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• General treatment of color structure

• Orthogonal multiplet bases

• All you need is

• Color structure treatment using group invariant

Wigner 3j and 6j symbols
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Dealing with color space

Due to confinement we never observe individual colors

• We average over incoming colors

• We sum over outgoing colors

• → we sum over the colors of all external partons

• As always in quantum mechanics we also sum over all degrees of

freedom that can interfere with each other → we sum over the

colors of all internal particles

• → We sum over all colors of all particles
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Notation:

I will use the graphical birdtrack notation

ji

µa

≡ (ta)ij

a

bc

≡ ifabc

and implicitly sum over color indices of internal lines
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Example: If A = (tg)a b(t
g)f c(t

e)d f =
a

b

c

dg

ee
f

, then

〈A|A〉 =
∑

a,b,c,d,e,f,g,h,i

[
(th)a b(t

h)i c(t
e)d i

]∗
(tg)a b(t

g)f c(t
e)d f

=
∑

a,b,c,d,e,f,g,h,i

(th)b a(t
h)c i(t

e)i d(t
g)a b(t

g)f c(t
e)d f

=

amplitudeconjugated amplitude

The first equality holds since the generators are Hermitian, and the

last holds since we always sum over the color of internal lines
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As seen above we can represent the squared amplitude with a

picture. We can also calculate with graphs! To do so we need just a

few rules

• There are Nc possible quark colors

a
= Nc

Nc∑

a=1

δaa = Nc

• There are Ng = N2
c − 1 possible gluon colors

g

= N2
c − 1

N2

c−1
∑

g=1

δgg = N2
c − 1
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• The generators are traceless

a g
= 0

Nc∑

a=1

(tg)aa = 0

• Generator normalization

ba
= TR ba Tr[tatb] = TRδ

ab

Malin Sjödahl 6



• The algebra [ta, tb] = ifabctc ⇒

a

b c

=
1

TR








a

b c

a

−

a

b c








ifabc =
1

TR

[
Tr[tatbtc]− Tr[tbtatc]

]

(Note: different arrow conventions in different sources)

• The Fierz identity (the completeness relation)

a

b

c

d
g

= TR







a

b

c

d

−
1

Nc

a

b

c

d







(tg)ac(t
g)bd = TR

[

δadδ
b
c −

1

Nc

δacδ
b
d

]
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Let’s apply the rules to our example

= TR

To further simplify the color structure we note using Fierz

= TR

(

−
1

Nc

)

= TR

(

Nc −
1

Nc

)

= TR
N2
c − 1

Nc

≡ CF

Giving, for the squared amplitude

= TRC
2
F = TRC

2
FNc
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• In this way we can square any color amplitude and calculate any

interference term.

• One way of dealing with color space is to just square the

amplitudes one by one as one encounters them

• Alternatively, we may use any basis (spanning set)
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The most popular bases: Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2s(g
αδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(g

αδgβγ − gαβgγδ) ×ig2s(g
αβgγδ − gαγgβδ)

• Every 3g vertex can be replaced using:

a

b c

=
1

TR






a

b c

a

−

a

b c






• After this every internal gluon can be removed using Fierz:

a

b

c

d
g

= TR





a

b

c

d
−

1

Nc

a

b

c

d




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• This can be applied to any QCD amplitude, tree level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A B+ + . . .

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)

• The above type of color structure can be used as a spanning set,

a “trace basis”
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These bases have some nice properties

• Conceptual simplicity

• Can be reduced for a given order in perturbation theory, for

example, for tree-level Ng-gluon amplitudes we have (Ng − 1)!

color structures of form

M(g1, g2, . . . , Ng) =
∑

σ∈SNg−1

Tr(tg1tgσ2 . . . t
gσNg )A(σ)

=
∑

σ∈SNg−1

g1 gσ2
gσNg

. . .
A(σ),

whereas for higher orders we also have products of traces.
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• Taking the leading Nc limit is trivial and results in a flow of

colors

• The basis vectors are orthogonal when Nc → ∞

• The effect of gluon emission is easily described:

= −
→

We get just one new basis vector if the emitter is an

(anti-)quark and two if the emitter is a gluon

• So is the effect of gluon exchange (MS 0906.1121 (JHEP),

implementation in ColorFull 1412.3967 (EPJC))
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There are also drawbacks with trace bases

• Not orthogonal

→ When squaring amplitudes almost all cross terms have to be

taken into account → N2
basis terms

• Overcomplete

For Ng +Nqq > Nc the bases are also overcomplete

• The size of the vector space asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc

Malin Sjödahl 14



• For general Nc the basis size grows as a factorial

N
vec
[Nq, Ng] = N

vec
[Nq, Ng − 1](Ng − 1 +Nq) +N

vec
[Nq, Ng − 2](Ng − 1)

where

N
vec
[Nq, 0] = Nq!

