lepton-hadron collisions [19]. Consult appendix A for

the Jacobian determinant in order to translate to rapidity and to find the variable definitions.

Yet another possible choice of variables is energy instead of transverse momentum. In e+-e�

collisions energy and solid angle are oftentimes the variables of choice. In terms of energy-
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The radiative cut, which leads to the real part of the one-loop integral, can be expressed as
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?
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(4.14)

where, due to the choice of variables, the factor (pi · pj) is positive and thus can be dropped

in front of the i0-prescription. When evaluating the ↵-integration with the delta-function, one

finds an additional restriction for the ↵, � variables, namely ✓(↵�). Together with the ✓(↵+ �)

restriction from the cut, this leads to a ✓(↵)✓(�). As a result, one obtains

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0
d�

1

� + i0

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.15)

with a logarithmic divergence in �, the integration in � can be rewritten in terms of the angle ✓

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z 1

�1

d cos ✓

(1� cos ✓)(1 + cos ✓)

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌦(d�3) , (4.16)

such that the collinear divergences still contained in ⌦(1)
ij,rad.cut become apparent. Because of

this, the soft anomalous dimension is formally divergent, however, the divergences are of collin-

ear origin only. One can choose an observable for which the collinear divergences cancel.

As an alternative choice of variables one can express the radiative cut of the one-loop integ-

ral in terms of rapidity ⌘ [18]

⌦(1)
ij,rad.cut = �

↵s

⇡

(2⇡)2"

2⇡

Z
1

0

dp?
p?

✓
µ

p?

◆2" Z
d⌘ d⌦(d�3) !(p?)

ij , (4.17)

where

!(p?)
ij =

p2?
2

pi · pj
(pi · k)(pj · k)

. (4.18)

The variables of transverse momentum and (pseudo-)rapidity are preferably used to describe

processes of hadron-hadron collisions or lepton-hadron collisions [19]. Consult appendix A for

the Jacobian determinant in order to translate to rapidity and to find the variable definitions.

Yet another possible choice of variables is energy instead of transverse momentum. In e+-e�

collisions energy and solid angle are oftentimes the variables of choice. In terms of energy-

34

V(l). In this case it is understood that V, just as the emission operators, are the singu-

lar exchanges and emissions attached to external, on-shell legs. We then define X(2)
n =

V̂(2)
n [⌅n,2] � V̂(1)

n [⌅n,1]V̂
(1)
n in terms of the singular parts of the two-loop exchanges V̂2

(note that the X(1)
n � X(1)†

n subtractions automatically adjust for the two loop case). By

the similar observations we need to use

F(1,1)
n � F(1,0)†

n = D(1,1)
n [⌅n�1,1] �D

(1,0)†
n ⇥n,1 (2.19)

+ D(1,1)
n [1� ⌅n�1,1] �D

(1,0)†
n ⇥n,1 +D(1,1)

n [⌅n�1,1] �D
(1,0)†
n (1�⇥n,1)

� V̂(1)
n [⌅n�1,1]D

(1,0)
n �D(1,0)†

n +D(1,0)
n V̂(1)

n�1 �D
(1,0)†
n ⇥n,1

in terms of the full unresolved behaviour D(1,1)
n . The latter contains all one-loop corrections

to a single unresolved emission and thus relies on resolution criterion which we cannot

uniquely associate to a virtual exchange before or after the emission an thus choose to be

⌅n�1,1 by convention. Also notice that D(1,1)
n does not exactly coincide with the one-loop

soft gluon current of [15] which has some iterated contributions already removed, however

it can easily be constructued from there. On the very same note V̂(2) and D(2,0) are

understood to contain the full sum of contributing diagrams.

We assume throughout that the virtual counter terms are given by casting the loop

integrals into phase space type integrals (see [8] for an algorithmic way of such a cutting

procedure) and supplementing them by a resolution criterion. To this extent we write

V̂(l)
n [⌅n,l] =

X

↵

Z
I
(l)
n,↵(p1, ..., pn; k1, ..., kl) ⌅

(↵)
n,l

lY

i=1

µ2✏
R [dki] , (2.20)

where ↵ labels di↵erent cuts and ⌅(↵)
n,l is the analogue of ⇥n,k for the virtual corrections

(though we, again, might split this up into more terms, or combine cuts with each other).

Since any more complicated situation follows by generalization we again keep things simple

and refer to one function ⌅n,l in the following. I(l)n,↵(p1, ..., pn; k1, ..., kl) denotes the inte-

grand, which might include �-functions which pin down the loop momenta to particular

kinematic regions. They thus are distributions in general, including the i0 prescriptions.

3 Resummation

In the regions of unresolved emissions and exchanges we expect the hard density operator

to factorize as

MnZ
n
g = ZnAnZ

†
n +

nX

s=1

↵s
SE

(s)
n An�sE

(s)†
n (3.1)

where

Zn = 1 +
X

k�1

↵k
SZ

(k)
n E(s)

n =
X

k�0

↵k
SE

(s,k)
n . (3.2)

It is important to stress that this re-definition is to be thought of in the sense that we

renormalize the divergent density operator Mn and trade it o↵ for a finite, though possibly

logarithmically enhanced, object An from which we can hope to build up an algorithm for
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resolution function for real emission

resolution function for (cut) loop momenta

X(2)
n = V̂(2)

n [⌅n,2]� V̂(1)
n [⌅n,1]V̂

(1)
n

<latexit sha1_base64="CgzkHs6uyFrL7b293yLzwb9Hc9g="></latexit>

where M̂n =
P

l�0 ↵
l
SM̂

(l)
n . The individual M̂(l)

n can then be found by a fixed-order expan-

sion. Including subtractions up to the two-‘loop’2 level, i.e. putting to zero all X(l)
n with

l > 2, and all F(s,l)
n � F(s,l0)

n with l + l0 + s > 2, we find

M̂(0)
n = M(0)

n � Stree

h
M(0)

n

i
(2.9)

M̂(1)
n = M(1)

n,R � Stree

h
M(1)

n,R

i
� S1-loop

h
M(0)

n

i
(2.10)

M̂(2)
n = M(2)

n,R � Stree

h
M(2)

n,R

i
� S1-loop

h
M(1)

n,R

i
� S2-loop

h
M(0)

n

i
(2.11)

where

M(1)
n,R = M(1)

n + nZ(1)
g M(0)

n (2.12)

and

M(2)
n,R = M(2)

n + nZ(1)
g M(1)

n +

✓
n(n� 1)

2

⇣
Z(1)
g

⌘2
+ nZ(2)

g

◆
M(0)

n (2.13)

are the density operators with UV finite virtual corrections up to two loops.

Stree [Hn] = F(1,0)
n Hn�1F

(1,0)†
n + F(2,0)

n Hn�2F
(2,0)†
n (2.14)

provides subtractions for unresolved limits stemming from tree-level emission diagrams, for

which we can choose F(1,0)
n to be given by the single soft emission currentD(1,0)

n . Notice that

this is an over-subtraction in the double unresolved limit, where Hn�1 admits factorization

of another emission. We therefore need to take

F(1,0)
n � F(1,0)†

n = D(1,0)
n �D(1,0)†

n ⇥n,1 (2.15)

F(2,0)
n � F(2,0)†

n = D(2,0)
n �D(2,0)†

n ⇥n,2 �D(1,0)
n D(1,0)

n�1 �D(1,0)†
n�1 D(1,0)†

n ⇥n,1 (2.16)

in terms of the true unresolved behaviour D(2,0)
n as e.g. given by the soft gluon currents

[14], and a resolution criterion ⇥ which projects onto singular regions: ⇥n,k is supposed

to be one for any singular configuration of k out of n partons. These expressions need to

also be understood in the sense that we might split up the Eikonal currents into di↵erent

terms and e.g. use di↵erent ⇥ functions for di↵erent terms, though we will not make this

explicit for the sake of readability. Furthermore

S1-loop [Hn] = X(1)
n Hn +HnX

(1)†
n + F(1,1)

n Hn�1F
(1,0)†
n + F(1,0)

n Hn�1F
(1,1)†
n (2.17)

provides one-loop subtractions, and

S2-loop [Hn] = X(2)
n Hn +HnX

(2)†
n �X(1)

n HnX
(1)†
n (2.18)

provides two-loop subtractions. Similarly to what happened in the emission case, we need

to adjust X(1)
n to be given by the unresolved part of the one-loop exchange V̂(1)

n [⌅n,1],

where ⌅n,k refers to a restriction on unresolved loop momentum modes and we adopt the

convention that V̂(l) = (µ2
R/4⇡µ

2)l✏V(l) in terms of the bare, l-loop virtual exchanges

2In fact, emissions need to be counted as loops, since we are calculating a cross section.
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V(l). In this case it is understood that V, just as the emission operators, are the singu-

lar exchanges and emissions attached to external, on-shell legs. We then define X(2)
n =

V̂(2)
n [⌅n,2] � V̂(1)

n [⌅n,1]V̂
(1)
n in terms of the singular parts of the two-loop exchanges V̂2

(note that the X(1)
n � X(1)†

n subtractions automatically adjust for the two loop case). By

the similar observations we need to use

F(1,1)
n � F(1,0)†

n = D(1,1)
n [⌅n�1,1] �D

(1,0)†
n ⇥n,1 (2.19)

+ D(1,1)
n [1� ⌅n�1,1] �D

(1,0)†
n ⇥n,1 +D(1,1)

n [⌅n�1,1] �D
(1,0)†
n (1�⇥n,1)

� V̂(1)
n [⌅n�1,1]D

(1,0)
n �D(1,0)†

n +D(1,0)
n V̂(1)

n�1 �D
(1,0)†
n ⇥n,1

in terms of the full unresolved behaviour D(1,1)
n . The latter contains all one-loop corrections

to a single unresolved emission and thus relies on resolution criterion which we cannot

uniquely associate to a virtual exchange before or after the emission an thus choose to be

⌅n�1,1 by convention. Also notice that D(1,1)
n does not exactly coincide with the one-loop

soft gluon current of [15] which has some iterated contributions already removed, however

it can easily be constructued from there. On the very same note V̂(2) and D(2,0) are

understood to contain the full sum of contributing diagrams.

