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The Flavor Problem

Hierarchy problem
mf3 > mfz > mfl

f stands for all elementary fermion fields.

Tiny neutrino mass
m, <<<m,;, m, I=e,u,7, g=u,c,td,s,Db.
m, ~<0.5eV, m20.511 MeV, mq ~ > 2 MeV
The lepton mixing is large while the quark mixing is small.

The patterns of neutrino mixing of two large and one small
angles.



Flavor symmetry

Discrete symmetry
Usual discrete symmetry models

Modular discrete symmetry models

a. Holomorphic modular groups (supersymmetric models)
b. Non-holomorphic modular groups (non-supersymmetric
models) [1]

[1] B.-Y. Qu and G.-J. Ding, “Non-holomorphic modular flavor symmetry,” JHEP 08 (2024)



Modular invariance

In the models based on modular flavor invariance,
one can consider a scalar field (the modular T) that
can break the modular symmetry via its vev.

The Yukawa couplings (modular forms) are charged
under modular group.

The modular invariance can be achieved by
modular weight (k), hence there is no need to
impose z. symmetries



Modular group
S

o The modular group I is defined as linear fractional transformations on the
upper half of the complex plan H and has the form

at+ b
ct+ d

yit—y(r) = ,a,bec,de Z, ad—bec=1,

Where tis a complex number belongs to H.

= The modular group I is isomorphic to the projective special linear group

PSL(2.Z) = SL(2.2)/{1.~1}.

where

a b
SL(Z*Z):{( d)ﬂ*b*c*dez*ad—bf':l}.
c d



Modular group

The group I has two generators S and T satisfying
S2=(ST)3=1,
where their action on the complex number T is given

by 1
Sit—- —, T:t—= 17+ 1.
T

S and T can be represented as

. (o0 1 (11
=(58). =)



The Fundamental Domain

1 The fundamental domain is defined as

Dz{TE?{‘—%E%{ﬂE%, |’T|3_:’1}-

Fundamental domain. (2024, March 20). In Wikipedia. https://en.wikipedia.org/wiki/Fundamental_domain



Finite modular groups

s 4
o1 Define the infinite modular groups I'(N), N=1, 2, 3, ........ As

F(N)—{(j 3) ESL(Q,Z)?((; 3) — ((1] 2)modN}.
F(1)_{(‘c1 3) eSL(Q,Z),(‘z 3) - (; [lj)modl}.

I'(1) = SL(2,Z).

For N =1,

1 ForN =1, 2, we define
L(N) = T(N)/{I,~T}
0 For N>2,

T(N) = T(N)



Finite modular groups
O

o Itis straightforward to notice that

['(1)=PSL(2,Z)=T.

= The group I and its subgroup [(N) are discrete but infinite, while the
qguotient modular group o
=T/ T(N)
is finite.

o The group I'y is called the finite modular group and can be obtained by
extending the conditions on the generators with the condition TN = 1.

o For some N<5, the finite modular group I’ is isomorphic to a permutation
group, for instance,

[L=S, I,=A,I,=S,and, [ = A..



Modular function and modular forms

-1 The modular function f(t) of weight 2k is a meromorphic function of the

complex variable T which satisfies

Frm)) = FCOZEY — (e a2k p(r) v ( . ) e I'(N),

cT + d c d

k is an integer, k = 0.

If the modular function is holomorphic everywhere, it is called “modular
form” of weight 2k.

o The modular forms of level N and weight 2k form a linear space of finite

dimension. In the basis at which the transformation of a set of modular
forms f.(t) is described by a unitary representation p(y), one can get

filr()) = (ex +d)*p;i(y)f;(x).  r e (N).



Supermultiplet transformation
o

o The supermultiplets ¢' transform under I in the representation p(y) as

() = oD (y(7)) = (er + d) 721 pD(3)pD (7).
where:
k is the modular weight,
p(Y) is a unitary representation of I'y,
| refers to different sectors in the theory.

