Lepton masses and mixing in modular groups

Mohammed Abbas

Physics Department, College of Science, Jouf University, Sakaka, P.O.Box 2014, Saudi Arabia

11 December 2024

NuDm 2024, Cairo, Egypt.

The Flavor Problem

□ Hierarchy problem

$$
m_{f_3} \gg m_{f_2} \gg m_{f_1}
$$

- f stands for all elementary fermion fields.
- \square Tiny neutrino mass
- $m_v \ll \ll m_l, m_q,$ l=e, $\mu, \tau, q = u, c, t, d, s, b.$

 m_v ~ < 0.5 eV, m_l ≥ 0.511 MeV, mq ~ > 2 MeV

- The lepton mixing is large while the quark mixing is small.
- The patterns of neutrino mixing of two large and one small angles.

Flavor symmetry

Discrete symmetry

- 1. Usual discrete symmetry models
- 2. Modular discrete symmetry models a. Holomorphic modular groups (supersymmetric models) b. Non-holomorphic modular groups (non-supersymmetric models) [1]

Modular invariance

- **4**
- \Box In the models based on modular flavor invariance, one can consider a scalar field (the modular τ) that can break the modular symmetry via its vev.
- □ The Yukawa couplings (modular forms) are charged under modular group.
- \Box The modular invariance can be achieved by modular weight (k), hence there is no need to impose z_i symmetries

Modular group

5

The modular group $\overline{\Gamma}$ is defined as linear fractional transformations on the upper half of the complex plan *H* and has the form

$$
\gamma: \tau \to \gamma(\tau) = \frac{a\tau + b}{c\tau + d}, \ a, b, c, d \in Z, \ ad - bc = 1,
$$

Where τ is a complex number belongs to *H.*

The modular group $\overline{\Gamma}$ **is isomorphic to the projective special linear group**

$$
PSL(2, Z) = SL(2, Z)/{I, -I},
$$

where

$$
SL(2, Z) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in Z, ad - bc = 1 \right\}.
$$

Modular group

6

 \Box The group $\overline{\Gamma}$ has two generators *S* and *T* satisfying

$$
\mathsf{S}^2=(\mathsf{ST})^3=1
$$

where their action on the complex number τ is given by $S: \tau \to \frac{-1}{\tau}, \qquad T: \tau \to \tau + 1.$

□ S and T can be represented as

$$
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

The Fundamental Domain

7

 \Box The fundamental domain is defined as

$$
\mathcal{D} = \left\{ \tau \in \mathcal{H} \Big| -\frac{1}{2} \leq \Re(\tau) \leq \frac{1}{2}, \ |\tau| \geq 1 \right\}.
$$

Fundamental domain. (2024, March 20). In *Wikipedia*. https://en.wikipedia.org/wiki/Fundamental_domain

Finite modular groups

8

Define the infinite modular groups $\Gamma(N)$, N = 1, 2, 3, …….. As

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} mod N \right\}.
$$

For $N=1$,

$$
\Gamma(1) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 1 \right\}.
$$

$$
\Gamma(1) \equiv SL(2, Z).
$$

 \Box For N = 1, 2, we define

 $\bar{\Gamma}(N) = \Gamma(N)/\{I,-I\}$

 \Box For N>2,

 $\bar{\Gamma}(N) = \Gamma(N)$

Finite modular groups

9

 \Box It is straightforward to notice that

$$
\bar{\Gamma}(1) = PSL(2, Z) = \bar{\Gamma}.
$$

 \Box The group $\overline{\Gamma}$ and its subgroup $\overline{\Gamma}(N)$ are discrete but infinite, while the quotient modular group

$$
\Gamma_{N} = \overline{\Gamma}/\overline{\Gamma}(N)
$$

is finite.

- **□** The group Γ_N is called **the finite modular group** and can be obtained by extending the conditions on the generators with the condition $T^N = 1$.
- \Box For some N<5, the finite modular group Γ_N is isomorphic to a permutation group, for instance,

$$
\Gamma_2 \cong \mathsf{S}_3, \Gamma_3 \cong \mathsf{A}_4, \Gamma_4 \cong \mathsf{S}_4 \text{ and, } \Gamma_5 \cong \mathsf{A}_5.
$$

Modular function and modular forms

 \Box The modular function f(τ) of weight 2k is a meromorphic function of the complex variable τ which satisfies

$$
f(\gamma(\tau)) = f(\frac{a\tau + b}{c\tau + d}) = (c\tau + d)^{2k} f(\tau) \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N),
$$

k is an integer, $k \geq 0$.