We assume throughout that the virtual counter terms are given by casting the loop

integrals into phase space type integrals (see [8] for an algorithmic way of such a cutting

procedure) and supplementing them by a resolution criterion. To this extent we write

V̂(l)
n [⌅n,l] =

X

↵

Z
I
(l)
n,↵(p1, ..., pn; k1, ..., kl) ⌅

(↵)
n,l

lY

i=1

µ2✏
R [dki] , (2.20)

where ↵ labels di↵erent cuts and ⌅(↵)
n,l is the analogue of ⇥n,k for the virtual corrections

(though we, again, might split this up into more terms, or combine cuts with each other).

Since any more complicated situation follows by generalization we again keep things simple

and refer to one function ⌅n,l in the following. I(l)n,↵(p1, ..., pn; k1, ..., kl) denotes the inte-

grand, which might include �-functions which pin down the loop momenta to particular

kinematic regions. They thus are distributions in general, including the i0 prescriptions.

3 Resummation

In the regions of unresolved emissions and exchanges we expect the hard density operator

to factorize as

MnZ
n
g = ZnAnZ

†
n +

nX

s=1

↵s
SE

(s)
n An�sE

(s)†
n (3.1)

where

Zn = 1 +
X

k�1

↵k
SZ

(k)
n E(s)

n =
X

k�0

↵k
SE

(s,k)
n . (3.2)

It is important to stress that this re-definition is to be thought of in the sense that we

renormalize the divergent density operator Mn and trade it o↵ for a finite, though possibly

logarithmically enhanced, object An from which we can hope to build up an algorithm for
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Continues to higher orders …

Subtractions necessitate a resolution: what is it we call ‘unresolved’? Encompass all singular regions!
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and

E(2,0)
n �E(2,0)†

n = D(2,0)
n �D(2,0)†

n ⇥n,2�D(1,0)
n D(1,0)

n�1 �D
(1,0)†
n�1 D(1,0)†

n ⇥n,1(1�⇥n�1,1) . (3.11)

Notice that some of the iterated parts are now to be taken in their resolved regions and

adjust the full second order contributions accordingly.

4 Evolution Equations

We will now study how the dependence on the di↵erent infrared resoltuion scales as well as

the renormalization scale µR gives rise to evolution equations for the hard and soft factors.

Notice that the running of ↵S is given by the d-dimensional �-function as

@R↵S ⌘ µR
@↵S

@µR
= ↵S

X

k�0

�R,k�1↵
k
S ⌘ �(↵S)↵S �R,�1 = �2✏ , (4.1)

and it is understood that �S,k = 0 if S 6= R indicates that we di↵erentiate to a di↵erent

scale µS in place of the renormalization scale µR. From Eq. 2.5 we then have at second

order

�R,0 = 2✏Z(1)
g �R,1 = 4✏

⇣
Z(2)
g � (Z(1)

g )2
⌘

(4.2)

4.1 Hard density operator

If we di↵erentiate Eq. 3.1 to any of the resolution scales µS contained in ⇥n,s and ⌅n,s, or

the renormalization scale, we then obtain (@S ⌘ @/@ logµS as above)

@SAn = �n,SAn +An�
†
n,S �

X

s�1

↵s
SR

(s)
S,nAn�sR

(s)†
S,n (4.3)

where

�n,S = �Z
n
2
g @SZ

�n
2

g � Z�1
n @SZn (4.4)

and

R(s)
S,n �R(s)†

S,n = Z�1
n

h�
Zn
g @SZ

�n
g + s �(↵S)

�
E(s)

n �E(s)†
n (4.5)

+ @S
⇣
E(s)

n �E(s)†
n

⌘
+E(s)

n �n�s,S �E(s)†
n +E(s)

n � �†
n�s,SE

(s)†
n

�

s�1X

s0=1

E(s�s0)
n R(s0)

S,n�s+s0 �R
(s0)†
S,n�s+s0E

(s�s0)†
n

#⇣
Z†
n

⌘�1
.

Explicit expressions up to second order are obtained in App. A.1. Note that the appearance

of �S,�1 will mostly be cancelled by derivatives acting on the µR factors, thus no explicit

account of their e↵ect will be needed. Fo the cases where an explicit account of it is needed

we employ (in a distributional sense for functions with support x 2 (0, 1])

✏

x1�✏
= �(x)�

1X

n=0

✏n+1

n!


ln(1/x)

x

�

+

, (4.6)

where the + prescription is to be taken with a subtraction at x = 0. Notice however, that

most of such cases will actually be dropping out due to the d-dimensional � function.
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4.2 Soft function

The transformed soft function is subject to an evolution

@SSn = ��̃†
S,nSn � Sn�̃S,n +

X

s�1

↵s
S

Z
R̃(s)†

S,n+sSn+sR̃
(s)
S,n+s

n+sY

i=n+1

[dpi]�̃(pi) (4.7)

where we now find the anomalous dimensions and evolution kernels to be given by

�̃S,n = (@SXn)X
�1
n (4.8)

and

µ�2✏s
R R̃(s)†

S,n+s � R̃
(s)
S,n+s =

⇣
X†

n

⌘�1 h
s �(↵S)F

(s)†
n+s � F

(s)
n+s (4.9)

+ @S
⇣
F(s)†
n+s � F

(s)
n+s

⌘
� F(s)†

n+s�̃
†
n+s,S � F(s)

n+s � F(s)†
n+s � �̃n+s,SE

(s)
n

+
s�1X

s0=1

F(s�s0)†
n+s�s0R̃

(s0)†
S,n+s � R̃

(s0)
S,n+sF

(s�s0)
n+s�s0µ

�2✏s0

R

#
X�1

n .

Explicit expressions up to second order are again given in App. A.2.

5 Examples for Evolution at Leading Order

In this section we consider the resummation of non-global logarithms in an ordering with

respect to energy. Specifically we require virtual counter terms which can be inferred from

the cuts obtained with the methods in [8]. The one-loop virtual correction is given by

V(1)
n =

�
4⇡µ2

�✏ 1

2

X

i<j

(�Ti ·Tj) ⇥

Z
[dpn+1]

2⇡i

4pi · pj
(2pi · pn+1 + i0(T · pi)2)(2pj · pn+1 � i0(T · pj)2)

1

p2n+1 + i0(T · pn+1)2
(5.1)

and admits the cuts given in [8], out of which the double cut vanishes in dimensional regu-

larization and a real-valued and imaginary single cut remains, if i and j are both incoming

or both outgoing, and the absorptive cut is canceled in the case of an incoming/outgoing

pair. These give rise to the subtractions (notice that cutting introduces a minus sign in

the use of the Feynman tree theorem)

X(1)
n,rad =

X

i<j

Ti ·Tj

Z 1

0

dE

E

⇣µR

E

⌘2✏
Z 1

�1
dx

(1� x2)�✏

1� x2

Z
d⌦(d�3) ⌅̂(ij)

n,1,rad (5.2)

X(1)
n,abs =

X

i<j

Ti ·Tj

Z 1

0
dE

⇣µR

E

⌘2✏

Z 1

�1
dx(1� x2)�✏ 1

2Ex� i0
p
2pi · pj

1

x2 � 1 + i0 2x2
⌅̂(ij)
n,1,abs

Z
d⌦(d�3) . (5.3)
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Hard factor reproduces CVolver algorithm and 
predicts key features of second order evolution.

ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
n̄iY

j=1

�̃(p̄ij , m̄
2
i )[dp̄ij ] . (8.5)
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E(2,0)
n �E(2,0)†

n = D(2,0)
n �D(2,0)†

n ⇥n,2�D(1,0)
n D(1,0)

n�1 �D
(1,0)†
n�1 D(1,0)†

n ⇥n,1(1�⇥n�1,1) . (3.11)

Notice that some of the iterated parts are now to be taken in their resolved regions and

adjust the full second order contributions accordingly.

