

(j

GRAN SASSO

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

# The DarkSide-20k Experiment

Oscar Taborda Gran Sasso Science Institute (GSSI) On behalf of the DarkSide Collaboration





### WIMPs as candidates for dark matter

- Weakly Interacting Massive Particles (WIMPs) play a prominent role as DM candidate
- Weak scale interaction lead to correct density in the universe
- Masses: standard WIMP few GeV to ~100 TeV. Can be relaxed down to few MeV assuming different coupling to SM
- Motivated by several theories



## **Direct search for WIMP in liquid Argon**



MiniCLEAN @ SNOLAB



Global Argon Dark Matter Collaboration - GADMC

Combined expertise from 4 LAr experiments Over 400 collaborators from 100 different institutes



DarkSide-20k (DS-20k) @ LNGS

DEAP @ SNOLAB **GOAL:** To explore dark matter to the **neutrino floor** and beyond with extremely **low instrumental background** 



DarkSide-50 (DS-50) @ LNGS



ArDM @ CanFranc

## **Argon and Time Projection Chamber (TPC)**



**Electron recoil (ER):** Mostly populate the triplet state

**Neutrons** generate NRs while  $\beta$  and  $\gamma$  generate ERs

### WIMPs generate NRs

**S1:** primary scintillation in LAr (energy information and pulse shape discrimination)

**S2:** secondary scintillation from electroluminescence of electrons in gaseous Ar (energy information and position reconstruction)

## DarkSide-20k



- DarkSide-20k installation has started. Data taking planned to start in 2027
- Located in HALL C at LNGS, Italy at a depth of 3400 m of water equivalent

- **LAr dual-phase TPC** experiment designed to detect WIMP scattering interactions from the dark matter halo.
- TPC surrounded by **acrylic panels** (PMMA).
- Utilizes Underground Argon (UAr).
- Light Readout: large array of cryogenic low-noise SiPMs.



### DarkSide-20k Design



# Light readout: Large SiPM array





**528 PDUs** 

- with Fondazione Bruno Kessler (FBK), in Italy.
  - Photon detection efficiency (PDE)  $\sim 45\%$
  - Low dark-count rate  $< 0.01 \text{ Hz/mm}^2$  at 77K (7 VoV)
  - Timing resolution ~ 10 ns
  - SNR > 8 for  $10 \times 10 \text{ cm}^2$

- **SiPM** testing and characterization and **Tile/PDU** assembly and testing at **NOA** (Nuova officina Assergi), LNGS, Italy
- 4 Tiles are summed up together in a single DAQ channel
- 120 PDUs in the neutron veto
- 30 PDUs in the outer veto

### **DS-20k PDU production and test**

PDU Production: TPC PDUs at NOA - vPDUs at Birmingham, STFC interconnect, Manchester and Liverpool



SiPM production at **LFoundry**, Italy

PDU packaging and assembly in NOA, an ISO-6 clean room at LNGS

#### **PDU and vPDU Testing**



Assembled PDUs will be tested in a cryogenic test facility in Naples - vPDUs will be tested in facilities at AstroCeNT, Edinburgh and Liverpool

Oscar Taborda - GSSI @ NuDM24

# WIMP signal and backgrounds

#### WIMP signal



- Nuclear recoil
- Single scattering
- Recoil energy up to 200  $keV_{nr}$

| Background source                                          | Mitigation strategy                                                                                                    |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| <sup>39</sup> Arβdecay                                     | Use underground Ar + Pulse shape<br>discrimination (PSD)                                                               |
| y from rock and y,e from materials                         | PSD<br>Selection of materials & procedures                                                                             |
| Radiogenic neutron<br>(α,n) reaction in detector materials | Material screening & selection, MC study<br>Definition of Fiducial volume in the TPC<br>Veto to reject neutron signals |
| Surface contamination due to Rn progeny                    | Surface cleaning<br>Reduce the number of surfaces<br>Installation of Rn abated system                                  |
| Muon induced background                                    | Cosmogenic veto                                                                                                        |
| Neutrino coherent scattering                               | Irreducible                                                                                                            |

## **Underground Argon**



**Urania (Extraction):** UAr extraction plant in Colorado, USA. Expansion of the argon extraction plant, to reach capacity of **330 kg/day** of UAr.

- Intrinsic <sup>39</sup>Ar radioactivity in atmospheric argon induces high rate of events preventing the scale up of dual-phase detectors
- <sup>39</sup>Ar activity sets the dark matter detection threshold at low energies (where PSD is less effective).
- <sup>39</sup>Ar activity in AAr:1 Bq/kg while for UAr: 0.73 mBq/kg. Reduction factor of ~1400 (DarkSide-50 in 2015)



#### Aria (Isotope separation):

A  $\sim$ 350m tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical (for DS-20k) and isotopic purification of UAr (not used for DS-20k). A factor 10 reduction of <sup>39</sup>Ar per pass is expected with  $\sim$ 10 kg/day.

#### DArT (assay):

A single phase low-background detector to measure the <sup>39</sup>Ar depletion factor of different UAr batches. Located in **ArDM** experiment at Canfranc lab, ~2500 m.w.e.