- \Box If the modular function is holomorphic everywhere, it is called "modular form" of weight 2k.
- \Box The modular forms of level N and weight 2k form a linear space of finite dimension. In the basis at which the transformation of a set of modular forms f_i(τ) is described by a unitary representation $ρ(γ)$, one can get

$$
f_i(\gamma(\tau)) = (c\tau + d)^{2k} \rho_{ij}(\gamma) f_j(\tau), \qquad \gamma \in \Gamma(N).
$$

Supermultiplet transformation

11

□ The supermultiplets ϕ ¹ transform under Γ_N in the representation ρ(γ) as

$$
\phi^{(I)}(\tau) \to \phi^{(I)}(\gamma(\tau)) = (c\tau + d)^{-2k_I} \rho^{(I)}(\gamma) \phi^{(I)}(\tau).
$$

where:

k is the modular weight, ρ $({\gamma})$ is a unitary representation of Γ_N, I refers to different sectors in the theory.

 \Box Consider the superpotential W(τ, φ)

$$
W(\tau,\phi)=\sum_{I}\sum_{n}Y_{I_{1}I_{2}...I_{n}}(\tau)\phi^{I_{1}}...\phi^{I_{n}}.
$$

 \Box The invariance of the superpotential W(τ, φ) under the modular transformation requires $Y_{I_{1}I_{1}....I_{n}}(\tau)$ to be a modular form transforming in the representation

$$
Y_{I_1 I_2 ... I_n}(\gamma \tau) = (c\tau + d)^{2k} \rho(\gamma) Y_{I_1 I_2 ... I_n}(\tau).
$$

Modular invariance condition

12

 \Box The modular invariance forces the condition

$$
k_Y = k_{I_1} + k_{I_2} + \dots + k_{I_n}.
$$

Modular forms of level 3

- **13**
- \Box The group A₄ has one triplet representation 3 and three singlets 1, 1', and 1" and is generated by two elements S and T satisfying the conditions

$$
S^2 = T^3 = (ST)^3 = 1.
$$

The modular form of level 3 has the form

$$
f_i(\gamma(\tau)) = (c\tau + d)^{2k} \rho_{ij}(\gamma) f_j(\tau), \qquad \gamma \in \Gamma(3).
$$

The modular form of Γ_3 **has the dimension = 2k+1, so for** the lowest value of k=1, the modular form of Γ_3 is transformed as a triplet of weight 2.

Modular forms of level 3

14

 \Box The modular form of weight 2 and level 3 transforms as a triplet and is given by $Y_3^{(2)} = (y_1, y_2, y_3)$ where

$$
y_1(\tau) = \frac{i}{2\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right],
$$

\n
$$
y_2(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^2 \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right],
$$

\n
$$
y_3(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega^2 \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right].
$$

 \Box where $\omega = e^{2\pi i/3}$ and the Dedekind eta-function η(z) is defined as

$$
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \qquad q = e^{2\pi i \tau}.
$$

Higher weight modular forms

15

 \Box Modular forms of weight 4 are constructed via multiplication of two triplets of weight 2. Using A4 multiplication rules of two triplets, one can get one triplet and three singlets all of weight 4 as

$$
Y_3^{(4)} = \begin{pmatrix} y_1^2 - y_2 & y_3 \ y_3^2 - y_2 & y_1 \ y_2^2 - y_1 & y_3 \end{pmatrix}, \ Y_1^{(4)} = y_1^2 + 2y_2 & y_3, \ Y_2^{(4)} = y_3^2 + 2y_2 & y_1, \ Y_3^{(4)} = y_2^2 + 2y_1 & y_3.
$$

 \Box The representations of the above singlets are

$$
Y_1^{(4)} \sim 1
$$
, $Y_2^{(4)} \sim 1'$, $Y_3^{(4)} \sim 1''$.