4 Evolution Equations

We will now study how the dependence on the di↵erent infrared resoltuion scales as well as

the renormalization scale µR gives rise to evolution equations for the hard and soft factors.

Notice that the running of ↵S is given by the d-dimensional �-function as

@R↵S ⌘ µR
@↵S

@µR
= ↵S

X

k�0

�R,k�1↵
k
S ⌘ �(↵S)↵S �R,�1 = �2✏ , (4.1)

and it is understood that �S,k = 0 if S 6= R indicates that we di↵erentiate to a di↵erent

scale µS in place of the renormalization scale µR. From Eq. 2.5 we then have at second

order

�R,0 = 2✏Z(1)
g �R,1 = 4✏

⇣
Z(2)
g � (Z(1)

g )2
⌘

(4.2)

4.1 Hard density operator

If we di↵erentiate Eq. 3.1 to any of the resolution scales µS contained in ⇥n,s and ⌅n,s, or

the renormalization scale, we then obtain (@S ⌘ @/@ logµS as above)

@SAn = �n,SAn +An�
†
n,S �

X

s�1

↵s
SR

(s)
S,nAn�sR

(s)†
S,n (4.3)

where

�n,S = �Z
n
2
g @SZ

�n
2

g � Z�1
n @SZn (4.4)

and

R(s)
S,n �R(s)†

S,n = Z�1
n

h�
Zn
g @SZ

�n
g + s �(↵S)

�
E(s)

n �E(s)†
n (4.5)

+ @S
⇣
E(s)

n �E(s)†
n

⌘
+E(s)

n �n�s,S �E(s)†
n +E(s)

n � �†
n�s,SE

(s)†
n

�

s�1X

s0=1

E(s�s0)
n R(s0)

S,n�s+s0 �R
(s0)†
S,n�s+s0E

(s�s0)†
n

#⇣
Z†
n

⌘�1
.

Explicit expressions up to second order are obtained in App. A.1. Note that the appearance

of �S,�1 will mostly be cancelled by derivatives acting on the µR factors, thus no explicit

account of their e↵ect will be needed. Fo the cases where an explicit account of it is needed

we employ (in a distributional sense for functions with support x 2 (0, 1])

✏

x1�✏
= �(x)�

1X

n=0

✏n+1

n!


ln(1/x)

x

�

+

, (4.6)

where the + prescription is to be taken with a subtraction at x = 0. Notice however, that

most of such cases will actually be dropping out due to the d-dimensional � function.
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4.2 Soft function

The transformed soft function is subject to an evolution

@SSn = ��̃†
S,nSn � Sn�̃S,n +

X

s�1

↵s
S

Z
R̃(s)†

S,n+sSn+sR̃
(s)
S,n+s

n+sY

i=n+1

[dpi]�̃(pi) (4.7)

where we now find the anomalous dimensions and evolution kernels to be given by

�̃S,n = (@SXn)X
�1
n (4.8)

and

µ�2✏s
R R̃(s)†

S,n+s � R̃
(s)
S,n+s =

⇣
X†

n

⌘�1 h
s �(↵S)F

(s)†
n+s � F

(s)
n+s (4.9)

+ @S
⇣
F(s)†
n+s � F

(s)
n+s

⌘
� F(s)†

n+s�̃
†
n+s,S � F(s)

n+s � F(s)†
n+s � �̃n+s,SE

(s)
n

+
s�1X

s0=1

F(s�s0)†
n+s�s0R̃

(s0)†
S,n+s � R̃

(s0)
S,n+sF

(s�s0)
n+s�s0µ

�2✏s0

R

#
X�1

n .

Explicit expressions up to second order are again given in App. A.2.

5 Examples for Evolution at Leading Order

In this section we consider the resummation of non-global logarithms in an ordering with

respect to energy. Specifically we require virtual counter terms which can be inferred from

the cuts obtained with the methods in [8]. The one-loop virtual correction is given by

V(1)
n =

�
4⇡µ2

�✏ 1

2

X

i<j

(�Ti ·Tj) ⇥

Z
[dpn+1]

2⇡i

4pi · pj
(2pi · pn+1 + i0(T · pi)2)(2pj · pn+1 � i0(T · pj)2)

1

p2n+1 + i0(T · pn+1)2
(5.1)

and admits the cuts given in [8], out of which the double cut vanishes in dimensional regu-

larization and a real-valued and imaginary single cut remains, if i and j are both incoming

or both outgoing, and the absorptive cut is canceled in the case of an incoming/outgoing

pair. These give rise to the subtractions (notice that cutting introduces a minus sign in

the use of the Feynman tree theorem)

X(1)
n,rad =

X

i<j

Ti ·Tj

Z 1

0

dE

E

⇣µR

E

⌘2✏
Z 1

�1
dx

(1� x2)�✏

1� x2

Z
d⌦(d�3) ⌅̂(ij)

n,1,rad (5.2)

X(1)
n,abs =

X

i<j

Ti ·Tj

Z 1

0
dE

⇣µR

E

⌘2✏

Z 1

�1
dx(1� x2)�✏ 1

2Ex� i0
p
2pi · pj

1

x2 � 1 + i0 2x2
⌅̂(ij)
n,1,abs

Z
d⌦(d�3) . (5.3)
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Hard factor reproduces CVolver algorithm and 
predicts key features of second order evolution.

ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
P

j pij and the two factors are

then convoluted by momentum integrations

Y

i

�

0

@
niX

j=1

pij �
n̄iX

j=1

p̄ij

1

A �̃

0

@
niX

j=1

pij ,M
2
i

1

A
n̄iY

j=1

�̃(p̄ij , m̄
2
i )[dp̄ij ] . (8.5)
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In this case we have indicated that we have evaluated these integrals in the dipole rest

frame, which introduces additional complications when combining with the real emission.

In the dipole frame, and for the radiative cut, we have x = (pi�pj)·pn+1/
p

2pi · pj and E =

(pi+pj) ·pn+1/
p
2pi · pj with p2n+1 = 0, and writing the integral in the above form requires

⌅̂(ij)
n,1,rad to be symmetric around x = 0. For the absorptive part, Ex = pj · pn+1/

p
2pi · pj

and pi · pn+1 = 0. A boost back to lab frame needs to separately map the dipole’s legs

into each other, ⇤ijn̂i,j = ni,j , where pi,j = Ei,jni,j , such that the cancellation with the

real emission can be ensured. In the case of a cuto↵ on energies we tag the exchange as

resolved, whenever its energy is within the real emission phase space (here indicated by the

limit on Q), or it has a minimum energy or a minimum opening angle to one dipole leg,

⌅̂(ij)
n,1,rad = 1� ✓(Q� E)✓(E � µS)⇥̂

(ij)
� (1� x, 1 + x) . (5.4)

Then we find for the anomalous dimensions from the radiative cut by di↵erentiating with

respect to µS@/@µS and @/@�

�(1)
S,n,rad = ��̃(1)

S,n,rad =

�

X

i<j

Ti ·Tj

✓
µR

µS

◆2✏

✓(Q� µS)

Z 1

�1
dx

(1� x2)�✏

1� x2
⇥̂(ij)

� (1� x, 1 + x)

Z
d⌦(d�3) (5.5)

�(1)
�,n,rad = ��̃(1)

�,n,rad =
X

i<j

Ti ·Tj
1

✏

"✓
µR

Q

◆2✏

�

✓
µR

µS

◆2✏
#

⇥

Z 1

�1
dx

(1� x2)�✏

1� x2

✓
�

@

@�
⇥̂(ij)

� (1� x, 1 + x)

◆Z
d⌦(d�3) . (5.6)

Notice that the anomalous dimension for the angular cuto↵ would exhibit a pole in ✏ if it

was not for the upper bound on the energy. We strongly suggest that this upper bound

should not only be inferred by considerations about the real cancellation, but by amplitude-

level considerations about the oredering variable as advocatet in [3, 23, 24]. The role of

the boost and frame dependence of the colliner cuto↵ will be discussed in a separate work,

notice only that

F(ni · nj , ni · n, nj · n)d⌦
(d�2) =

F

✓
2,

1� x

(⇤ijn̂)0
,
1 + x

(⇤ijn̂)0

◆
1

((⇤ijn̂)0)2�d
dx(1� x2)�✏d⌦(d�3)

⌘ F̂
(ij)(1� x, 1 + x)dx(1� x2)�✏d⌦(d�3) (5.7)

allows to translate between the lab frame and the frame in which we consider regularizing

the virtuals. The UV running at first order is given by

�(1)
R,n,rad =

n

2
�R,0 and �̃(1)

R,n,rad = 0 , (5.8)

confirming the role of the hard and soft density operators. The absorptive cut is regularized

through the i0 terms which do not cancel, and is integrable for any resolution which is
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through the i0 terms which do not cancel, and is integrable for any resolution which is
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6 Accuracy Considerations

6.1 Evolution at the Second Order and Comparison to Shower Approaches

In this section we compare the structure of the evolution at the second order to approaches

of parton shower algorithms which aim to describe evolution at the same accuracy. The

results here can also be used to assemble a full evolution using our results [9] and the double

emission current [15]. Putting �S,i = 0 for the evolution of the hard density operator we

obtain

�(2)
S,n = �V̂(2)

n [@S⌅n,2] + V̂(1)
n [@S⌅n,1] V̂

(1)
n [1� ⌅n,1] , (6.1)

R(1,1)
n �R(1,0)†

n =
⇣
D̂(1,1)

n [1� ⌅n,1]� D̂(1,0)
n V̂(1)

n�1 [1� ⌅n�1,1]
⌘
� D̂(1,0)†

n @S⇥n,1 (6.2)

+
⇣
D̂(1,1)

n [@S⌅n,1]� V̂(1)
n [@S⌅n,1] D̂

(1,0)
n

⌘
� D̂(1,0)†

n (1�⇥n,1) ,

and

R(2,0)
n �R(2,0)†

n = D̂(2,0)
n � D̂(2,0)†

n @S⇥n,2 (6.3)

� D̂(1,0)
n D̂(1,0)

n�1 � D̂(1,0)†
n�1 D̂(1,0)†

n (1�⇥n�1,1)@S⇥n,1 .

