

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Cosmic Ray detector module with liquid scintillator

Zhimin Wang (Jun Zou, Xiangdong Sheng, Chao Hou) Institute of high energy physics, CAS, Beijing, China 2024/12/12

Motivation

• The detection of Cosmic ray muon or electromagnetic particles is one of the basic requirements of most particle experiments.

LAHHSO

Auger

DayaBay

INO site at BodiHills

Cosmic ray detectors

- Hit/trigger
- Timing
- Position/track
- S/N
- Cost
- Reliability
- Robustness
-

Gas based

Plastic scintillator (+ fiber)

Fluid based

Cloud chamber

WIS fil

holding nan

sleeve units

Liquid scintillator (+ fiber)

Crystal + camera 2D track ext only https://arxiv.org/pdf/2301.01969

Skipper CCD

Water based

Film, OPERA

2024/12/11

3

Example I: JUNO TT, plastic scintillator

Angel Abusleme et. Al. The JUNO experiment Top Tracker, NIM A, V. 1057, 2023,168680, https://doi.org/10.1016/j.nima.2023.168680.

Corner clipping µ or rock µ

(e)

Example II: TAO plastic scintillator

Li, M., Wang, ZM., Liu, CM. *et al.* Performance of compact plastic scintillator strips with wavelength shifting fibers using a photomultiplier tube or silicon photomultiplier readout. NUCL SCI TECH **34**, 31 2024/12/11 [2023]. https://doi.org/10.1007/s41365-023-01175-6 Wer VK Lu P7 at al. Design of plastic scintillators with wavelength-shifting fibers and silicon photomultiplier readouts in the top wate tracker of the UNO-TAO experiment. NU

/ LZ/ LLuo, G., Hor, Y.K., Lu, PZ. et al. Design optimization of plastic scintillators with wavelength-shifting fibers and silicon photomultiplier readouts in the top veto tracker of the JUNO-TAO experiment. NUCL SCI TECH 34, 99 (2023). https://doi.org/10.1007/s41365-023-01263-7

Example III: LAHHSO ED

LAHHSO

 \cdot 1m² sensitive area of each ED

- \cdot sensitivity to the electromagnetic components, including *e*, γ and μ .
- \cdot time resolution better than 2 ns.
- detection efficiency greater than 95%.
- $\cdot~1$ $\sim~10^4/m^2\,dynamic$ range of particle density, with charge resolution of 25% @ single particle, and 5% @ 104 particles.

 \cdot count rate <2 kHz at working gain and given threshold.

F. Aharonian et. al, Performance test of the electromagnetic particle detectors for the LHAASO experiment, NIM A, V. 1001, 2021, 165193, https://doi.org/10.1016/j.nima.2021.165193.

2024/12/11

Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector Y. P. Zhang *et al* 2017 *JINST* **12** P03015, **DOI** 10. 1088/1748-0221/12/03/P03015

Proposal

- Liquid scintillator
 - Performance similar to plastic scintillator
 - But cheaper
 - Easy to produce/model for different shapes
 - But, Difficult to seal tightly
- Wavelength shift fiber
 - For larger dimension
- PMT or SiPM
 - Sensitive to single photon, then aim to lower energy events

Pre-Design

- 1m*1m •
- Max. height: inside 12cm (liquid max. 8cm) •
- Inner: White PVC: 6mm ٠
- Outer: Al •
- 40 fibers in 1.5mm: 20 vertical, 20 horizontal •
 - Fiber to bottom 11.5mm •
 - Distance between neighbors: 40mm ٠
- Fiber support frame 13.5mm high The aperture of the optical fiber is 2.5mm, and the diameter of 1.5mm and 2mm optical fibers can be passed ٠

More details

Simulation

- LS thickness: 2cm
- 80*80cm liquid scintillator,
- 19 optical fibers in the XY direction
 - Length 2.4m, type: BCF92
- 4 PMTs

2cm thickness liquid scintillator, The QE of PMT is calculated at 20%.

Photon received by PMTs

Considering PMT's response

14

Time resolution

15

Light yield of the module

Position response

Muon with different angle

PMT testing

目前已用DT取数,后续需要修改程序,读取数据文件处理分析数据,即可出图 19

Fiber preparation

Optical fiber grinding machine: with grinding paper, polish the end face of the optical fiber that is subsequently cut;

A complete set of grinding process takes about 10min, grinding 4-5 at a time

The detector assembly

The container is shown below;

Detector assembly

The optical fiber is determined to be 2.4m, and the distance between the two ends after the optical fiber comes out is shown in the figure below

External trigger with LED

Testing with Muon in air/water

2024/12/11

Summary

- Cosmic ray detector with liquid scintillator + WLS fiber proposed
- Simulation shows good performance
- A prototype designed and assembled firstly
- Pre-testing shows good with the structure
 - In air or in water
- More testing with LS is going on

شكر الك , 谢谢 Thanks for your attention!!