### **Electron Recoils and PSD**

- ERs in LAr give **slower** signals than NRs
- Distinct S1 pulse shape in LAr fast (singlet) and slow (triplet) component



Expected:

- TPC= 50 t  $\rightarrow$  36 Hz of <sup>39</sup>Ar
- Veto = 35 t  $\rightarrow$  26 Hz of <sup>39</sup>Ar

### Mitigated with pulse shape discrimination

The discrimination parameter is the **prompt fraction** defined as a ratio of detected light in an initial time interval (**90 ns** for DS-50), compared to the total signal



The **DEAP-3600** experiment has exploited the pulse shape discrimination to achieve ER background rejection of  $2.4 \times 10^8$ 

### **Neutron background**

#### Neutron background is the most dangerous:

- NR undistinguishable from potential WIMP.
- PSD is useless against neutron events.

#### **Main Neutron sources:**

- $^{238}\text{U}$  and  $^{232}\text{Th}$  contamination of the detector material release neutrons via  $(\alpha,n)$  reaction
- Cosmic ray induced neutron production



### Complete control needed over every component that goes into the detector

Material screening campaign

- Big effort engaging laboratories around the world:
  - ► CIEMAT
  - ► SNO
  - ► Jagiellonian University
  - ► Canfranc
  - ► Boulby
  - ► LNGS
- Hundreds of assays carried-out
- 3 different techniques: ICP-MS, HPGe, alpha spectrometry

## **Neutron Veto strategy**



- Neutrons are moderated in the acrylic shell and then captured mainly by Hydrogen or Argon.
- The capture emits  $\gamma$ -rays
- γ-rays interact in Argon of either the Neutron Veto or TPC.
- LAr scintillation light is wavelength shifted and detected by **480 channels (120 PDUs)**

## **Neutron background - MC simulation**

To ensure that DS-20k achieves its science goals: detailed study of the NR backgrounds in the detector and the  $\gamma$  rate is required.

- Geant4-based SaG4n code: Calculation of (α,n) neutron yields. Includes the chemical composition of the materials, uncertainties and different interaction models/tables (TALYS, JENDL/TENDL) (https://arxiv.org/pdf/2405.07952v2)
- → Geant4-based DarkSide Monte Carlo simulation toolkit (G4DS): include a full description of all the detectors belonging to the DarkSide program. Extensively validated on DS-50 data (2017 JINST 12 P10015)

Neutrons generated (in G4DS) are **tracked** in their propagation through different materials of the detector.

All the **energy deposits** are collected (primary neutrons + secondary particles).

### Three major sources of neutrons

#### Walls of LNGS experimental hall (Hall-C)

- Far from the active LAr volume, very high number of events needs to be simulated
- Subject to a biasing technique that reduces the computational resources needed to obtain a statistically significant sample

#### Cryostat

- Neutrons coming from insulating foam inside cryostat walls
- Polyurethane insulating foam is major contributor to neutrons
- Biasing technique also needed to increase sample size

#### **Inner detector (stainless-steel vessel + TPC)**

• Neutrons produced uniformly in the relevant detector volumes and with appropriate energy spectra

### **Neutron background - MC simulation**

Extensive MC simulations allow evaluation of residual backgrounds and performance of neutron veto



### **Expected high mass WIMP sensitivity DS-20k**



Sensitivity to high mass WIMPnucleon scatter cross section of  $6.3 \times 10^{-48} \text{ cm}^2$  for a  $1 \text{ TeV/c}^2$ WIMP for a total exposure of 200 tonnes x years.

Both signals (S1 scintillation and S2 ionization) used.

#### **Publication in preparation**

### **Expected low mass WIMP sensitivity DS-20k**



- $\begin{array}{c|c} DS-20k 1 & year \\ QF N_e \ge 2 \\ DS-20k 1 & year \\ QF N_e \ge 4 \\ \hline \\ DS-50 QF 2023 \\ PandaX-4T & 2023 \\ \hline \\ PandaX-4T & 2023 \\ \hline \\ PandaX-4T & 2023 \\ \hline \\ LUX & 2021 \\ \hline \\ XENON1T & 2021 \\ \hline \\ Pico-60 & 2019 \\ \end{array}$
- ---- CDMSlite 2018
- LUX 2017
- CDMS 2013
- Cogent 2013
- DAMA/LIBRA 2008
- Excluded region
- LAr Neutrino fog n=2

- Using **S2** (ionization signal) only.
- **Detailed background** study, information from DarkSide-50 data.
- Prediction for many **light DM** candidates.
- First assessment of DarkSide-20k sensitivity to low mass dark matter particles
- Further strengthens the physics reach of DarkSide-20k with a leading role below 5 GeV/c<sup>2</sup>

### **SUMMARY**

- DarkSide-20k is promoting technological breakthroughs in several directions: underground argon extraction & purification, SiPM technology, background assay campaign
- Joint global expertise in the Global Argon Dark Matter Collaboration
- Achieving very low instrumental backgrounds to the dark matter search is realistic and will allow to expand the reach beyond heavy WIMPs!
- The construction of DS-20k has started.
- Data taking will start in 2027!

### **SUMMARY**

- DarkSide-20k is promoting technological breakthroughs in several directions: underground argon extraction & purification, SiPM technology, background assay campaign
- Joint global expertise in the Global Argon Dark Matter Collaboration
- Achieving very low instrumental backgrounds to the dark matter search is realistic and will allow to expand the reach beyond heavy WIMPs!
- The construction of DS-20k has started.
- Data taking will start in 2027!

# THANK YOU FOR YOUR ATTENTION!