Notice that both the double real, as well as the double virtual terms have a form which

resemble a subtraction calculation in the sense that the “earlier” exchange or emission

n � 1 constrained to be resolved by 1 � ⌅n,1 or 1 � ⇥n�1,1 and the later one is pinned

down to the evolution variable. Also Eq. 6.2 shows a similar structure, and in fact the

first contribution removes the one-emission current after a virtual insertion from the one-

loop/one-emission contribution and so is in one-to-one correspondence with directly using

the result of [16], while the second term corresponds to a di↵erent subtraction for the

correction of an emission which is resolved. It would thus be interesting to compare the

structure of such subtractions with NLO-type subtraction scheme to O(↵2
S) corrections

of a splitting kernel as advocated in [30, 31]. Let us in particular emphasize how the

resolution conspires with the subtraction in the cases above, e.g. for the real emission. In

this case we can take ⇥n,1 = 1� ⇥̂n,1✓(En � µS) with some angular resolution ⇥̂n,1 which

regulates collinear divergences. In order to guarantee that the double emission phase space

is projected onto the singular region, we need to take⇥n,2 = 1�⇥̂n,2✓(En�1�µS)✓(En�µS).

Inserting this into Eq. 6.3 we find that

R(2,0)
n �R(2,0)†

n =
⇣
D̂(0,2)

n � D̂(0,2)†
n ⇥̂n,2 � D̂(0,1)

n D̂(0,1)
n�1 � D̂(0,1)†

n�1 D̂(0,1)†
n ⇥̂n�1,1⇥̂n,1

⌘
(6.4)

⇥✓(En�1 � µS)�(En � µs)

+ D̂(0,2)
n � D̂(0,2)†

n ⇥̂n,2✓(En � µS)�(En�1 � µS) ,

i.e. each of the two terms is completely regulated by the angular and energy cuto↵s, and

subtractions of the iterated piece are applied in the ordered region only.
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Constructing evolution algorithms

Similar consequences for virtual corrections.

Subtract iterated contribution in ordered phase space.

Use full double gluon matrix element outside.
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Inserting this into Eq. 6.3 we find that

R(2,0)
n �R(2,0)†

n =
⇣
D̂(0,2)

n � D̂(0,2)†
n ⇥̂n,2 � D̂(0,1)

n D̂(0,1)
n�1 � D̂(0,1)†

n�1 D̂(0,1)†
n ⇥̂n�1,1⇥̂n,1

⌘
(6.4)

⇥✓(En�1 � µS)�(En � µs)

+ D̂(0,2)
n � D̂(0,2)†

n ⇥̂n,2✓(En � µS)�(En�1 � µS) ,

i.e. each of the two terms is completely regulated by the angular and energy cuto↵s, and

subtractions of the iterated piece are applied in the ordered region only.

6.2 Accuracy for Various Observables

The introduction of infrared subtractions provides us with a measure of accuracy, and

possibly the structure of hadronization corrections which we briefly discuss in the next

section. At the lowest order Eq. 2.6 implies that

Un = Sn � ↵SX
(1)†
n Sn � ↵SSnX

(1)
n

� ↵S

Z
F(1,0)†
n+1 Sn+1F

(1,0)
n+1µ

2✏
R [dpn+1]�̃(pn+1) +O(↵2

s) . (6.5)

Up to this order we have a one-to-one correspondence between subtraction terms and virtual

and real corrections, see Sec. 2. Notice that even if we assume unitarity in connecting V̂(1)
n

and D̂(1,0)†
n � D̂(1,0)

n in the sense that we choose ⌅ = ⇥ and
Z

D̂(1,0)†
n+1 D̂(1,0)

n+1⇥n,1µ
2✏
R [dpn+1]�̃(pn+1) = �

1

2
V̂(1)

n [⇥n,1] (6.6)

we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power
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ground, we can adopt the following analysis of the cross section, which we here present in

a more sketchy way with details to be addressed later:

� =
X

n,m

Z Z
Trn [MnUnm] d�mu(�m) (8.1)

is the general cross section we would strive to calculate, in terms of m experimentally

observed particles from which we can calculate an observable u(�m), and the trace refers

to a sum over degrees of freedom within the n constituent particles from which we could

build up the m observed particles. Up until now we have collectively addressed Un =P
mUnmu(�m) as the measurement function. The above clearly must be a consequence of

a factorization theorem which would start from an S matrix element of the form

|hf |S|ii|2 =
X

↵,�

Rm

Z
[dp]n[dp̄]n̄

Y

i

�

0

@
niX

j=1

pij � Pi

1

A �

0

@
n̄iX

j=1

p̄ij � Pi

1

A

h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0i G↵(pn)Ḡ
�(p̄n̄)

���
m-(truncated, on-shell)

(8.2)

where the sum over the field indices ↵,� does consitute Trn, and the relevant Green’s

function is a tensor in all of these indices, subject to choosing a basis |↵} of colour and spin

(which we here have deliberatly denoted with a curly bracket notation to distinguish them

from the true quantum mechanical states): |mi = |ii|fi is the product of initial and final

states involved in the definition of the S matrix element, and h0|�↵(pn)|mi are collectively

denoting the external wave functions, i.e. in general Bethe-Salpeter amplitudes, for the

states of interest as dictated by the interpolating fields �↵ we have chosen for the elementary

or possibly composite external states. Rm is the product of the corresponding wave function

renormalizations for the final state m, and the integrations over the o↵-shell constituent

momenta are constrained such that their sum equal the observed final state momenta Pi.

The truncation of the Green’s functions is to be understood such that iterations of Nm-

PI-irreducible legs which combine into a composite state of Nm constituents have been

truncated. Momentum conservation of the observed particles then leads to momentum

conservation among the constitutent particles. Our current formalism has then assumed

that the result will be dominated by those contributions which have all partonic lines put

on-shell,

{↵|Mn|�} = (Rn,↵Rn̄,�)
1/2 G↵(pn)Ḡ

�(p̄n̄)
���
m and 1-(truncated, on-shell)

, (8.3)

and

{�|Unm|↵} =
Rm

(Rn,↵Rn̄,�)1/2
h0|�↵({p}n|{P}m)|mihm|�̄�({p̄}n̄|{P}m)|0iu({P}m) , (8.4)

where each of the Pi is given by the sum of constituents
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We continue on “Colour evolution and infrared physics”

1 Additional notes on the old paper

Notice that the inverse of the redefinition of Un in fact is

Sn = Z†
nUnZn +

1X

s=1

↵s
S

Z
E(s)†

n+sUn+sE
(s)
n+s

n+sY

i=n+1

µ2✏
R [dpi]�̃(pi) . (1)

2 Momentum mappings

3 Factoring matrix elements

3.1 Phasespace combinatorics

We denote the matrix element in which m out of n emissions and k out of l loop momenta become
unresolved by

M(l|k)
n|m .

This quantity is to include the combinatorial factors which originate from factoring phase space in
this way, and specifically we have that M(l|0)

n|0 is free of any infrared divergencies, though it might

still contain UV divergencies. Conversely, M(0|l)
n|m is free of UV divegencies, as are the renormalized

matrix elements M(l|k)
R,n|m.

3.2 Power expansions

Renormlized matrix elements with unresolved momentum modes can be expanded in a power
expansion in the unresolved region all of which we genericlaly denote by

M(l|k)
R,n|m(�n) !

1

�2(m+k)

kX

r=0

D̂(m,k�r)
n (�n)M

(l�k|0)
R,n�m|0(�

m
n�m(�n))D̂

(m,r)†
n (�n) (2)

for m > 0, and

M(l|k)
R,n|0 ! 1

�2k

kX

r=0

V̂(k�r)
n (�n)M

(l�k|0)
R,n|0 (�n)V̂

(r)†
n (�n) (3)

Notice that these expansions happen at fixed order in ↵s, and that the definitions of each of
the factoring pieces involves cuto↵s from which on an emission is assumed to be “hard”, i.e.
the according products of phase space contraints ⇥S and ⌅S , which we have been advocating in
Sec. ??. Note that in general the number of unresolved emissions would need to be considered a
vector in di↵erent regions, and so would the momentum mapping be indexed, however we keep
this simple to avoid confusion.

