Lepton masses and mixing in modular groups

Mohammed Abbas

Physics Department, College of Science, Jouf University, Sakaka, P.O.Box 2014, Saudi Arabia

11 December 2024

NuDm 2024, Cairo, Egypt.

The Flavor Problem

Hierarchy problem

$$m_{f_3} \gg m_{f_2} \gg m_{f_1}$$

- f stands for all elementary fermion fields.
- Tiny neutrino mass
- $m_v \ll m_l, m_q,$ $l=e,\mu,\tau, q=u, c, t, d, s, b.$

 $m_v \sim < 0.5 \text{ eV}, m_l \ge 0.511 \text{ MeV}, mq \sim > 2 \text{ MeV}$

- □ The lepton mixing is large while the quark mixing is small.
- The patterns of neutrino mixing of two large and one small angles.

Flavor symmetry

Discrete symmetry

- 1. Usual discrete symmetry models
- 2. Modular discrete symmetry models
 a. Holomorphic modular groups (supersymmetric models)
 b. Non-holomorphic modular groups (non-supersymmetric models) [1]

Modular invariance

- In the models based on modular flavor invariance, one can consider a scalar field (the modular τ) that can break the modular symmetry via its vev.
 - The Yukawa couplings (modular forms) are charged under modular group.
 - The modular invariance can be achieved by modular weight (k), hence there is no need to impose z_i symmetries

Modular group

5

The modular group $\overline{\Gamma}$ is defined as linear fractional transformations on the upper half of the complex plan *H* and has the form

$$\gamma:\tau \to \gamma(\tau) = \frac{a\tau + b}{c\tau + d}, \ a, b, c, d \in \mathbb{Z}, \ ad - bc = 1,$$

Where τ is a complex number belongs to *H*.

 \Box The modular group $\overline{\Gamma}$ is isomorphic to the projective special linear group

$$PSL(2, Z) = SL(2, Z)/\{I, -I\},\$$

where

$$SL(2,Z) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in Z, ad - bc = 1 \right\}.$$

Modular group

6

 \Box The group $\overline{\Gamma}$ has two generators S and T satisfying

$$S^2 = (ST)^3 = I$$
,

where their action on the complex number τ is given by $S: \tau \to \frac{-1}{\tau}, \qquad T: \tau \to \tau + 1.$

 \square S and T can be represented as

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

The Fundamental Domain

7

□ The fundamental domain is defined as

$$\mathcal{D} = \left\{ \tau \in \mathcal{H} \Big| -\frac{1}{2} \le \Re(\tau) \le \frac{1}{2}, \ |\tau| \ge 1 \right\}.$$

Fundamental domain. (2024, March 20). In Wikipedia. https://en.wikipedia.org/wiki/Fundamental_domain

Finite modular groups

8

Define the infinite modular groups $\Gamma(N)$, N = 1, 2, 3, As

$$\Gamma(N) = \Big\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \Big\}.$$

For N = 1,

$$\Gamma(1) = \Big\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod 1 \Big\}.$$

$$\Gamma(1) \equiv SL(2, Z).$$

 \Box For N = 1, 2, we define

 $\bar{\Gamma}(N) \;=\; \Gamma(N)/\{I,-I\}$

 \Box For N>2,

 $\bar{\Gamma}(N) = \Gamma(N)$

Finite modular groups

9

It is straightforward to notice that

$$\bar{\Gamma}(1) = PSL(2, Z) = \bar{\Gamma}.$$

The group $\overline{\Gamma}$ and its subgroup $\overline{\Gamma}(N)$ are discrete but infinite, while the quotient modular group

$$\Gamma_{\rm N} = \overline{\Gamma} / \overline{\Gamma}({\rm N})$$

is finite.

- The group Γ_N is called <u>the finite modular group</u> and can be obtained by extending the conditions on the generators with the condition $T^N = 1$.
- **Γ** For some N<5, the finite modular group Γ_N is isomorphic to a permutation group, for instance,

$$\Gamma_2 \cong S_3, \Gamma_3 \cong A_4, \Gamma_4 \cong S_4 \text{ and, } \Gamma_5 \cong A_5.$$

Modular function and modular forms

 The modular function f(τ) of weight 2k is a meromorphic function of the complex variable τ which satisfies

$$f(\gamma(\tau)) = f(\frac{a\tau + b}{c\tau + d}) = (c\tau + d)^{2k} f(\tau) \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N),$$

k is an integer, $k \ge 0$.