N
vec
[Nq, 1] = NqNq!

(S. Keppeler & M.S. 1207.0609 (JHEP))

• For general Nc and gluon only amplitudes (to all order) the size

is given by Subfactorial(Ng)≈ Ng!/e

• For tree-level gluon amplitudes traces may be used as spanning

vectors giving (Ng − 1)! spanning vectors
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Example: Number of spanning vectors for Ng gluons (without

imposing charge conjugation invariance). These numbers are

representative also for Ng gluons plus qq-pairs.

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

11 614 000 14 684 570 3 628 800

12 3 609 760 176 214 841 39 916 800

(Y. Du, M.S. & J. Thorén, JHEP 1505 (2015) 119, 1503.00530)
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The dimension of the full vector space (all orders) for Nc = 3

Ng Nqq = 0 Ng Nqq = 1 Ng Nqq = 2

4 8 3 10 2 13

5 32 4 40 3 50

6 145 5 177 4 217

7 702 6 847 5 1 024

8 3 598 7 4 300 6 5 147

9 19 280 8 22 878 7 27 178

10 107 160 9 126 440 8 149 318

11 614 000 10 721 160 9 847 600

12 3 609 760 11 4 223 760 10 4 944 920

(M.S. & J. Thorén, 1507.03814, JHEP)
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• Color flow bases fast for evaluation of color delta functions, and

good for sampling over color but has a similar scaling (Color

flow rules: Maltoni, Stelzer, Paul, Willenbrock, hep-ph/0209271,

example of sampling De Angelis, Forshaw, Plätzer, 2007.09648,

Forshaw Holguin, Plätzer, 2112.13124)
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Multiplet bases

• QCD is based on SU(3) → the color space may be decomposed

into irreducible representations

• Orthogonal basis vectors corresponding to irreducible

representations may be constructed

• The construction of the corresponding basis vectors is

non-trivial, and a general strategy was presented relatively

recently (S. Keppeler & M.S. JHEP09(2012)124, 1207.0609,

MS & J. Thoren JHEP 11 (2018) 198 , 1809.05002)

• With general, I mean general: general number of quarks and

gluons, general order in αs and general Nc
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• In multiplet bases partons are grouped into representations

α1 α3α2 α4

1

4

3

2

7

6

5

and can thus be characterized by a chain of representations

α1, α2, ... (In principle we have to differentiate between different

vertices as well)

• These vectors are orthogonal (→ minimal) by construction
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• Multiplet bases can potentially speed up exact calculations in

color space very significantly, as squaring amplitudes becomes

much quicker

• But before squaring, amplitudes must be decomposed in

multiplet bases

• How can amplitudes be expressed in multiplet bases?
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Decomposing color structure in
multiplet bases

To simplify the color structure we need a few rules:

• Dimension relation

α = dα

• Two-vertex loops give just a constant

δα
γ

β

=

γ

δ

β

dα α δ
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• Vertex correction relation

α

β

γ
δ

ǫ

ζ =
∑

a

ǫ

γ

α

δ

ζ

βa

γ
α

β

aa

γ

β

α

a

• For longer loops we need the completeness relation (which the

Fierz identity is a special case of)

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α
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• The symbols ǫ

γ

α

δ

ζ

βa

and γ
α

β

aa are Wigner

6j and 3j coefficients and their values can be calculated once

and for all

• Knowing the 3j and 6j Wigner coefficients we can calculate with

color without explicitly writing down color bases
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Decomposing color with
6j and 3j coefficients

As an example consider the color structure of the Feynman diagram:

=
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The scalar product between the color structure and a basis vector is

given by:

α2 α3 α1
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In a more compact form:

A(α1, α3, α2) =
α1 α2

α3
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Here we note that we have a vertex correction:

A(α1, α3, α2) =
α1 α2

α3
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Using the vertex correction results in:

A(α1, α3, α2) =
α1 α2

α3

=

α1

α3

α3

α2

α3
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Now there is no trivial color structure, but we can pick any loop...