∗simon.plaetzer@gmail.com

1

Subtracted (“renormalised”) observable defines a very general criterion of 
infrared safety: finiteness means the bare observable must admit 
cancellations local in momentum and colour space.

This structure is ubiquitous if we talk about electroweak final states 
(in isospin space) and if we want to predict fully detailed and exclusive final 
states as needed for an event generator.

Observables singular at his level are genuine non-perturbative.
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we will still not be able to obtain a simple relation for corrections from the subtractions and

observable, not even if only collinear singularities are present since the emission operators

in this case collapse to colour diagonal contributions only for the very last emission which

allows to use the cyclicity of the trace. We stress that even counter terms for Glauber

exchanges will not drop out of the evolution if Sn has non-trivial colour structure (notice

that there is no reason to assume that Sn will trigger colour conservation, only An needs

to). This analysis highlights that we do need to consider a di↵erent structure of power

corrections once colour projections are involved in the definition of a cross section. In

particular we anticipate that this not only happens for hadronization but also to the case

of analyzing electroweak exchanges at a similar level, using the ingredients presented in [22].

The same remark applies to initial state evolution which would appear in our framework

alongside the final state measurements and we assume that this will shed further light on

the physics of super-leading logarithms addressed in [32, 33].

Only in the case of jet cross sections with Sn = 1nu(p1, ..., pn) we have

Un = 1nu(p1, ..., pn)

� ↵s

Z
µ2✏
R [dpn+1]�̃(pn+1)D̂

(1,0)†
n+1 D̂(1,0)

n+1⇥n,1 [u(p1, ..., pn, pn+1)� u(p1, ..., pn)] +O(↵2
s)

(6.7)

reproducing the genuine (power suppressed) di↵erence in the observables. Notice that, in

the case for the jet cross section, the procedure above is exactly the same as adding the

O(↵S) term to a calculations defined in terms of Un only to provide infrared subtractions

compatible with the behaviour of the observable. In this case, the resolution criterion

⇥ must be accordingly synchronized with the observable in question. In the case of a

prototypical non-global observable we can write

u(p1, ..., pn, pn+1) = (✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in))u(p1, ..., pn) , (6.8)

and the quantity to analyze is thus

⇥n,1 (u(p1, ..., pn, pn+1)� u(p1, ..., pn)) =
�
1� ✓(p0n+1 � µS)⇥�(nn+1)

�
⇥

�
✓(⇢� p0n+1) + ✓(p0n+1 � ⇢)✓(nn+1 2 in)� 1

�
u(p1, ..., pn) , (6.9)

where we have generically identified the collinear cuto↵ prescription with ⇥�(nn+1) and the

emission’s direction with nn+1. We assume that the observable probes a veto on energies

less than ⇢ in the angular out region, complementary to the in region. If we identify the

energy resolution µS with the observable resolution ⇢ then in fact the di↵erence vanishes

except if the emission becomes collinearly unresolved in the out region. In this case we

expect that the change in between di↵erent collinear cuto↵s will need to be compensated

for by using the cuto↵ anomalous dimension Eq. 5.6 to obtain a stable result.

7 Aspects of a Hadronization Model

We will now focus on the evolution equation for Sn. In fact it is interesting to make explicit

that this object is expected to convert the hard partons plus n emissions into m hadrons
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4.2 Soft function

The transformed soft function is subject to an evolution

@SSn = ��̃†
S,nSn � Sn�̃S,n +

X

s�1

↵s
S

Z
R̃(s)†

S,n+sSn+sR̃
(s)
S,n+s

n+sY

i=n+1

[dpi]�̃(pi) (4.7)

where we now find the anomalous dimensions and evolution kernels to be given by

�̃S,n = (@SXn)X
�1
n (4.8)

and

µ�2✏s
R R̃(s)†

S,n+s � R̃
(s)
S,n+s =

⇣
X†

n

⌘�1 h
s �(↵S)F

(s)†
n+s � F

(s)
n+s (4.9)

+ @S
⇣
F(s)†
n+s � F

(s)
n+s

⌘
� F(s)†

n+s�̃
†
n+s,S � F(s)

n+s � F(s)†
n+s � �̃n+s,SE

(s)
n

+
s�1X

s0=1

F(s�s0)†
n+s�s0R̃

(s0)†
S,n+s � R̃

(s0)
S,n+sF

(s�s0)
n+s�s0µ

�2✏s0

R

#
X�1

n .

Explicit expressions up to second order are again given in App. A.2.

5 Examples for Evolution at Leading Order

In this section we consider the resummation of non-global logarithms in an ordering with

respect to energy. Specifically we require virtual counter terms which can be inferred from

the cuts obtained with the methods in [8]. The one-loop virtual correction is given by

V(1)
n =

�
4⇡µ2

�✏ 1

2

X

i<j

(�Ti ·Tj) ⇥

Z
[dpn+1]

2⇡i

4pi · pj
(2pi · pn+1 + i0(T · pi)2)(2pj · pn+1 � i0(T · pj)2)

1

p2n+1 + i0(T · pn+1)2
(5.1)

and admits the cuts given in [8], out of which the double cut vanishes in dimensional regu-

larization and a real-valued and imaginary single cut remains, if i and j are both incoming

or both outgoing, and the absorptive cut is canceled in the case of an incoming/outgoing

pair. These give rise to the subtractions (notice that cutting introduces a minus sign in

the use of the Feynman tree theorem)

X(1)
n,rad =

X

i<j

Ti ·Tj

Z 1

0

dE

E

⇣µR

E

⌘2✏
Z 1

�1
dx

(1� x2)�✏

1� x2

Z
d⌦(d�3) ⌅̂(ij)

n,1,rad (5.2)

X(1)
n,abs =

X

i<j

Ti ·Tj

Z 1

0
dE

⇣µR

E

⌘2✏

Z 1

�1
dx(1� x2)�✏ 1

2Ex� i0
p
2pi · pj

1

x2 � 1 + i0 2x2
⌅̂(ij)
n,1,abs

Z
d⌦(d�3) . (5.3)
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2 Cody B Duncan, Patrick Kirchgaeßer: Kinematic strangeness production in cluster hadronization

Shower Parton Splitter Fission Decay

Fig. 1: Figure of a simplified event where we show the ma-
jor stages of hadronization after the parton shower that
can contribute to non-perturbative strangeness produc-
tion. Grey ellipses are clusters, while black are hadrons.

ter can be considered to be a highly primordial, excited
colour-singlet qq̄ pair.

There are several parts to the hadronization model in
Herwig, in the following algorithmic order:

• Non-perturbative gluon splitting,
• Colour reconnection,
• Cluster fission,
• Cluster decay to hadron pairs,
• Unstable hadron decays.

In Fig. 1, we have omitted colour reconnection since this
step simply changes the colour topology of the event, not
the content of the clusters. While modifying the colour
reconnection algorithm would have a non-trivial impact
on the later stages of hadronization, namely cluster fission
and decay, it is outside the scope of this paper, but these
correlations will be studied and addressed in future work.
Since the scope of this project is mainly focused on light
strange hadron production, we tune predominately to pion
and kaon observables. We will also ignore unstable hadron
decays for the purposes of this paper.

The three other listed stages in hadronization are each
allowed to contribute to the overall strangeness in the
event, since they each produce new qq̄ pairs. We briefly
recall the details of each step as presented in depth in [9].

2.1 Non-perturbative gluon splitting

Once the parton shower ends, all gluons undergo a non-
perturbative splitting into qq̄ pairs. The species of the pair
is determined by a given weight, e.g. in the tune from
[8] the weights of up, down, and strange are 2:2:1. The
default version of Herwig does not allow for strangeness
production at this step, only uū and dd̄ pairs. The only
constraint on the gluon splitting is that the gluon mass

is at least twice the constituent mass of the species in
question, and the gluons are split isotropically.

After all the gluons in an event have been split, near-
est neighbours in momentum space are most likely to be
nearest neighbours in colour space [16], and clusters are
formed from the momentum-space neighbouring qq̄ pairs,
with a mass distribution decoupled from the hard scatter-
ing process that created them.

2.2 Cluster fission

Exceptionally heavy clusters are allowed to fission into two
lighter, less excited clusters if the mass M of the original
cluster satisfies the condition:

Mp
� qp + (m1 +m2)

p, (1)

where p and q are parameters that control the fission-
ing rate criteria, and m1,2 are the parton masses of the
heavy cluster. In Herwig, p is given separate values for
light quarks (u, d, s), charm, and bottom. The light quark
weights are further subdivided, and strangeness is sup-
pressed by a flat weight. q has a similar divide between
the quark species.

After selecting clusters to fission, the cluster fissioner
produces a qq̄ pair from the light quarks with a fixed
weight, distinct values for each flavour of quark (bar top),
and diquarks. Each parton from the pair go into a separate
cluster, giving the new pair of clusters a mass distribution
of:

Mi = mi + (M �mi �mq)R
1/w
i , (2)

where w is the splitting parameter that controls the rate of
splitting for clusters containing di↵erent species of quarks.

