Dark Matter Interactions in White Dwarfs: A Multi-Energy Approach to Capture Mechanisms

J. Hoefken Zink, S. Hor, and M. E. Ramirez-Quezada. arXiv: 2410.13908 [hep-ph]

Shihwen Hor

December 12, 2024,

The University of Tokyo At International Conference on Neutrinos and Dark Matter 2024, Cairo

DM Interactions in White Dwarfs

Shihwen Hor (UTokyo)

* 1. Introduction

Boosted dark matter capture

* 3. Dark matter scattering-cross sections

* 4. Results: cross sections and capture rates

✤ 5. Summary

Shihwen Hor (UTokyo)

Outlines

1. Introduction

Shihwen Hor (UTokyo)

Dark matter detection

[The LUX-ZEPLIN Collaboration, arXiv: 2410.17036 [hep-ex]]

DM Interactions in White Dwarfs

Shihwen Hor (UTokyo)

White dwarfs

- White dwarfs: final state of massive stars (below) $M_{\star} \sim 8M_{\odot} - 10M_{\odot}$) after collapsing gravitationally
- * Composed of carbon (C) and oxygen (O) and possesses an atmosphere either H or He dominated
- * No fusion: the only support against gravitational collapse is the electron degeneracy pressure
- DM-nucleon scattering can probe the sub-GeV regime (beyond the reach of the direct detection)

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Dark matter capture by compact stars

an observable signal

Compact Stars

Nucleons & leptons

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Heating of compact objects: DM can accumulate in the core of compact stars, heat them up and hence generate

DM accumulates in the core

DM annihilates to SM particles: Injected heat

White dwarfs capture rate

Assuming DM capture and annihilation are in equilibrium, the star

* The WD observed luminosity $L_{\gamma} \ge L_{\gamma}$

[N. Bell, G. Busoni, S. Robles, M. E. Ramirez-Quezada, M. Virgato JCAP 10 (2021), 083]

Shihwen Hor (UTokyo)

luminosity due to DM is $L_{\gamma} = m_{\gamma} C(m_{\gamma})$ ($C(m_{\gamma})$: capture rate)

Boosted DM

- * Local DM: low DM density -> challenging
- DM candidates in direct detection experiments
 - neutrino background
 - Relativistic
- * A multi-energy approach to the WD capture
 - * A flux with a particular energy

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

[J. W. Wang, A. Graneli, and P. Ulio. Phys. Rev. Lett. 128 (2022) 221104.] Boosted DM (high-density flux): improve the bounds for light

Boosting source: blazars, cosmic rays, diffuse supernova

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

2. Boosted DM Capture

Capture rate and density

* Capture rate
$$C = \frac{\rho_{\chi}}{m_{\chi}} \int_0^{R^*} dr 4\pi r^2 \int_0^{\infty} du_{\chi} \frac{\omega}{u_{\chi}} f_{\text{MB}}(u_{\chi}) \Omega^-(\omega) , \qquad \Omega^-(\omega) = \frac{4}{\sqrt{\pi}} \int_0^{v_e} dv \frac{d\sigma}{dv} \omega^2 n_T(r) .$$

- Multi-energy approach: cross section (different energy regimes) & flux
- * DM flux: We assume delta function of a particular energy from all directions
 - * Capture rate density (DM density as a free parameter): $\mathscr{C} = \rho_{\chi}^{-1} C$

*
$$\mathscr{C} = \frac{1}{m_{\chi}} \int_0^{R^*} dr 4\pi r^2 \int_0^{\infty} du'_{\chi} \frac{\omega}{u'_{\chi}} \delta(u'_{\chi} - u_{\chi}) \Omega^-(\omega).$$

* Geometric / Optically thick limit (maximum capture probability $\Omega^{-}(\omega) \to 1$): $\mathscr{C}_{\text{geom}} = \frac{\pi R_{\star}^2}{m_{\chi}} \int_{0}^{\infty} du'_{\chi} \frac{\omega}{u'_{\chi}} \delta(u'_{\chi} - u_{\chi}).$