- If the modular function is holomorphic everywhere, it is called "modular form" of weight 2k.
- The modular forms of level N and weight 2k form a linear space of finite dimension. In the basis at which the transformation of a set of modular forms f_i(τ) is described by a unitary representation ρ(γ), one can get

$$f_i(\gamma(\tau)) = (c\tau + d)^{2k} \rho_{ij}(\gamma) f_j(\tau), \qquad \gamma \in \Gamma(N).$$

Supermultiplet transformation

11

D The supermultiplets ϕ^{I} transform under Γ_{N} in the representation $\rho(\gamma)$ as

$$\phi^{(I)}(\tau) \to \phi^{(I)}(\gamma(\tau)) = (c\tau + d)^{-2k_I} \rho^{(I)}(\gamma) \phi^{(I)}(\tau).$$

where:

k is the modular weight,

 $\rho(\gamma)$ is a unitary representation of $\Gamma_{_N}$,

I refers to different sectors in the theory.

Consider the superpotential W(τ , ϕ)

$$W(\tau,\phi)=\sum_{I}\sum_{n}Y_{I_{1}I_{2}\ldots I_{n}}(\tau)\phi^{I_{1}}\ldots\phi^{I_{n}}.$$

Definition The invariance of the superpotential W(τ, φ) under the modular transformation requires $Y_{I_1I_1...I_n}(\tau)$ to be a modular form transforming in the representation

$$Y_{I_1 \ I_2 \ \dots I_n}(\gamma \tau) = (c\tau + d)^{2k_Y} \rho(\gamma) Y_{I_1 \ I_2 \ \dots I_n}(\tau).$$

Modular invariance condition

12

The modular invariance forces the condition

$$k_Y = k_{I_1} + k_{I_2} + \dots + k_{I_n}.$$

Modular forms of level 3

- 13
- The group A₄ has one triplet representation *3* and three singlets 1, 1', and 1" and is generated by two elements S and T satisfying the conditions

$$S^2 = T^3 = (ST)^3 = \mathbf{1}.$$

The modular form of level 3 has the form

$$f_i(\gamma(\tau)) = (c\tau + d)^{2k} \rho_{ij}(\gamma) f_j(\tau), \qquad \gamma \in \Gamma(3).$$

The modular form of Γ₃ has the dimension = 2k+1, so for the lowest value of k=1, the modular form of Γ₃ is transformed as a triplet of weight 2.

Modular forms of level 3

14

The modular form of weight 2 and level 3 transforms as a triplet and is given by $Y_3^{(2)} = (y_1, y_2, y_3)$ where

$$y_{1}(\tau) = \frac{i}{2\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right],$$

$$y_{2}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^{2} \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right],$$

$$y_{3}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega^{2} \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right].$$

• where $\omega = e^{2\pi i/3}$ and the Dedekind eta-function $\eta(z)$ is defined as

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \qquad q = e^{2\pi i \tau}.$$

Higher weight modular forms

15

Modular forms of weight 4 are constructed via multiplication of two triplets of weight 2. Using A4 multiplication rules of two triplets, one can get one triplet and three singlets all of weight 4 as

$$Y_3^{(4)} = \begin{pmatrix} y_1^2 - y_2 \ y_3 \\ y_3^2 - y_2 \ y_1 \\ y_2^2 - y_1 \ y_3 \end{pmatrix}, \ Y_1^{(4)} = y_1^2 + 2y_2 \ y_3, \ Y_2^{(4)} = y_3^2 + 2y_2 \ y_1, \ Y_3^{(4)} = y_2^2 + 2y_1 \ y_3.$$

The representations of the above singlets are

$$Y_1^{(4)} \sim 1, \qquad Y_2^{(4)} \sim 1', \qquad Y_3^{(4)} \sim 1''.$$

• At all values of , the condition $Y_3^{(4)} = 0$ is satisfied.

Residual Symmetries of A4

16

□ There are three independent fixed points,

$$\tau_1 = e^{\frac{2\pi i}{3}} = -\frac{1}{2} + \frac{\sqrt{2}}{3}$$
$$\tau_2 = i$$
$$\tau_3 = i\infty$$

 \Box τ_1 is invariant under ST transformation

$$\tau_1$$
 ST τ_1

$$A_4 \quad A_1 \quad Z_3 = \{I, ST, (ST)^2\}$$

Residual Symmetries of A4 (cont.)