2.3 Cluster decay

The last stage of cluster-based physics is at the cluster
decay level, in which clusters decay into excited hadrons.
Given a cluster with constituents q1, q̄2, the weight for
producing hadrons ha = q1q̄, hb = qq̄2, where q denotes a
quark or diquark species, is given by:

W(ha, hb) = Pqwasawbsbp
⇤
a,b, (3)

where Pq is the production weight for the given quark or
diquark species, wi are the weights for the relevant hadron
production, and si are the suppression factors for the cor-
responding hadrons. The final factor in the weight is the
two-body phase space factor that controls how readily the
cluster can decay into the two chosen hadrons.

2.4 Herwig strangeness parameters

The Herwig parameters that control non-perturbative
strangeness production are the gluon splitting weight -
SplitPwtSquark, and the cluster fission & decay weight
- PwtSquark. In the original model, cluster fissioning and
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Priedigkeit 2 Physical Description

In general, not all clusters will have the proper energies to decay into hadrons. This
means that there must be a mechanism by which they can reduce their individual ener-
gies until hadrons can be formed. The mode of this reduction, employed by the Herwig 7
event generator is called cluster fission [7]. The fission process is thought to be isotropic
in the clusters rest frame and follows equation (4), where m1 and m2 are the constituents
masses of the cluster with mass M and Clmax and Clpow are parameters of the model
[1].

MCLpow  CL
CLpow
max + (m1 +m2)

CLpow [7] (4)

Other parameters include 1) the weights for which particles are created in a fission
process, 2) the cut-off energy at which the fission process stops and 3) a parameter which
gives the distribution of the resulting cluster masses.
While this approach can be tuned to fit the data, a big drawback is that there is no
clear physical interpretation, which makes it hard to improve the model with new theory.
This is where the change of perspective comes in, which motivates this whole discussion.
We want to move away from a parameter based model and convert it to a model that is
based on physical insights about the cluster fission process. In order to achieve this, we
have to look at the physical description of a fissioning cluster and the cross section for
such an event.

Figure 7: A schematic of the cluster fission process.

In figure (7) we see how the incoming cluster P with constituent p1 and p2 decays into
two clusters Q1 and Q2. The new parton pair q and q̄ is created from the energy stored
within the color potential.
If we are interested in the differential rate of this decay d� we can write this with the
help of an unknown interaction matrix element |M |

2 and the phase space limitations due
to conservation of momentum and positivity of energy.

d�(P ! Q1, Q2) = |M(p1, p2 ! q1, q2, q, q̄)|
2 (5a)

⇥ ddp1 ddp2 ⇥(p01) ⇥(p02) �(p
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2
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1) �(q

2
�m2) �(q1 + q �Q1) (5c)

⇥ ddq2 ddq̄ ⇥(q02) ⇥(q̄0) �(q22 �m2
2) �(q̄

2
�m2) �(q2 + q̄ �Q2) (5d)

⇥ dQ1 dQ2 �(Q2
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1 ) �(Q
2
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2 ) �(q1 + q2 + q + q̄ � p1 � p2) (5e)
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Most needed when 
hadronizing the 
unknown: strongly 
interacting dark matter.
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Looking ahead — Foundations
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�↵(~P ,M |p1, ..., pn)�
 
P �

nX

i=1

pi

!
=

P
i1,...,in
↵

1

(2⇡)d�1

Z
ddx1 · · · ddxne

i
Pn

i=1 pi·xie
i
Pn

i=1 pi·xih0|T�1,i1(x1) · · ·�n,in(xn)|~P ,M,↵i (3)

with P
0 = !(~P ,M). It proves useful to introduce the more general object �↵|j1,...,jn(

~P ,M |p1, ..., pn)
which results by only applying the projector P to the constituent fields such that �↵(~P ,M |p1, ..., pn) =
u
j1,...,jn
↵

�↵|j1,...,jn(
~P ,M |p1, ..., pn) (no sum over ↵). This will prove more useful for the investigations to follow and

for our graphical formalism. We denote it graphically by

�↵|j1,...,jn(
~P ,M |p1, ..., pn)�

 
P �

nX

i=1

pi

!
=

p1, j1

pn, jn

P,↵ . (4)

In order to obtain a formula for the T -matrix element it is important to determine orthogonal states to the Bethe-
Salpeter amplitudes. We will do so including renormalization constants for the elemntary field such that renormalized

perturbation theory can be used, eventually. To this end, we multiply Eq. 2 by X̄
�(~P ,M |p1, ..., pn)Z�1/2

�

Q
n

i=1 Z
�1/2
�i

,

and integrate over the constiuent momenta demanding that
Z nY

i=1

ddpi
(2⇡)d

nY

i=1

Z
�1/2
�i

�

 
P �

nX

i=1

pi

!
X̄

�(~P ,M |p1, ..., pn)�↵(~P ,M |p1, ..., pn) = R
1/2
R,↵

�
�

↵
, (5)

which defines the renormalized LSZ factor (not to be confused with the field strength renormalization) RR,↵, and
where P now is the on-shell four-momentum of the composite state with P

2 = M
2. Diagramatically, at the level of

the open indices j1, ..., jn this is more transparently denoted by multiplying the analogue of Eq. 2 with open j1, ..., jn

indices with

 
Z

�1/2
�

nY

i=1

Z
�1/2
�i

!
X̄

↵(~P ,M |p1, ..., pn)uj1,...,jn
↵

= P,↵

p1, j1

pn, jn

. (6)

and integrating, as well as summing, over all constituent’s momenta and quantum numbers. Graphically, Eq. 5 then
becomes

P,↵P, � = R
1/2
R,↵

�
�

↵
, (7)

and Eq. 2 is

P,↵ T = R
�1/2
R,↵

�
P

2 �M
2
�

P,↵ Gconnected (8)

and an on-shell limit P 2 ! M
2 is now always implied unless there is a source for confusion.

We have also introduced an additional renormalization factor Z�, which we have pulled out of the definition of
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the external reference wave functions X̄↵, which demand
to be finite from now on, just as well as the reference
direction u

j1,...,jn
↵

. Notice that by the same steps we can

demonstrate that any n ! m correlation function satis-
fies (it is understood that all regular terms on on-shell
poles will be neglected)

h
�↵(~P ,M |p1, ..., pn)�̄�(~P ,M |q1, ..., qm) =

i

0

@
 

nX

i=1

pi

!2

�M
2

1

A P
i1,...,in
↵

G
j1,...,jm
i1,...,in

(p1, ..., pn,�q1, ...,�qm)P̄ �

j1,...,jm

3

5
Pn

i=1 p
0
i!!(~P,M)

(9)

We can thus calculate the renormalized LSZ factor as

RR,↵ =

Z nY

i=1

ddpi
(2⇡)d

mY

j=1

ddqi
(2⇡)d

i

0

@
 

nX

i=1

pi

!2

�M
2

1

AZ
�1
� X̄

↵(~P ,M |p1, ..., pn)�
 
P �

nX

i=1

pi

!
P

i1,...,in
↵

G
j1,...,jm

R,i1,...,in
(p1, ..., pn,�q1, ...,�qm)P̄ �

j1,...,jm
�

0

@P �
mX

j=1

qj

1

AX�(~P ,M |q1, ..., qn) . (10)

Graphically, these relations are

�
P

2 �M
2
�

p1, i1

pn, in

q1, j1

qm, jm

GS =
X

↵

p1, i1

pn, in

P,↵
q1, j1

qm, jm

(11)

and hence

�
P

2 �M
2
�

P,↵ P, �GS = RR,↵�↵� . (12)

We stress that contraction with rectangular composite objects performs renormalization of the Green’s functions we
contracte them with. To this end, Eq. 8 defines the truncation on a renormalized correlation function. All divergencies
which originate from integration over the relative momenta of the composite state will need to be cancelled by Z�,
which in turn provides a strong consistency check.

We can of course also perform the truncation by applying
the inverse of GS to the Green’s function we intent to

truncate. In this case the procedure defines both, the
renormalized truncated Green’s function, as well as the
renormlaized version of the Bethe-Salpeter amplitude.

Both of which can then be calculated using renormalized fields. Eq. 2 becomes

... (13)

and so its diagramtic counterpart Eq. 8 reads

P,↵ T = R
+1/2
R,↵

�
P

2 �M
2
�

P,↵ GR,connectedG�1
R,SR . (14)

Generally we need to understand exclusive processes and factorisation, and 
(renormalised) LSZ and projections onto physical (singlet) final states.

[Plätzer, Sjödahl — ’22] [Maas, Plätzer — in progress]
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Qi+

Qi�
Ei ⌧ Mi

Ei � Mi

threshold

soft
hard collinear

FIG. 1. Illustration of the various regions of validity of our parametrization. As seen from, eq. (21) the condition pi·Qi,s ⌧ pi·ni,s

is fulfilled if either both Qi+ and Qi� are small (the genuinely soft region) or if Ei � Mi and Qi� ! 0 (the hard collinear
region) or if Ei ⌧ Mi and Qi� ! �Qi+ (the threshold region).