-1 Consider the superpotential W(t, ¢)

ZZY!;’« (7). "

o1 The invariance of the superpotentlal W(t, ¢) under the modular
transformation requires Y, ;, ; () to be a modular form transforming in
the representation

Yo 1o, (07) = (e7 + )Y p()Y7, 1, 1, (7).



Modular invariance condition

o The modular invariance forces the condition

ky = kfl —I—k12 + ...+ kfn.



Modular forms of level 3

The group A, has one triplet representation 3 and three
singlets 1, 1’, and 1” and is generated by two elements S and
T satisfying the conditions

§?=T3=(ST)? =1.
The modular form of level 3 has the form
fi(y(2)) = (et + d)*pi; () f(7). y €1°(3).

The modular form of I'; has the dimension = 2k+1, so for
the lowest value of k=1, the modular form of I'; is
transformed as a triplet of weight 2.



Modular forms of level 3
14|

o The modular form of weight 2 and level 3 transforms as a triplet and is given by
r? = h
3 (V1,¥2,¥3) Where

| a3 (r+1)/3)  n'((r+2)/3) 2Ty (37)
e ey R (Co i BT o YV e
| =i [(/3) (T +1)/3) (T +2)/3)]

y2(T) = ™ [ n(7/3) T n((r+1)/3) +w-r;r((7'+2)/3)_ ’
ys(r) = —i [n'(7/3) n'((t+1)/3) +F12?)’((T—i—2)/3)-
S T C ) BT G D) BTGP YT B I

2mi/3

7 wherew =¢e and the Dedekind eta-function n(z) is defined as

W(T) _ q];”-‘.‘i H(l —{‘_}’”), g = E,lfrfr_

n=|1



Higher weight modular forms
N

o Modular forms of weight 4 are constructed via multiplication of two triplets of
weight 2. Using A4 multiplication rules of two triplets, one can get one triplet and
three singlets all of weight 4 as

2
1) STz 1 1) 4
Y}.( =l vi—wu |. Yl( ) = 3 + 2y2 Y3, Yz( = y3 + 2y2 Y1, Yg( ) = y3 + 21 V3.
Y5 — 1 Y3

1 The representations of the above singlets are
Y1(4) ~ 1, Y2(4) ~ 1 ]/;3(4) ~ 1"

o At all values of , the condition Y3(4) = ( is satisfied.



Residual Symmetries of A4

16|
o1 There are three independent fixed points,
2mi 1 42
Ty =e 3 = —5 + ?
T =1
T3 = [0O

01 T4 is invariant under ST transformation
ST > T

Ay [ AT > Zy = {1,5T,(ST)?)




Residual Symmetries of A4 (cont.)

1 T is invariant under S transformation

T, S T,

A4 At T Zz — {I,S}

71 T is invariant under T transformation

T3 [T > T3

A, [ An > Z,={I,T,T?)




A, Modular invariance model

1 The lepton content in the model is extended by adding a triplet of chiral
supermutiplets N¢ as a right-handed neutrino and three SM singlets S, to
get the neutrino masses via the inverse seesaw mechanism.

o A gauge singlet scalar x transforming trivially under A, is added to get the
masses of the singlet fermions N¢and S.

- The modular weights are chosen such that the following relations are
satisfied:

kr + kg, + kg =
kr + kg, + kn =
Dhg + Ak, =

ks + kN + ky =

S o N oW



fields|L| B¢ | ES| ES| N [S| Ha| H, | x
Ay 3l s3]3[ 1)1t
kr |3]-1|-1{-1|-1]2] 0] 0 |-1

Assignment of flavors under A4 and the modular weight kj

The lepton modular A, invariant superpotential can be written as
wp = WESH, (L @ YY), + LESH (L ® YY),
+ IESH (L ® YY) + g1 (NH,L)3sYY)),
+ Qz((NcHuL)ng ))1 +h(N° ® S)x

13(5‘8’5”4



A, Modular invariance model (cont.)

where

A: is the nonrenormalizable scale,

g,: is the coupling constant of the term of the symmetric
triplet arising from the product of the two triplets Land Y,
g,: is the coupling of the antisymmetric triplet term.