 \Box At all values of , the condition $Y_3^{(4)}=0$ is satisfied.

Residual Symmetries of A4

 \Box There are three independent fixed points,

$$
\tau_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{2}}{3}
$$

$$
\tau_2 = i
$$

$$
\tau_3 = i\infty
$$

 τ_1 is invariant under ST transformation

$$
\tau_1 \xrightarrow{\hspace{0.5cm}} \mathsf{ST} \hspace{0.5cm} \rangle \hspace{0.5cm} \tau_1
$$

$$
A_4
$$
 \longrightarrow $Z_3 = \{I, ST, (ST)^2\}$

Residual Symmetries of A4 (cont.)

17

 $\Box \tau_2$ is invariant under S transformation

$$
\begin{array}{ccc}\n & \tau_2 & \xrightarrow{S} & \tau_2 \\
& & \xrightarrow{At \tau_2} & Z_2 = \{I, S\}\n\end{array}
$$

 σ τ ₃ is invariant under T transformation

A⁴ Modular invariance model

- \Box The lepton content in the model is extended by adding a triplet of chiral supermutiplets N^c as a right-handed neutrino and three SM singlets S_i to get the neutrino masses via the inverse seesaw mechanism.
- \Box A gauge singlet scalar χ transforming trivially under A₄ is added to get the masses of the singlet fermions N^c and S.
- \Box The modular weights are chosen such that the following relations are satisfied:

$$
k_L + k_{H_d} + k_E = 2,
$$

\n
$$
k_L + k_{H_u} + k_N = 2,
$$

\n
$$
2k_S + 4k_\chi = 0,
$$

\n
$$
k_S + k_N + k_\chi = 0.
$$

Assignment of flavors under A_4 and the modular weight k_I

The lepton modular A_4 invariant superpotential can be written as

$$
w_l = \lambda_1 E_1^c H_d (L \otimes Y_3^{(2)})_1 + \lambda_2 E_2^c H_d (L \otimes Y_3^{(2)})'_1 + \lambda_3 E_3^c H_d (L \otimes Y_3^{(2)})''_1 + g_1 ((N^c H_u L)_{3S} Y_3^{(2)})_1 + g_2 ((N^c H_u L)_{3A} Y_3^{(2)})_1 + h (N^c \otimes S)_{1X} + \frac{f}{\Lambda^3} (S \otimes S)_{1X} A,
$$

where

Λ: is the nonrenormalizable scale,

 g_1 : is the coupling constant of the term of the symmetric triplet arising from the product of the two triplets L and Y, g_2 : is the coupling of the antisymmetric triplet term.

- \Box The fields H_u, H_d and χ acquire vevs namely v_u, v_d and v' respectively, where $v' > v_u$, v_d .
- \Box assume that y' satisfies the relation

 v' Λ $\sim O(\lambda_C)$

where $\lambda_c = 0.225$ is the Cabibbo angle.

21

 \Box The charged lepton mass matrix is

$$
m_e = v_d \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \times \begin{pmatrix} y_1 & y_3 & y_2 \\ y_2 & y_1 & y_3 \\ y_3 & y_2 & y_1 \end{pmatrix}.
$$

 \Box It is convenient to use the Hermitian matrix $M_e = m_e^{\dagger} m_e$ which can be diagonalized as $M_e^{\text{diag}} = U_e^{\dagger} M_e U_e.$

22

 \Box The neutrino mass matrices are

$$
\mu_s = f v' \lambda_c^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad M_R = hv' \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},
$$

\n
$$
m_D = v_u \begin{pmatrix} 2g_1y_1 & (-g_1 + g_2)y_3 & (-g_1 - g_2)y_2 \\ (-g_1 - g_2)y_3 & 2g_1y_2 & (-g_1 + g_2)y_1 \\ (-g_1 + g_2)y_2 & (-g_1 - g_2)y_1 & 2g_1y_3 \end{pmatrix}
$$