Shihwen Hor (UTokyo)

3. DM Scattering-Cross Sections

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

- *
 - A vectorial, a scalar, and neutrino portal
 - A new U(1)X symmetry: spontaneously broken
 - Fermionic DM interactions with SM fields through a vector or a scalar interaction
 - * A dark photon Z': additional broken gauge boson
 - * A complex singlet Φ : charged under U(1)X, acquires a VEV
- The Lagrangian we consider
 - * $\mathscr{L}_{Z'} = -\epsilon e Q_{\rm EM} J^{\mu}_{\rm EM} Z'_{\mu} + g_D \overline{\chi} \gamma^{\mu} (g^{\chi}_V g^{\chi}_A \gamma^5) \chi Z'_{\mu}$,

*
$$\mathscr{L}_{\Phi} = g_{\Phi}^{ij} \overline{\psi}_{SM}^{i} \psi_{SM}^{j} \Phi + g_D \overline{\chi} \chi \Phi$$
.

Shihwen Hor (UTokyo)

DM model

Inspired by Three-Portal Model [P. Ballett, M. Hostert, and S. Pascoli. Phys. Rev. D 101 (2020) 115025.]

Deep inelastic scattering

- * DM: high incoming-energy beyond the mass of the nucleons
- Deep inelastic scattering (DIS)
 - * The valence quarks and the sea quarks become visible
 - Partons: carry a fraction of the total momentum of the nucleon
 - * A hadronic shower

* $\chi q \to \chi X$

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Resonant scattering

* An inelastic interaction with a nucleon that produces a resonance that further decays into a nucleon and a pion

*
$$\chi + N \rightarrow \chi + N^* \rightarrow \chi + N + \pi$$
.

Neutral mediators (dark photon or scalar) have four possible channels:

*
$$\chi + p \rightarrow \chi + p + \pi^{0}$$
,
* $\chi + p \rightarrow \chi + n + \pi^{+}$,
* $\chi + n \rightarrow \chi + n + \pi^{0}$,
* $\chi + n \rightarrow \chi + p + \pi^{-}$.

Shihwen Hor (UTokyo)

 $\chi(p_3)$ $\chi(p_1)$ $Z'/\Phi(q)$ $N^{*}(p_{4})$ $N(k_1)$ $N(p_2)$ $\pi(k_2)$

[D. Rein and L. M. Sehgal. Annals Phys. 133, 79 (1981).] [C. Berger and L. M. Sehgal, Phys. Rev. D 76, 113004 (2007).] [K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, Mod. Phys. Lett. A 19, 2815 (2004).]

DM Interactions in White Dwarfs

Elastic scattering on nucleons and nuclei

- ***** Elastic interactions with nucleons
 - The DM incoming-energies are lower than those required for DIS

Form factor approach

- Elastic interactions with nuclei
 - Low-energy regime
 - Fermi-Symmetrized Woods-Saxon (FS-WS) form factor

A comprehensive treatment of 15 types of nonrelativistic (NR) operators [R. Catena and B. Schwabe, JCAP 04, 042 (2015).]

Shihwen Hor (UTokyo)

[J. D. Walecka, Vol. 16 (Cambridge University Press, 2001)]

[M. Grypeos, G. Lalazissis, S. Massen, and C. Panos, Journal of Physics G: Nuclear and Particle Physics 17, 1093 (1991).]