A(α1, α3, α2) =

α1

α3

α3

α2

α3

and use the completeness relation

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

to remove it
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Applying the completeness relation and removing vertex corrections:

α3

α2

−

− −

−

=
∑

ψ1

dψ1

ψ1
α3

α2

−

−
−

−

ψ1

α3

−

=

=
∑

ψ1
dψ1

α3

ψ1

−

− α2
ψ1

−

−

α3
(

ψ1

)
2 ψ1

α3

ψ1
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Removing the 4-vertex loop we get:

A(α1, α3, α2) =

α1

α3

α3

α2

α3

=

α1

α3

α3

∑

ψ1

dψ1

α3

ψ1

−

− α2
ψ1

−

−

α3

(
ψ1

)2 ψ1

α3
ψ1
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The final expression is:

A(α1, α3, α2) =

α1

α3

α3

∑

ψ1

dψ1

α3

ψ1

−

− α2
ψ1

−

−

α3 ψ1
−

(
ψ1

)2 ψ1

α3

• Knowing the 3j and 6j Wigner coefficients we can immediately

write down the scalar product with any basis vector!

• This only has to be done once for each Feynman diagram, not

once for each Feynman diagram and each basis vector

• We only need to care about non-zero projections, we could list

the non-zero 6j-coefficients

• Each sum contains at most 8 terms for SU(3),

at most N2
c − 1 for SU(Nc)
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All you need is

• In the above example we saw that we could decompose the color

structure fully using only dα, ,

• We can normalize =1, so we really only need

• Question: If we can get all the color structure as a function of

6js can we then also get the 6js as a function of 6js?

• Can we calculate 6js (recursively)?

=

(

other , = 1, dα

)

?

Malin Sjödahl 34



• For QCD, where every representation is 8, 3 or 3, it turns out

that we only need 6js of form

γ

δ

β

α α

β

γ

γ

δ

β

α

γ

δ

β

α α

β

γ α

β

γ

• Wigner 6j and 3j coefficients and their values can be calculated

once and for all (Some in M.S. & J. Thorén, 1507.03814

(JHEP), 1809.05002 (JHEP)) ... but this still builds on

constructing bases which builds on symmetrizers and

anti-symmetrizers
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Consider first

M
ij

Mi

M
j

α
, say α = ,

⊗ ⊗

⊗ ⊗

α =

M2 = = M3

M
23

=
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By repeated use of the completeness relation and the vertex

correction relation (giving 6js), we can constrain the 6js. Consider

for example

α Mi M
ij

=
∑

b

db

α

Mb

α
Mb

α Mi M
ij

=
∑

b

db

α

Mb

Mb

M
ij M

ij

Mi

M
b

α

α Mb M
ij
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Now apply this to

α Mi M
ij Mi α

=

=
∑

b

db

α

Mb

Mb

M
ij M

ij

Mi

M
b

α

α Mb M
ij Mi α

⇒
Mi

M
ij

di

α

Mi

=
∑

b

db

α

Mb

Mb

M
ij M

ij

Mi

M
b

α

M
ij

Mb

M
i

α

︸ ︷︷ ︸

S
ij

i,b
S
ij

b,i
=(Sij

i,b
)2

⇒ 1 = di
∑

b

db(S
ij
i,b)

2 (as 3js are 1)
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By similar methods we find a set of equations, for Nc = 3

1. For a given representation M ij , we obtain

1 = (di)
2(Siji,i)

2 + didj(S
ij
i,j)

2 0 = diS
ij
i,iS

ij
i,j + djS

ij
i,jS

ij
j,j

2. For two given representations Mi and Mj , we obtain

1

dα
=
∑

Mab

dab(S
ab
i,j)

2 ,

where dab is the dimension of the representation Mab.

3. For a given representation Mi, we have

1 =
∑

b

dibS
ib
i,i .
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• This equation system can be solved giving

M
ii

Mi

M
i

α =
1

di
,

M
ij

Mi

M
j

α = ±
1

√
dαdij

di

M
ij

Mi

M
i

α

M
ij

Mi

M
i

α = ±

√

1−
didj
dαdij

= dj

M
ij

Mj

M
j

α

(Judith Alcock-Zeilinger, Stefan Keppeler, Simon Plätzer and

MS, 2209.15013 (J. Math. Phy.))

• Also need the 6js with gluons

α

β

γ

γ

δ

β

α

γ

δ

β

α α

β

γ α

β

γ
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• Idea: split gluon into qq-pair, for example we have

γ

δ

β

α

b

a

=
a∑

j=1

b∑

k=1

Cβα
aj C

δγ
bk

γ

δ

β

α

λj

µk

=

a∑

j=1

b∑

k=1

Cβα
aj C

δγ
bk

N2 − 1









γ

δ

β

α

λj

µk

−
1

N

γ

δ

β

α

λj

µk









=
a∑

j=1

b∑

k=1

Cβα
aj C

δγ
bk

N2 − 1






µk

δ

λj

α

γ

µk

β

λj −
δαβ δγδ
Ndα dγ





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• By similar methods the other 6js with gluons are derived

2312.16688 (JHEP), Stefan Keppeler, Simon Plätzer and MS

• Not more complicated to calculate 6js for high representations

• Multiplicity (> 1 instance of a vertex) is an issue... but can be

addressed

• Number of required 6js scale only as N2
q

• → We have all the ingredients for using representation based

orthogonal bases for QCD also for very high multiplicities

Malin Sjödahl 42



A parton shower perspective

• In a parton shower we start with some amplitude which we can

assume that we have decomposed in the multiplet basis

Amp =
∑

α1,α2,α3

cα1,α2,α3

α1 α3α21

3

5

2

4

6
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• Knowing the decomposition for Ng − 1 gluons, how can we

decompose the Ng gluon amplitude?