 \Box The neutrino mass matrix in the basis (v_L, N^c, S) is given by

$$
M = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_s \end{pmatrix}.
$$

23

 \Box The masses of the light neutrino state is

$$
m_{\nu} = m_D M_R^{-1} \mu_s M_R^{T-1} m_D^T.
$$

 \Box It is convenient to diagonalize the Hermitian matrix $M_{\nu} = m_{\nu}^{\dagger} m_{\nu}$,

$$
M^{\text{diag}}_\nu = U^\dagger_\nu M^{}_\nu U^{}_\nu
$$

The lepton mixing U_{PMNS} matrix is given by

$$
U_{PMNS} = U_e^{\dagger} U_{\nu}.
$$

The mixing angles can be calculated from the relations

$$
Sin^{2}(\theta_{13}) = |(U_{PMNS})_{13}|^{2}, \quad Sin^{2}(\theta_{12}) = \frac{|(U_{PMNS})_{12}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}}, \quad Sin^{2}(\theta_{23}) = \frac{|(U_{PMNS})_{23}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}}
$$

A⁴ Modular invariance model (cont.)

24

 \Box The parameter g_2/g_1 is complex in general, so we can write it $\frac{g_2}{g_1} = ge^{i\phi},$ as

where ϕ is the relative phase of g_1 and g_2 .

where
$$
\Delta m_{12}^2 = m_2^2 - m_1^2
$$
, $|\Delta m_{23}^2| = |m_3^2 - (m_2^2 + m_1^2)/2|$.

Results

 \Box The parameters are scanned and one can get the following benchmarks \Box For the normal hierarchy,

 $\tau = -0.245 + 0.5236i$, $g = 2.503$, $\phi = -0.105\pi$, $\frac{\lambda_1}{\lambda_3} = 0.00031$, $\frac{\lambda_2}{\lambda_1} = 0.063$, with

$$
r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0293, \quad \frac{m_e}{m_\tau} = 0.0003, \quad \frac{m_\mu}{m_\tau} = 0.061,
$$

$$
\theta_{12} = 33.25^\circ, \quad \theta_{23} = 41.678^\circ, \quad \theta_{13} = 8.73^\circ.
$$

Results (cont.)

26

\Box For inverted neutrino mass hierarchy,

1.
$$
\tau = -0.494 + 0.55i
$$
, $g = 2.05$, $\phi = -\pi/2$, $\frac{\lambda_1}{\lambda_3} = 0.0009$, $\frac{\lambda_2}{\lambda_1} = 0.07$, with

$$
r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0286, \qquad \frac{m_e}{m_\tau} = 0.0003, \qquad \frac{m_\mu}{m_\tau} = 0.061,
$$

$$
\theta_{12} = 32.4^\circ, \quad \theta_{23} = 49.26^\circ, \quad \theta_{13} = 8.54^\circ.
$$

2. $\tau = 0.0962 + 0.984i$, $g = 2.05$, $\phi = -\pi/2$, $\frac{\lambda_1}{\lambda_3} = 0.0009$, $\frac{\lambda_2}{\lambda_1} = 0.07$, with

$$
r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0296, \qquad \frac{m_e}{m_\tau} = 0.0003, \qquad \frac{m_\mu}{m_\tau} = 0.061,
$$

$$
\theta_{12} = 32.36^\circ, \quad \theta_{23} = 49.24^\circ, \quad \theta_{13} = 8.73^\circ.
$$

Results (cont.)

27

- \Box The two points <τ>= 0.494 + 0.55i and <τ> =0.0962 + 0.984i are close to the fixed points τ'_2 =0.5+0.5i and τ_2 = i respectively.
- \Box The two fixed points are related to each other

$$
\tau_2' = ST \tau_2
$$

$$
\tau_2' = ST^2ST \rightarrow \tau_2'
$$

$$
A_4 \xrightarrow{\text{At } \tau_2'} Z_2 = \{I, ST^2ST\}
$$

Lepton masses at fixed points

 \Box At $\tau_2 = i$,

$$
Det(M_e)=0
$$

So τ_2 can not be used to lead to the correct lepton masses and mixing.

a At $\tau'_2 = 0.5 + 0.5$ i,

1. One of the eigenvalues of M_e is zero

2. One of the eigenvalues of M_v is zero and Det(M_v) = 0. The mixing matrix in this case has two vanishing mixing angles and a nearly maximal angle.