DM Interactions in White Dwarfs

4. Results: Cross Sections and Capture Rates

Shihwen Hor (UTokyo)

High-energy regime

- Resonant scattering dominates for lighter mediators
- * DIS dominates for heavier mediators
- Low-energy regime
 - Nuclei FS-WS or nuclei NR dominates
 - Cross sections do not depend on the kinetic energy on the limit $T_{\gamma} \rightarrow 0$

White dwarf: $M_* = M_{\odot}$, $R_* = 5.7 \times 10^3 km$ $\epsilon = 10^{-5}, \ g_{N\Phi} = 10^{-5}, \ g_D = 0.1, \ g_q^S = 1$

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Scalar cross sections

High-energy regime

* Dominated by DIS

- Suppressed by several orders of magnitude compared to nucleons and nuclei
- * Nucleon: square of the total energy of the DM (E_1) and the nucleon (E_2) in the denominator

$$\frac{d\sigma^{N}}{dz} = \frac{g_{D}^{2}g_{\Phi N}^{2}}{8\pi m_{N}^{2} \left(E_{1} + E_{2}\right)^{2}} \frac{\left(E_{1}^{2} + m_{\chi}^{2} - p_{1}^{2}z\right)\left(p_{1}^{2}(1+z) + 2m_{N}^{2}\right)\left(2F_{1}^{S} + \frac{1}{2}e_{1}^{2}\right)}{\left(2p_{1}^{2}(1-z) + m_{\Phi}^{2}\right)^{2}}$$

Low-energy regime: nuclei

White dwarf: $M_* = M_{\odot}$, $R_* = 5.7 \times 10^3 km$ $\epsilon = 10^{-5}$, $g_{N\Phi} = 10^{-5}$, $g_D = 0.1$, $g_q^S = 1$

Shihwen Hor (UTokyo)

Vector DM capture rate density

Nucleons

Nuclei

Geometric limit Resonances DIS

DM Interactions in White Dwarfs

Scalar DM capture rate density

Shihwen Hor (UTokyo)

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

5. Summary

Summary

- DM captured in WDs across a full energy regime *
 - Flux: a delta function of a specific energy
 - * Interaction: DIS, resonance scattering, elastic scattering on nucleons, elastic scattering on nuclei
- * Fermionic DM interacting with stellar matter through a dark photon or a dark scalar
- Results: cross section & capture rate densities
 - * Vector mediator: DIS and resonant interactions can also mediate the capture of DM for high energy incoming particles (a gap in energies $T_{\gamma} \sim \mathcal{O}(10^{-4} - 10^{-1}) \,\text{GeV}$)
 - * Scalar mediator: capture of high energy incoming particle is very suppressed and possible for only DIS.

Shihwen Hor (UTokyo)

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Backup Slides

Three Portal Model

$$\begin{split} \mathscr{L} \supset \left(D_{\mu}\Phi\right)^{\dagger} \left(D^{\mu}\Phi\right) - V(\Phi,H) \\ &- \frac{1}{4} X^{\mu\nu} X_{\mu\nu} + \overline{N} i \partial \!\!\!/ N + \overline{\nu_D} i D \!\!\!/ \nu_D \\ &- \left[y_{\nu}^{\alpha} (\overline{L_{\alpha}} \cdot \widetilde{H}) N^c + \frac{\mu'}{2} \overline{N} N^c + y_N \overline{N} \nu_D^c \Phi + \text{h.c.}\right], \end{split}$$

Shihwen Hor (UTokyo)

DM Interactions in White Dwarfs

Nucleon Form Factors

$$\mathcal{M}_{N} = i \frac{g_{D} g_{\text{Had}}}{q^{2} - m_{Z'}^{2}} [\overline{u}(p_{3})\gamma^{\mu}(g_{V}^{\chi} - g_{A}^{\chi}\gamma^{5})u(p_{1})] \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{m_{Z'}^{2}}\right) \langle N(p_{4})|j_{Z'Q}^{\nu}(0)|N(p_{2})\rangle$$

$$\begin{split} j_{Z'Q}^{\nu} &= \sum_{q} g_{V}^{q} \overline{q} \gamma^{\nu} q - \sum_{q} g_{A}^{q} \overline{q} \gamma^{\nu} \gamma^{5} q. \\ j_{Z'Q}^{\nu} &\equiv v_{Z'Q}^{\nu} - a_{Z'Q}^{\nu}, \end{split}$$