The fields H , Hy and x acquire vevs namely v, v4yand Vv’
respectively, where v’ > v, v,.

assume that v’ satisfies the relation

vl
7 ~0(c)
where A_=0.225 is the Cabibbo angle.



A, Modular invariance model (cont.)
21 |
o The charged lepton mass matrix is

Ay 0 0 Yi VY3 W
m,=uvz| 0 A O | X | v2 v vi|.
0 0 A Y3 Y2 Vi

0 It is convenient to use the Hermitian matrix
M, = mlme which can be diagonalized as

M — yim,u,.



A, Modular invariance model (cont.)

1 The neutrino mass matrices are

1 00 100
uo=fu3l0o 01|, Mg=m'|0 0 1],
010 01 0

291y (=91 +92)y; (=91 —%)¥2
mp =, | (=91 —=92)y3 291y, (=91 +3)y1 |-
(=91 +92)y2 (=91 —92)" 2g1v3

o The neutrino mass matrix in the basis (v;, N¢,S) is given by



A, Modular invariance model (cont.)
S

1 The masses of the light neutrino state is

_ -1 T—1,T
m, = mpMg= pu Mg~ mp,.

o Itis convenient to diagonalize the Hermitian matrix M,, = mimv,

M = Uim, U,
The lepton mixing Uppsng matrix is given by
Upmns = UlU,.
The mixing angles can be calculated from the relations

(Upnins)2s|?
1 —|[(Uppns)isl?

(Upnns)iz)?

Sin?(0y3) =
1 —|(Upnmns)is (023)

Sin?(013) = |(Upnns)isl?, Sin?(b12) =

>



A, Modular invariance model (cont.)

24
o The parameter g,/g, is complex in general, so we can write it
as 92 _ g{}z‘rﬁ‘
91
where ¢ is the relative phase of g, and g,.
Am?, |Am?Z, | _ Amg,
RG] 0= vy = E] 015/° 0r3/° 0,2/° Scp/ T
Best fit 7.39 2.51 0.0294 33.82 498 8.6 1.57

3o range 6.79-8.01 241-2611 0.026-0.033 31.61-36.27 40.6-52.5 8.27-9.03 1.088-2

Where Am?, = m35 — m?, [Am3s| = |m3 = (m3 + m7)/2].



Results
T

1 The parameters are scanned and one can get the following benchmarks

0 For the normal hierarchy,

T =—0.245+0.5236i, g=2.503, ¢ = —0.105m, 3 =0.00031, 32 = 0.063, with

Am? m
=2 00203, € = 0.0003,  — = 0.061,
| Arnis| My M

1o = 33.250.,. fog = 41.6780, 013 = 8.73°.



Results (cont.)
T

0 For inverted neutrino mass hierarchy,

1. 7=-0494+0.55i, g=2.05, ¢=—7/2, 3L =0.0009, 32 =0.07, with

Am?, . my,
5 = 0.0286, = 0.0003, —= =10.061.
| Amig| My My

D1 = 32.4°, fag = 49.26°, @13 = 8.54°.

Y

2. 7=00962+0.984i, g=205¢=—7/2, 3&=0.0009, 32 =0.07, with

A 2
M2 _ o206, e —0.0003, % —0.061,

[ Ami| ms mr
1o = 32.360.,. fog = 49.240? #13 = 8.73°.




Results (cont.)

1 The two points <t>= 0.494 + 0.55i and <t> =0.0962 + 0.984i
are close to the fixed points 75,=0.5+0.5i and t,= i respectively.

1 The two fixed points are related to each other
7, =ST 1,

T, [ST2ST) 75

A, [ At >Zz = {I,ST2ST}




Lepton masses at fixed points

o At Ty = i,
Det(M,) =0
So T, can not be used to lead to the correct lepton masses and
mixing.
0 AtTty; =05+ 0.5,
1. One of the eigenvalues of M, is zero

2. One of the eigenvalues of M, is zero and Det(M,) = 0. The mixing
matrix in this case has two vanishing mixing angles and a nearly
maximal angle.