 The observed lepton masses and mixing are consequences of breaking modular residual symmetry by deviation from τ_2 and τ_2'

Quark sector

 \Box For <τ>= 0.494 + 0.55i, the A₄ invariant superpotential for down quarks can be written as

$$
w_d = \frac{h_{11}^d}{\Lambda^3} d_1^c H_d Q_1 \chi^3 + \frac{h_{22}^d}{\Lambda} d_2^c H_d Q_2 \chi + \frac{h_{23}^d}{\Lambda^2} Y_2^{(4)} d_3^c H_d Q_2 \chi^2 + h_{33}^d Y_1^{(4)} d_3^c H_d Q_3
$$

 \Box If $h_{11}^d/h_{33}^d \sim h_{22}^d/h_{33}^d \sim 1/2$, and $h_{23}^d/h_{33}^d \sim 1$

 \Box The down quark mass matrix is

$$
m_d = h_{33}^d \langle H_d \rangle \begin{pmatrix} \lambda^3/2 & 0 & 0 \\ 0 & \lambda/2 & 0 \\ 0 & Y_2^{(4)} \lambda^2 & Y_1^{(4)} \end{pmatrix}
$$

29

Quark sector (cont.)

30

 \Box The Hermitian matrix $M_d=m_d^\dagger m_d$ can be diagonalized by

$$
V_d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.490 - 0.869i & 0.0257 + 0.045i \\ 0 & 0.0524 & 0.9985 \end{pmatrix}
$$

with eigenvalues $M_d = diag(\lambda^4/2, \lambda^2/2, 1) h_{33}^d Y_1^{(4)} < H_d >$.

Which is in a good agreement with the experimental data.

 \Box The invariant superpotential for up quarks is

$$
w_u = \frac{h_{11}^u}{\Lambda^3} Y_2^{(4)} u_1^c H_u Q_1 \chi^3 + \frac{h_{12}^u}{\Lambda^2} Y_1^{(4)} u_1^c H_u Q_2 \chi^2 + \frac{h_{21}^u}{\Lambda^3} Y_1^{(4)} u_2^c H_u Q_1 \chi^3
$$

+
$$
h_{23}^u Y_2^{(4)} u_2^c H_u Q_3 + \frac{h_{33}^u}{\Lambda} u_3^c H_u Q_3 \chi.
$$

Quark sector (cont.)

31

 \Box The up quark mass matrix is

$$
m_u=\left(\begin{array}{ccc} h_{11}^uY_2^{(4)}\lambda^3 & h_{12}^uY_1^{(4)}\lambda^2 & 0 \\ h_{21}^uY_1^{(4)}\lambda^3 & 0 & h_{23}^uY_2^{(4)} \\ 0 & 0 & h_{33}^u\lambda \end{array}\right).
$$

The Hermitian matrix $M_u = m_u^\dagger m_u$ can be diagonalized by

$$
V_u = \begin{pmatrix} -0.478 + 0.848i & -0.11 + 0.198i & 0.0017 & -0.0035i \\ -0.118 - 0.195i & 0.504 + 0.83i & 1.5 \times 10^{-7} \\ 0.00349 & 0.0008245 & 0.999942 \end{pmatrix}
$$
 with the corresponding eigenvalues $M_u^{diag} = h_{33}^u < H_u > Y_1^{(4)} diag(\lambda^7, \lambda^3, 1)$,

The quark mixing matrix, V_{CKM} takes the form

$$
|V_{CKM}| = |V_u^{\dagger} V_d| = \begin{pmatrix} 0.9737 & 0.227 & 0.006 \\ 0.227 & 0.9723 & 0.05 \\ 0.005 & 0.05 & 0.9986 \end{pmatrix}
$$

CONCLUSION

- 1. The model is free from large number of flavons or extra symmetries like Z $_{\textrm{\tiny{N}}}$ symmetries.
- 2. The predicted lepton mixing and mass ratios are compatible with the recent data at values of τ near fixed points for inverted hierarchy scenario.
- 3. The model is valid also in quark sector at one value of τ near a fixed point.

Thank you