17

 $\Box \tau_2$ is invariant under S transformation

$$\begin{array}{c|c} \tau_2 & \overrightarrow{S} & \tau_2 \\ \hline A_4 & \overrightarrow{A} & \tau_2 \\ \hline A_1 & \tau_2 \\ \hline Z_2 & = \{I, S\} \end{array}$$

 $\Box \tau_3$ is invariant under T transformation

- The lepton content in the model is extended by adding a triplet of chiral supermutiplets N^c as a right-handed neutrino and three SM singlets S_i to get the neutrino masses via the inverse seesaw mechanism.
- A gauge singlet scalar χ transforming trivially under A₄ is added to get the masses of the singlet fermions N^c and S.
- The modular weights are chosen such that the following relations are satisfied:

$$k_L + k_{H_d} + k_E = 2,$$

$$k_L + k_{H_u} + k_N = 2,$$

$$2k_S + 4k_{\chi} = 0,$$

$$k_S + k_N + k_{\chi} = 0.$$

fields	L	E_1^c	E_2^c	E_3^c	N^c	\mathbf{S}	H_d	H_u	χ
A_4	3	1	1"	1'	3	3	1	1	1
k_I	3	-1	-1	-1	-1	2	0	0	-1

Assignment of flavors under A_4 and the modular weight k_I

The lepton modular A₄ invariant superpotential can be written as

$$\begin{split} w_l &= \lambda_1 E_1^c H_d (L \otimes Y_3^{(2)})_1 + \lambda_2 E_2^c H_d (L \otimes Y_3^{(2)})_1' \\ &+ \lambda_3 E_3^c H_d (L \otimes Y_3^{(2)})_1'' + g_1 ((N^c H_u L)_{3S} Y_3^{(2)})_1 \\ &+ g_2 ((N^c H_u L)_{3A} Y_3^{(2)})_1 + h (N^c \otimes S)_1 \chi \\ &+ \frac{f}{\Lambda^3} (S \otimes S)_1 \chi^4, \end{split}$$

□ where

 Λ : is the nonrenormalizable scale,

 g_1 : is the coupling constant of the term of the symmetric triplet arising from the product of the two triplets L and Y, g_2 : is the coupling of the antisymmetric triplet term.

- □ The fields H_u , H_d and χ acquire vevs namely v_u , v_d and v' respectively, where $v' > v_u$, v_d .
- assume that v' satisfies the relation

 $\frac{v'}{\Lambda} \sim O(\lambda_C)$

where $\lambda_c = 0.225$ is the Cabibbo angle.

21

The charged lepton mass matrix is

$$m_e = v_d \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \times \begin{pmatrix} y_1 & y_3 & y_2 \\ y_2 & y_1 & y_3 \\ y_3 & y_2 & y_1 \end{pmatrix}.$$

□ It is convenient to use the Hermitian matrix $M_e = m_e^{\dagger} m_e$ which can be diagonalized as $M_e^{\text{diag}} = U_e^{\dagger} M_e U_e$.

22

The neutrino mass matrices are

$$\begin{split} \mu_s &= f v' \lambda_c^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_R = h v' \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \\ m_D &= v_u \begin{pmatrix} 2g_1 y_1 & (-g_1 + g_2) y_3 & (-g_1 - g_2) y_2 \\ (-g_1 - g_2) y_3 & 2g_1 y_2 & (-g_1 + g_2) y_1 \\ (-g_1 + g_2) y_2 & (-g_1 - g_2) y_1 & 2g_1 y_3 \end{pmatrix} \end{split}$$

□ The neutrino mass matrix in the basis (v_L , N^c , S) is given by

$$M = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_s \end{pmatrix}.$$

23

The masses of the light neutrino state is

$$m_{\nu} = m_D M_R^{-1} \mu_s M_R^{T-1} m_D^T.$$

It is convenient to diagonalize the Hermitian matrix $M_{\nu} = m_{\nu}^{\dagger} m_{\nu}$,

$$M_{\nu}^{\rm diag} = U_{\nu}^{\dagger} M_{\nu} U_{\nu}$$

The lepton mixing U_{PMNS} matrix is given by

$$U_{PMNS} = U_e^{\dagger} U_{\nu}.$$

The mixing angles can be calculated from the relations

$$Sin^{2}(\theta_{13}) = |(U_{PMNS})_{13}|^{2}, \quad Sin^{2}(\theta_{12}) = \frac{|(U_{PMNS})_{12}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}}, \quad Sin^{2}(\theta_{23}) = \frac{|(U_{PMNS})_{23}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}}$$

24

The parameter g_2/g_1 is complex in general, so we can write it as $\frac{g_2}{g_1} = ge^{i\phi}$,

where ϕ is the relative phase of g_1 and g_2 .