Kinematic regions

The kinematic regions covered by our parametrization are best illustrated for one hard line and a specific frame,
where

pi =

✓q
E2

i +M2
i ,~0?, Ei

◆
ni,s =

ni,s · pi

Ei +
p

E2
i +M2

i

⇣
1,~0?,�1

⌘
Qi,s =

⇣
Q(+)

i,s +Q(�)
i,s , ~Q(?)

i,s , Q(+)
i,s �Q(�)

i,s

⌘
.

(20)
Our expansion is valid if

pi ·Qi,s =
q

E2
i +M2

i (Q
(+)
i,s +Q(�)

i,s ) + Ei(Q
(�)
i,s �Q(+)

i,s ) ⌧ pi,s · ni,s = Si,s . (21)

The regions of validity contain a Glauber-type region in which Qi,s becomes purely transverse, along with the regions
depicted in figure 1.

Propagators and external wave functions

An important ingredient to our factorization formula is to demonstrate, subject to the kinematic parametrization
above, that

1X

n=0

 
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

⌃(qi +Ki,s)

!n
P(qi +Ki,s,Mi)

(qi +Ki,s)2 � M̃2
R,i

=
1

2pi ·Qi,s

 (⇤pi,Mi) ̄(⇤pi,Mi)

1� ⌃0(M2
i )

+O(�) , (22)

where the derivative of the (physical part of the) self-energy ⌃(p2) (or, accordingly the transverse self-energy at
vanishing k2 for a massless boson) provides the proper wave function renormalization for the amplitude we factor
to. To illustrate this let us first consider Goldstone bosons in an R⇠ gauge, with a free propagator i/(k2 � ⇠M̃2

R,i),

where M̃2
R,i = M2

R,i + iMR,i�R,i in a complex mass scheme [28, 29], and the introduction of �R,i needs to be added
back as additional insertions of two-point functions. This does not provide any change to our main argument. The
propagators of the physical scalar can be obtained by putting ⇠ = 1. If the scalar has a one-particle irreducible
two-point function �i⌃S(k2), the resummed propagator is

1

(qi +Ki,s)2 � ⇠M̃2
R,i � ⌃S((qi +Ki,s)2)

=

⇢ 1
2pi·Qi,s

1
1�⌃0(M2

i )
+O(�) ⇠ = 1 and ⌃S(k2) = ⌃(k2)

O(�) otherwise
(23)

where the physical and renormalized (complex) mass relate as M2
i = M̃2

R,i + ⌃(M
2
i ) for the boson in question. Thus

depending on how the unphysical scalar’s self energy and the gauge parameter relate to each other, the scalars will
contribute at leading power along with their related vector bosons, or not. We will investigate this in more detail in
the future. The simplest non-scalar case to consider is that of a massive gauge boson. In an R⇠ gauge their numerator
reads

V µ⌫(qi +Ki,s,Mi) = �⌘µ⌫ + (1� ⇠)
(qi +Ki,s)µ(qi +Ki,s)⌫

(qi +Ki,s)2 � ⇠M2
i

. (24)

2

amplitude as a vector in the space of quantum numbers (color, isospin, hypercharge and spin), we can write it as

|M{fi}n,{gi}m
({qi}n; {ki}m)i =

X

{f 0
i}n

X

s

R
{f 0

i}n

s;{fi}n,{gi}m
({qi}n; {ki}m)

Y

i2hs

Pi(qi +Ki,s,Mi)

(qi +Ki,s)2 �M2
i

|M{f 0
i}n

({Pi}n)i (1)

in which Pi represents the propagator numerator of the
most o↵-shell line i as an operator in the space of the
involved quantum numbers, and Rs encodes the remain-
ing structure we intend to factor from the hard process
amplitude.

The factorization eq. (1), which is an exact identity, is
depicted diagrammatically below for the case of a single
exchange (Ki,s = +k, Kj,s = �k)

Pi = qi +Ki,s qi

qjPj = qj +Kj,s

k
Mi

Mj

mi

mj

. (2)

Our aim is to identify when, in a very general set-
ting, this amplitude factors in a systematically expand-
able way onto an on-shell hard amplitude after isolating
external sub-diagrams as above, and how we can con-
struct bases for the space of quantum numbers such that
we can express the abstract operators in a concrete fash-
ion to iterate virtual exchanges and emissions in the so-
lution to an evolution equation of the amplitude. The
parametrization of the kinematics is complicated by the
mass-shell conditions. We consider q2i = m2

i , while the
mass of the flavor of the most o↵-shell lines usually is
referred to as Mi, and these masses refer to physical, on-

shell masses, a choice which will provide us with a fac-
torization of physical, renormalized S-matrix elements.
On top of this, we will need to allow for the possibility
to implement recoil such as to respect overall energy-
momentum conservation among the momenta involved.
This motivates to re-parametrize the momenta in terms
of an auxiliary, light-like vector ni,s as

Kµ
i,s = ⇤

µ
⌫

�
Q⌫

i,s + �i,s n⌫
i,s

�
(3)

qµi = ⇤µ
⌫

✓
↵p⌫i +

(1� ↵2)M2
i + pi ·Qi,s

2↵ ni,s · pi
n⌫
i,s

◆
�Kµ

i,s

where pi (with p2i = M2
i ) is the transformed on-shell

momentum we would like to assign to line i after factor-
ization (i.e., directly right of the gray blob in eq. (2)).
The momentum Qi,s is used to determine our unresolved
limits for i 2 hs, and Qi,s = 0, Mi = mi if i /2 hs is not

participating in the unresolved dynamics. The parameter
�i,s is determined such that q2i = m2

i , and ⇤ is a proper
orthochronous Lorentz transformation and — as the pa-
rameter ↵ — relates to maintaining energy-momentum
conservation and phase space factorization as outlined
in the supplemental material. Our mapping is designed
such that the o↵-shell propagators are directly given in
terms of

(qi +Ki,s)
2
�M2

i = 2pi ·Qi,s , (4)

and we consider the expansion

pi ·Qi,s ⌧ pi · ni,s ⌘ Si,s (5)

around the on-shell limit of the o↵-shell line i. It is im-
portant to stress that we do not consider di↵erent pi
for di↵erent classes of diagrams s, while we might want
to exploit di↵erent parametrizations of unresolved mo-
menta if needed. In the on-shell limit above we find
(see supplemental material) that ↵ = 1 + O(�), where
� ⇠ pi ·Qi,s/Si,s is our counting parameter which simul-
taneously enforces the above hierarchy for all hard lines
i. The o↵-shell momentum in the propagator then also
obeys qi+Ki,s = ⇤pi+O(�), and a similar mapping can
be analyzed for those lines which are not participating in
any exchange or emission. Introducing an operator cor-
responding to the on-shell wave functions of the particles
we consider,

hs| ̄(q,m)|s0i =  ̄s(q,m)�ss0 , (6)

i (q,m) ̄(q,m) = P(q,m)|q2=m2 , (7)

we find that we can factor the amplitude at leading power
in � as

|M̃({qi}n; {ki}m)i '
X

s

Ss({q}i2hs , {ki}m)|M̃({pi}n)i , (8)

in terms of the on-shell amplitude with n external hard
lines, |M̃i =

Q
i  ̄i|Mi, carrying momenta {pi}n (we

have suppressed the flavor labels for the sake of read-
ability), where the factored contribution is given by the
operator

Momentum mappings to systematically 
factor renormalised matrix elements.

Composite particle scattering — for FMS as 
well as to study exclusive processes.
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and integrating, as well as summing, over all constituent’s momenta and quantum numbers. Graphically, Eq. 5 then
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Looking ahead — Spin

Generally we need to understand exclusive processes and factorisation and 
projections onto physical (singlet) final states — including spin.

[Plätzer, Sjödahl — ’22]
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For example, using eq. (31) along with eq. (42) the decompositions of as well as
are straightforwardly obtained,

j
A12 p3

k
p4

= p3 · p4 k j
A12

+
A12A12[p3, p4]

k j (44)

k j
p1 p2 p3 p4

= p1 · p2 p3 · p4 k j + p3 · p4 k j
[p1, p2]

+ p1 · p2 k j
[p3, p4]

+
[p1, p2][p3, p4]

k j

where the double box structures may be expanded out using eqs. (42) and (43).
Similarly structures with in total five index contractions ( , , as well as

versions with dotted and undotted lines interchanged, and versions with arrows swapped) and 6 contractions (only
and a versions with dotted and undotted lines interchanged) can be obtained.

In this way, the chirality-flow state obtained after several exchanges can iteratively be built up, and we obtain a
chirality-flow decomposition analogous to the color-flow decomposition, but with the di↵erence that there are three
types of “flows” connecting partons, and that particles and anti-particles enter on equal footing.