0 The observed lepton masses and mixing are consequences of
breaking modular residual symmetry by deviation from 7, and T,



Quark sector

fields| Q1| Q2 | Q3 |uf|ug |ug|di|d3 |d3
Ay (111" 1" 1t 17|
Br (3120441 [0|-1(4

0 For <t>=0.494 + 0.55i, the A, invariant superpotential for down quarks
can be written as

hfii hdz h'23 (4) (4)
dCIHdle + dEHszx—l- Y dsHaQ2x +h33}’ dsHaQs.
A3

wyq =

0 If kY, /hdy ~ kS /h3s ~ 1/2, and hi;/hd,

A/20 0

o The down quark mass matrixis  my = hdy, < Hy > 0 A2 0
4 4
0 Yg{ ) )2 Yll[ )



Quark sector (cont.)
oo [

o1 The Hermitian matrix M = mjimd can be diagonalized by

1 0 0
Vi = | 0 —0.490 — 0.869i 0.0257 + 0.0457 |,
0 0.0524 0.9985

with eigenvalues My = diag(\*/2.A?/2,1) hd, }’1{4] < Hyg > .

Which is in a good agreement with the experimental data.

0 The invariant superpotential for up quarks is

hY
2Ly Y us H,Q1 X

Wy = hllyid} HuQ1X3+h2Y{J HHQ2X2+ A

A3 A
w vl e h33 e
+ h??,YQ UQHHQ?: + _ugﬂuQEX



Quark sector (cont.)
I

o The up quark mass matrix is

Y, 0N Ry a2 o
my=<H,> | hey®x o py!d
0 0 hU\

The Hermitian matrix M, = m:rtmu can be diagonalized by

—0.478 + 0.848: —0.11 + 0.198: 0.0017 — 0.00352
Vu=1 —0.118 — 0.195i 0.504 + 0.83: 1.5 x 10— 7
0.00349 0.0008245 0.999942

with the corresponding eigenvalues M@0 = h¥, < H, > YV diag(\7, A3, 1),
The quark mixing matrix, V¢, takes the form

0.9737 0.227 0.006
Vera| = |V Val=| 0227 09723 0.05
0.005 0.05 0.9986



CONCLUSION

The model is free from large number of flavons or extra
symmetries like Z, symmetries.

The predicted lepton mixing and mass ratios are compatible
with the recent data at values of T near fixed points for
inverted hierarchy scenario.

The model is valid also in quark sector at one value of T near
a fixed point.



ﬂwank you




	Slide 1
	Slide 2: The Flavor Problem
	Slide 3: Flavor symmetry
	Slide 4: Modular invariance 
	Slide 5: Modular group
	Slide 6: Modular group
	Slide 7: The Fundamental Domain 
	Slide 8: Finite modular groups
	Slide 9: Finite modular groups
	Slide 10: Modular function and modular forms
	Slide 11: Supermultiplet transformation
	Slide 12: Modular invariance condition 
	Slide 13: Modular forms of level 3
	Slide 14: Modular forms of level 3
	Slide 15: Higher weight modular forms
	Slide 16: Residual Symmetries of A4
	Slide 17: Residual Symmetries of A4 (cont.)
	Slide 18: A4 Modular invariance model
	Slide 19
	Slide 20: A4 Modular invariance model (cont.)
	Slide 21: A4 Modular invariance model (cont.)
	Slide 22: A4 Modular invariance model (cont.)
	Slide 23: A4 Modular invariance model (cont.)
	Slide 24: A4 Modular invariance model (cont.)
	Slide 25: Results
	Slide 26: Results (cont.)
	Slide 27: Results (cont.)
	Slide 28: Lepton masses at fixed points
	Slide 29: Quark sector
	Slide 30: Quark sector (cont.)
	Slide 31: Quark sector (cont.)
	Slide 32: CONCLUSION
	Slide 33