	$\frac{\Delta m_{12}^2}{(10^{-5} \text{ eV}^2)}$	$\frac{ \Delta m^2_{23} }{(10^{-3} \text{ eV}^2)}$	$r = \frac{\Delta m_{12}^2}{ \Delta m_{23}^2 }$	$\theta_{12}/^{\circ}$	$\theta_{23}/^{\circ}$	$\theta_{13}/^{\circ}$	δ_{CP}/π
Best fit 3σ range	7.39	2.51	0.0294	33.82	49.8	8.6	1.57
	6.79–8.01	2.41–2.611	0.026–0.033	31.61–36.27	40.6–52.5	8.27–9.03	1.088–2

where $\Delta m_{12}^2 = m_2^2 - m_1^2$, $|\Delta m_{23}^2| = |m_3^2 - (m_2^2 + m_1^2)/2|$.

Results

The parameters are scanned and one can get the following benchmarks
 For the normal hierarchy,

 $\tau = -0.245 + 0.5236i, \quad g = 2.503, \quad \phi = -0.105\pi, \quad \frac{\lambda_1}{\lambda_3} = 0.00031, \quad \frac{\lambda_2}{\lambda_1} = 0.063, \text{ with}$

$$r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0293, \quad \frac{m_e}{m_\tau} = 0.0003, \quad \frac{m_\mu}{m_\tau} = 0.061,$$

$$\theta_{12} = 33.25^\circ, \quad \theta_{23} = 41.678^\circ, \quad \theta_{13} = 8.73^\circ.$$

Results (cont.)

26

□ For inverted neutrino mass hierarchy,

1.
$$\tau = -0.494 + 0.55i$$
, $g = 2.05$, $\phi = -\pi/2$, $\frac{\lambda_1}{\lambda_3} = 0.0009$, $\frac{\lambda_2}{\lambda_1} = 0.07$, with

$$r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0286, \quad \frac{m_e}{m_\tau} = 0.0003, \quad \frac{m_\mu}{m_\tau} = 0.061,$$

$$\theta_{12} = 32.4^\circ, \quad \theta_{23} = 49.26^\circ, \quad \theta_{13} = 8.54^\circ.$$

2. $\tau = 0.0962 + 0.984i$, g = 2.05, $\phi = -\pi/2$, $\frac{\lambda_1}{\lambda_3} = 0.0009$, $\frac{\lambda_2}{\lambda_1} = 0.07$, with

$$r = \frac{\Delta m_{12}^2}{|\Delta m_{23}^2|} = 0.0296, \quad \frac{m_e}{m_\tau} = 0.0003, \quad \frac{m_\mu}{m_\tau} = 0.061,$$

$$\theta_{12} = 32.36^\circ, \quad \theta_{23} = 49.24^\circ, \quad \theta_{13} = 8.73^\circ.$$

Results (cont.)

27

- The two points $\langle \tau \rangle = 0.494 + 0.55i$ and $\langle \tau \rangle = 0.0962 + 0.984i$ are close to the fixed points $\tau'_2 = 0.5 + 0.5i$ and $\tau_2 = i$ respectively.
- The two fixed points are related to each other

$$\tau_2' = \operatorname{ST} \tau_2$$

$$\tau_2' \quad \operatorname{ST^2ST} \tau_2'$$

$$A_4 \quad A t \tau'_2 \quad Z_2 = \{I, ST^2 ST\}$$

Lepton masses at fixed points

 \Box At $\tau_2 = i$,

$$Det(M_e) = 0$$

So τ_2 can not be used to lead to the correct lepton masses and mixing.

 \Box At $\tau'_2 = 0.5 + 0.5$ i,

1. One of the eigenvalues of M_e is zero

2. One of the eigenvalues of M_v is zero and $Det(M_v) = 0$. The mixing matrix in this case has two vanishing mixing angles and a nearly maximal angle.