α1 α3α21

3

5

7

2

4

6

=
∑

β1,β2,...

c̃β1,β2,...

β1 β3 β41

3

5

7

2

4

6

β2

• Scalar products? Too slow!
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Let one of the gluons emit a new gluon:
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To decompose the affected side, we may insert the completeness

relation repeatedly:

The representations on the other side (here right) don’t change
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Consider the affected side:
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Inserting completeness relations we get a sum of terms of form:

dβ2
dβ3 ...

β3 β4β2α1

What we have here are just vertex corrections which can be rewritten

in terms of 3j and 6j coefficients
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Giving us a sum of terms of form:

...

β3 β4β2α1

i.e., knowing the 3j and 6j symbols we can write down the resulting

vectors
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• By inserting the new gluon ”in the middle” in the basis we

guarantee that the emitted gluon need never ”be transported”

across more than ∼ half of the reps

• Typically we get only a small fraction of all basis vectors in the

larger basis:

Ng 5→6 6→7 7→8 8→9 9→10

Nc = 3 0.094 0.027 0.012 0.0032 0.0014

Nc ≥ Ng 0.071 0.014 0.0054 0.00092 0.00032

(Y. Du, M.S. & J. Thorén, JHEP 1505 (2015) 119, 1503.00530)
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Consider the sum of all terms from all emissions (all emitters and all

vectors) and compare to the number encountered when squaring a

tree-level amplitude

Ng Fraction (Nc = 3) All terms (Nc = 3) (# tree vectors)2 (any Nc)

5→6 0.094 2 184 (120)2

6→7 0.027 16 372 (720)2

7→8 0.012 212 914 (5 040)2

8→9 0.0032 1 758 620 (40 320)2 ∼ 10
9

9→10 0.0014 25 407 328 (362 880)2 ∼ 10
11

Numbers will be somewhat reduced by clever vertex choices, and non-

general linear combinations
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Gluon exchange

• For higher order calculations or for resummation we need to

describe the effect of gluon exchange on the color structure

• Gluon exchange may be treated similar to emission

• Here we get a linear combination of basis vectors where only the

intermediate representations can have changed
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Summary

• We can calculate in orthogonal multiplet bases without explicitly

constructing the corresponding bases

• Instead only the Wigner 6j coefficients are needed

• We can calculate them in a way which scales only as the square

of the number of quarks

• An implementation on its way

Thank you for your attention!
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Backup: Gluon exchange

A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
N
c

+
canceling N  −
suppressed
terms

c

+

canceling N  −

suppressed

terms

c

Fierz

Fierz

2 2

1

2

1

2

__

_

2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: Nc-suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= = TR

= TR = TR CF = TR CF Nc = TR TR
N2
c−1
Nc

Nc ∝ N2
c

= =

= TR −TR
Nc

− TR
Nc

CF Nc = 0 − TR TR
N2
c−1
Nc

∼ Nc= TR

∗
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Backup: Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

= =

∗

= TR
−TR
Nc

Is 0 without emission, with ∼ N2
c

did not enter in any form,

genuine ”shower” contribution

Is ∼ Nc without emission, with
∼ N2

c ”included” in shower,

contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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For many partons the size of the vector space is much smaller for

Nc = 3 (exponential), than for Nc → ∞ (factorial)

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

trace bases LO trace bases

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

Number of basis vectors for Ng gluons without imposing vectors to

appear in charge conjugation invariant combinations
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... but the real advantage comes when squaring as the multiplet

bases are orthogonal and the trace bases are not

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

trace bases LO trace bases

4 8 (9)2 (6)2

5 32 (44)2 (24)2

6 145 (265)2 (120)2

7 702 (1 854)2 (720)2

8 3 598 (14 833)2 (5 040)2

9 19 280 (133 496)2 ∼ 10
10 (40 320)2 ∼ 10

9

10 107 160 (1 334 961)2 ∼ 10
12 (362 880)2 ∼ 10

11

Number of terms from color when squaring for Ng gluons without

imposing charge conjugation invariant combinations
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