To illustrate this we consider consider an example of intermediate complexity

i

j

i0

j0

A12 p3
p4 , (45)

which, at the level of the basis vectors has the e↵ect,

i0

j0

i
j ! (�2(A12)µ1µ2(A34)

µ1µ2 + i✏µ1µ2µ3µ4(A12)µ1µ2(A34)µ3µ4)

i0

i

j

j0

+A0

i0

i

j

j0

(46)

with A34µ⌫ =
1

2
(p3µp4⌫ � p3⌫p4µ) and A0

µ⌫ = p3 · p4A12µ⌫ + 2
⇣
(A12)µ⌘(A34)

⌘
⌫ � (A12)⌫⌘(A34)

⌘
µ

⌘

as seen by expanding out eqs. (42) and (43) in eq. (45).
In the light of the above description, combined with the chirality-flow Standard Model Feynman rules [33], it is

clear that scalar exchange, involving no chirality-flow line, does not change the chirality flow (but alters the involved
momenta). Fermion exchange adds one (from the slashed momentum in the propagator) or zero (from a potential
mass term) momentum dots to existing chirality-flow structures [33]. For the mass term, the line type of the fermion
line is left unchanged, but the chirality-flow structure will change since (for example) chirality-flow lines which are
not originally connected may become connected. External massive fermions have to be decomposed into left- and
right-chiral states, as for example in [33].

For the non-abelian vertices, we recall that they may be decomposed into momentum-dot structures [32, 33],
and therefore do not add to the number of possible chirality-flow structures. (If a W±, instead of a photon, is
exchanged, the chiral structure is rather simplified.) For external gauge bosons, we note that positive and negative
helicity spin-1 particles appear as one dotted and one undotted line with opposite directions, whereas the longitudinal
polarization of a massive vector boson can be expressed in terms of a momentum dot [33]. External gauge bosons do,
however, somewhat complicate the description, since they may add a dependence on a reference gauge vector (which
is unphysical in the massless case, and related to the direction in which spin is measured in the massive).

In view of the above, we conclude that the flow basis in eq. (14) is applicable to resummation of all chiral structures
following after exchange of any known particle. This is the analogue for the color-flow basis.
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To illustrate this we consider consider an example of intermediate complexity
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which, at the level of the basis vectors has the e↵ect,
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with A34µ⌫ =
1

2
(p3µp4⌫ � p3⌫p4µ) and A0

µ⌫ = p3 · p4A12µ⌫ + 2
⇣
(A12)µ⌘(A34)

⌘
⌫ � (A12)⌫⌘(A34)

⌘
µ

⌘

as seen by expanding out eqs. (42) and (43) in eq. (45).
In the light of the above description, combined with the chirality-flow Standard Model Feynman rules [33], it is

clear that scalar exchange, involving no chirality-flow line, does not change the chirality flow (but alters the involved
momenta). Fermion exchange adds one (from the slashed momentum in the propagator) or zero (from a potential
mass term) momentum dots to existing chirality-flow structures [33]. For the mass term, the line type of the fermion
line is left unchanged, but the chirality-flow structure will change since (for example) chirality-flow lines which are
not originally connected may become connected. External massive fermions have to be decomposed into left- and
right-chiral states, as for example in [33].

For the non-abelian vertices, we recall that they may be decomposed into momentum-dot structures [32, 33],
and therefore do not add to the number of possible chirality-flow structures. (If a W±, instead of a photon, is
exchanged, the chiral structure is rather simplified.) For external gauge bosons, we note that positive and negative
helicity spin-1 particles appear as one dotted and one undotted line with opposite directions, whereas the longitudinal
polarization of a massive vector boson can be expressed in terms of a momentum dot [33]. External gauge bosons do,
however, somewhat complicate the description, since they may add a dependence on a reference gauge vector (which
is unphysical in the massless case, and related to the direction in which spin is measured in the massive).

In view of the above, we conclude that the flow basis in eq. (14) is applicable to resummation of all chiral structures
following after exchange of any known particle. This is the analogue for the color-flow basis.
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resummation algorithms thus appears in a diferent form,
though this poses no conceptual problem if one distin-
guishes subtraction terms for real and virtual corrections
separately, along with a careful analysis of measurements
[].

A complete flow picture – Colour flow can be treated
as extensively studied in [], which we will not discuss any
further. The flow of weak isospin is more interesting and
we propose to keep this separate from the hypercharge,
for which no flow picture is needed due to the Abelian na-
ture. Technically, W exchanges (as well as the accompa-
nying charged Goldstone bosons) will operate much like
the U(N) contribution in the colour flow picture, whereas
Z or � exchanges will not alter the flows, similarly to the
trace condition (or “singlet”) gluon. It is important to
note that at this level Z/� exchanges appear at the same

footing in terms of (flow) operator matrix elements, and
as such we already treat the broken and unbroken phase
not separate from each other but unified in one evolu-
tion operator. We remark that unlike in the QCD case
we can not demonstrate that ghost contributinos will not
be present in the strict soft limit [1]. Our flow picture
should hence also account for them, though they can be
represented in a similar way to the gauge bosons they
correspond to. More details are summarized in the sup-
plemental material in Sec. .

The chiral nature of the electroweak interaction, and
the relevance of spin correlations, require a much more
important flow concep which we will introduce now: In
analogy with performing resummation in color space us-
ing a spanning set of color flows, we will prove that the
resummation evolution in Lorentz space can be described
using “chirality flows”. We thus build on the chirality-
flow formalism [2, 3], which allows the immediate trans-
lation of Feynman diagrams to spinor products.

We therefore describe particles in terms of their chi-
rality, and expect a decomposition from the full ampli-
tude (with both left- and right helicity) to chirality to
have been performed before the start of the evolution.
To be precise we want to choose a basis for the ampli-
tude vector written as a vector in our abstract formalism
above,

Q
i  ̄i|M̃i, where |M̃i is the amplitude without

the external wave functions (cf. a color flow without as-
signed external colors) and we will work out the action
of the factored diagrams using Eq. 7. In this way, we
will gain full analytic control of the Lorentz structure.
Denoting a left-chiral fermion with momentum pi with
|i] = i (or [i| = i ) and a right-chiral

fermion with |ji = j (or hj| = j ) we

want to consider the e↵ect of (say) a photon exchange
between two — for now massless — fermions.

Denoting the Lorentz structure pµ�µ with a “mo-

mentum dot” pµ�µ
p

, and similarly pµ�̄µ =

p
, we have (ignoring details and partons not in-

volved) the chiral structure (drawn in black on top of a
gray Feynman diagram) to the left below for two left-
chiral fermions and the structure to the right if i is left-
chiral, and j is right-chiral

i

j

i

j
. (13)

Here, to the left, the dashed line connecting the outgoing
particles i and j is the graphical representation of the
spinor inner product [j i]. After the exchange, the parti-
cles i and j are thus connected by a “chirality flow”. The
momentum dots connect somewhere within the blob and
(naively) complicates the chirality structure of the rest
of the diagram. However, as we will show in the supple-
mental material a complete set of chirality-flow structures
connecting the external spinors can be given by consid-
ering the contractions

p

p

A

A (14)

for some four-vector p contracted with �/�̄, and some
antisymmetric rank two tensor Aµ⌫ contracted with
1
2 (�

µ�̄⌫
� �⌫ �̄µ), and for connections between all pairs

of external particles. Before the exchange, the particles
i and j in eq. (13) were thus contracted to some (other)
external particles via these structures.
After the exchange, the chirality-flows (of the type in

eq. (14)) to which i and j were contracted, will be con-
nected to each other via the double momentum-dot struc-
ture in the left diagram. This gives rise to structures with
up to 2+2+2 Lorentz index contractions (in case i and
j connected to two di↵erent chirality-flow structures of
type ). As seen in the supplemental material
all these structures can be simplified back to a linear
combinations of the flows in eq. (14).
In case the external particles have opposite chirality,

we will have a chirality flow of the type to the right in
eq. (13), giving rise to two momentum dot structures
of up to 2+1 Lorentz indices (if i and j were originally
chirality-flow connected to say i0 and j0 respectively via
i0 i , j j0 or connected to each other

via j i ), which again can be simplified back to
the cases in eq. (14).
We will now discuss the complications to this picture

brought about by fermion mass, non-abelian vertices, ex-
ternal photons, external massive vector bosons and ex-
change of fermions or scalars.
For fermion masses, we note that external massive

fermions have to be decomposed into left and right-chiral

Find a basis of spin structures, 
together with isospin and colour.
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Essentially a basis of

Electroweak bosons now mix different chiral basis states.

Q

𝝠

𝝁S Could this point to a more general version 
of setting up graphical tensor calculus?



Summary

Colour space evolution equations are an exiting theoretical tool to build parton shower and 
resummation algorithms, and an important subject in their own right to study structures we can 
expect from QCD evolution.

For event generators, parton shower accuracy is crucial, but hadronization is the elephant in the 
room. Together with parton showers we need to get this back on top of the agenda.

Factorisation of infrared physics will also teach us about the development of hadronization models 
and colour reconnection, but also the possible connections to other evolution equations like 
JIMWLK.

The framework outlined here has significant room for extensions and further analytic and simulation 
work, either in or beyond the large-N limit.
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