The observed lepton masses and mixing are consequences of breaking modular residual symmetry by deviation from τ_2 and τ'_2

Quark sector

fields	Q_1	Q_2	Q_3	u_1^c	u_2^c	u_3^c	d_1^c	d_2^c	d_3^c
A_4	1	1'	1″	1″	1	1′	1	1″	1′
k_I	3	2	0	4	4	1	0	-1	4

For $<\tau>= 0.494 + 0.55i$, the A₄ invariant superpotential for down quarks can be written as

$$w_d = \frac{h_{11}^d}{\Lambda^3} d_1^c H_d Q_1 \chi^3 + \frac{h_{22}^d}{\Lambda} d_2^c H_d Q_2 \chi + \frac{h_{23}^d}{\Lambda^2} Y_2^{(4)} d_3^c H_d Q_2 \chi^2 + h_{33}^d Y_1^{(4)} d_3^c H_d Q_3 \chi^2 + h_{33}^d Y_1^{(4)} H_d \chi^2 + h_{33}^d Y_1^{(4)} + h_{33}^d Y_1^{(4)} + h$$

□ If $h_{11}^d/h_{33}^d \sim h_{22}^d/h_{33}^d \sim 1/2$, and $h_{23}^d/h_{33}^d \sim 1$

The down quark mass matrix is $m_d = h_{33}^d < H_d > \begin{pmatrix} \lambda^3/2 & 0 & 0 \\ 0 & \lambda/2 & 0 \\ 0 & V^{(4)} \lambda^2 & V^{(4)} \end{pmatrix}.$

Quark sector (cont.)

30

 \square The Hermitian matrix $M_d = m_d^\dagger m_d$ can be diagonalized by

$$V_d = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.490 - 0.869i & 0.0257 + 0.045i \\ 0 & 0.0524 & 0.9985 \end{pmatrix}$$

with eigenvalues $M_d = diag(\lambda^4/2, \lambda^2/2, 1) h_{33}^d Y_1^{(4)} < H_d > .$

Which is in a good agreement with the experimental data.

□ The invariant superpotential for up quarks is

$$w_{u} = \frac{h_{11}^{u}}{\Lambda^{3}} Y_{2}^{(4)} u_{1}^{c} H_{u} Q_{1} \chi^{3} + \frac{h_{12}^{u}}{\Lambda^{2}} Y_{1}^{(4)} u_{1}^{c} H_{u} Q_{2} \chi^{2} + \frac{h_{21}^{u}}{\Lambda^{3}} Y_{1}^{(4)} u_{2}^{c} H_{u} Q_{1} \chi^{3} + h_{23}^{u} Y_{2}^{(4)} u_{2}^{c} H_{u} Q_{3} + \frac{h_{33}^{u}}{\Lambda} u_{3}^{c} H_{u} Q_{3} \chi.$$

Quark sector (cont.)

31

The up quark mass matrix is

$$m_u = \langle H_u \rangle \begin{pmatrix} h_{11}^u Y_2^{(4)} \lambda^3 & h_{12}^u Y_1^{(4)} \lambda^2 & 0\\ h_{21}^u Y_1^{(4)} \lambda^3 & 0 & h_{23}^u Y_2^{(4)}\\ 0 & 0 & h_{33}^u \lambda \end{pmatrix}.$$

The Hermitian matrix $M_u = m_u^{\dagger} m_u$ can be diagonalized by

$$V_u = \begin{pmatrix} -0.478 + 0.848i & -0.11 + 0.198i & 0.0017 & -0.0035i \\ -0.118 - 0.195i & 0.504 + 0.83i & 1.5 \times 10^{-7} \\ 0.00349 & 0.0008245 & 0.999942 \end{pmatrix}$$

with the corresponding eigenvalues $M_u^{diag} = h_{33}^u < H_u > Y_1^{(4)} diag(\lambda^7, \lambda^3, 1),$

The quark mixing matrix, $V_{\rm CKM}$ takes the form

$$|V_{CKM}| = |V_u^{\dagger} V_d| = \begin{pmatrix} 0.9737 & 0.227 & 0.006 \\ 0.227 & 0.9723 & 0.05 \\ 0.005 & 0.05 & 0.9986 \end{pmatrix}$$

CONCLUSION

- The model is free from large number of flavons or extra symmetries like Z_N symmetries.
- 2. The predicted lepton mixing and mass ratios are compatible with the recent data at values of τ near fixed points for inverted hierarchy scenario.
- 3. The model is valid also in quark sector at one value of τ near a fixed point.

Thank you