$$\begin{split} v_{Z'Q}^{\nu} &= -2(g_V^u + 2g_V^d) v_3^{\nu} + 3(g_V^u + g_V^d) j_{AQ}^{\nu} + (g_V^u + g_V^d + g_V^s) v_s^{\nu} - [g_V^s \bar{b} \gamma^{\nu} b + (3g_V^u + 3g_V^d + g_V^s) (\bar{c} \gamma^{\nu} c + \bar{t} \gamma^{\nu} t) \\ a_{Z'Q}^{\nu} &= (g_A^u - g_A^d) a_3^{\nu} + (g_A^u + g_A^d) a_0^{\nu} + g_A^s a_s^{\nu} - \sum_{q=c,b,t} (g_A^s - g_A^q) \bar{q} \gamma^{\nu} \gamma^5 q. \\ \langle N(p_4) | v_{Z'Q}^{\mu}(0) | N(p_2) \rangle &= \bar{u}_N(p_4) \left[\gamma^{\mu} F_1^{Z'N}(Q^2) + i \frac{q_{\nu}}{2m_N} \sigma^{\mu\nu} F_2^{Z'N}(Q^2) \right] u_N(p_2), \\ \langle N(p_4) | a_{Z'Q}^{\mu}(0) | N(p_2) \rangle &= \bar{u}_N(p_4) \left[\gamma^{\mu} \gamma^5 G_A^{Z'N}(Q^2) + \frac{q_{\mu}}{m_N} \gamma^5 G_P^{Z'N}(Q^2) \right] u_N(p_2). \\ F_i^{Z'N} &\simeq \mp (g_V^u + 2g_V^d) (F_i^p - F_i^n) + 3(g_V^u + g_V^d) F_i^N + (g_V^u + g_V^d + g_V^s) F_i^{sN} \\ G_k^{Z'N} &\simeq \pm \frac{1}{2} (g_A^u - g_A^d) G_k + (g_A^u + g_A^d) G_k^{0N} + g_A^s G_k^{sN}, \end{split}$$

$$\begin{split} p_{Z'Q}^{\nu} &= -2(g_V^u + 2g_V^d)v_3^{\nu} + 3(g_V^u + g_V^d)j_{AQ}^{\nu} + (g_V^u + g_V^d + g_V^s)v_s^{\nu} - [g_V^s \bar{b}\gamma^{\nu}b + (3g_V^u + 3g_V^d + g_V^s)(\bar{c}\gamma^{\nu}c + \bar{t}\gamma^{\nu}t)] \\ p_{Z'Q}^{\nu} &= (g_A^u - g_A^d)a_3^{\nu} + (g_A^u + g_A^d)a_0^{\nu} + g_A^s a_s^{\nu} - \sum_{q=c,b,t} (g_A^s - g_A^q)\bar{q}\gamma^{\nu}\gamma^5 q. \\ p_{Q}(0) |N(p_2)\rangle &= \bar{u}_N(p_4) \left[\gamma^{\mu}F_1^{Z'N}(Q^2) + i\frac{q_{\nu}}{2m_N}\sigma^{\mu\nu}F_2^{Z'N}(Q^2)\right]u_N(p_2), \\ p_{Q}(0) |N(p_2)\rangle &= \bar{u}_N(p_4) \left[\gamma^{\mu}\gamma^5 G_A^{Z'N}(Q^2) + \frac{q_{\mu}}{m_N}\gamma^5 G_P^{Z'N}(Q^2)\right]u_N(p_2). \\ F_i^{Z'N} &\simeq \mp (g_V^u + 2g_V^d)(F_i^p - F_i^n) + 3(g_V^u + g_V^d)F_i^N + (g_V^u + g_V^d + g_V^s)F_i^{sN} \\ G_k^{Z'N} &\simeq \pm \frac{1}{2}(g_A^u - g_A^d)G_k + (g_A^u + g_A^d)G_k^{0N} + g_A^s G_k^{sN}, \end{split}$$

DM Interactions in White Dwarfs

Shihwen Hor (UTokyo)

Nuclei NR operators

$$\left\langle \Psi_f \right| H_T \left| \Psi_i \right\rangle = (2\pi)^3 \delta$$

$$\frac{1}{N_i} \sum_{i,j} |\mathcal{M}_T^{NR}|^2 = \frac{m_T^2}{m_N^2} \sum_{i,j}^{15} \sum_{\alpha,\beta=0,1} c_i^{\alpha} c_j^{\beta} F_{ij}^{\alpha\beta} (v^2 + v^2)$$

$$\begin{split} \hat{\mathcal{O}}_{1} &= \mathbb{1}_{\chi N} \\ \hat{\mathcal{O}}_{3} &= i \hat{\mathbf{S}}_{N} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{4} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} \\ \hat{\mathcal{O}}_{5} &= i \hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{6} &= \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{7} &= \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} \\ \hat{\mathcal{O}}_{8} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \end{split}$$

DM Interactions in White Dwarfs

Shihwen Hor (UTokyo)

 $\delta^{(3)}(ec{p_1}+ec{p_2}-ec{p_3}-ec{p_4})i\mathcal{M}_T^{NR}.$ $\mathcal{H}_T(\vec{r}) = \sum^A \sum^{15} \sum^{15} c^j_k \mathcal{O}^{(i)}_k(\vec{r}) t^j(i),$ $i=1 \ j=0,1 \ k=1$ $({}^2,q^2,y). \qquad rac{d\sigma_T^{NR}}{d\cos heta} = rac{1}{32\pi(m_\chi+m_T)^2}rac{1}{N_i}\sum_{i,j}\left|{\cal M}_T^{NR}
ight|^2.$

$$\begin{split} \hat{\mathcal{O}}_{9} &= i \mathbf{\hat{S}}_{\chi} \cdot \left(\mathbf{\hat{S}}_{N} \times \frac{\mathbf{\hat{q}}}{m_{N}} \right) \\ \hat{\mathcal{O}}_{10} &= i \mathbf{\hat{S}}_{N} \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{11} &= i \mathbf{\hat{S}}_{\chi} \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{12} &= \mathbf{\hat{S}}_{\chi} \cdot \left(\mathbf{\hat{S}}_{N} \times \mathbf{\hat{v}}^{\perp} \right) \\ \hat{\mathcal{O}}_{13} &= i \left(\mathbf{\hat{S}}_{\chi} \cdot \mathbf{\hat{v}}^{\perp} \right) \left(\mathbf{\hat{S}}_{N} \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \right) \\ \hat{\mathcal{O}}_{14} &= i \left(\mathbf{\hat{S}}_{\chi} \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \right) \left(\mathbf{\hat{S}}_{N} \cdot \mathbf{\hat{v}}^{\perp} \right) \\ \hat{\mathcal{O}}_{15} &= - \left(\mathbf{\hat{S}}_{\chi} \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \right) \left[\left(\mathbf{\hat{S}}_{N} \times \mathbf{\hat{v}}^{\perp} \right) \cdot \frac{\mathbf{\hat{q}}}{m_{N}} \right] \end{split}$$

Fermi-Symmetrized Woods-Saxon Form Factors

$$\frac{d\sigma^{N}}{dQ^{2}} = \frac{\sigma_{0}E_{\chi}^{2}}{4\mu_{N}(E_{\chi}^{2} - m_{\chi}^{2})}F_{H}^{2}(F_{\chi}^{2})$$

$$F^{FS-WS}(Q) = \frac{3\pi a}{r_0^2 + \pi^2 a^2} \frac{a\pi \coth(\pi Qa)\sin(Qr_0) - r_0\cos(Qr_0)}{Qr_0\sinh(\pi Qa)},$$

Shihwen Hor (UTokyo)

 $(Q^2),$

 $s \simeq 0.9$ fm, $a \simeq 0.523$ fm and $c \simeq 1.23 A^{1/3} - 0.60$ fm, for an atomic mass number A.

DM Interactions in White Dwarfs

