

Co-funded by the European Union

Matter-antimatter asymmetry study using the European Spallation Source neutrino SuperBeam

Marcos Dracos IPHC-Strasbourg

Cairo, 14/12/2024

Cairo, 14/12/2024

ESS proton linac

- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10¹⁵ protons).
- Duty cycle 4%.
- 2.0 GeV protons
 - up to 3.5 GeV with linac upgrades
- >2.7x10²³ p.o.t/year.

First protons on the target by 2025

Oscillation probability

(neutrino beams)

$$\begin{split} P_{\nu_{\mu} \rightarrow \nu_{e}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})} &\simeq 4s_{23}^{2}s_{13}^{2} \frac{1}{(1-r_{A})^{2}} \sin^{2}\frac{(1-r_{A})\Delta L}{2} \quad \text{"atmospheric"} \\ &+ 8J_{r} \frac{r_{\Delta}}{r_{A}(1-r_{A})} \cos\left(\overline{\delta_{CP}} - \frac{\Delta L}{2}\right) \sin\frac{r_{A}\Delta L}{2} \sin\frac{(1-r_{A})\Delta L}{2} \quad \text{"interference"} \\ &+ 4c_{23}^{2}c_{12}^{2}s_{12}^{2}\left(\frac{r_{\Delta}}{r_{A}}\right)^{2} \sin^{2}\frac{r_{A}\Delta L}{2} \quad \text{"solar"} \\ J_{r} &= c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta = \frac{\Delta m_{31}^{2}}{2E_{\nu}}, r_{A} = \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a \neq 2\sqrt{2}G_{F}N_{e}E_{\nu} \\ & \text{matter effect} \end{split}$$

- for antimatter: $\delta_{CP} \rightarrow -\delta_{CP}$ and $a \rightarrow -a$
- fake matter/antimatter asymetry due to matter effect $P_{v_{\mu} \to v_{e}} P_{\bar{v}_{\mu} \to \bar{v}_{e}} + P_{\bar{v}_{\mu} \to \bar{v}_{e}} + P_{\bar{v}_{\mu} \to \bar{v}_{e}} + \frac{\delta_{CP}}{\log baselines}$ δ_{CP} dependence, sizable matter effect for long baselines

δ_{CP} and Matter-antimatter asymmetry magnitude

$$A_{\alpha\beta}^{CP} = P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$
$$= J_{CP}^{PMNS} \cdot \sin\delta_{CP}$$

with: $J_{CP}^{PMNS} \sim 3 \times 10^{-3}$ (Jarlskog invariant)

(for hadrons: $J_{CP}^{CKM} \sim 3 \times 10^{-5}$, not enough even if $\delta_{CP} \sim 70^{\circ}$)

(from the already observed CP violation in the hadronic sector)

Theoretical models predict that if $|\sin\delta_{CP}| \ge 0.7$ (45°< δ_{CP} <135° or 225°< δ_{CP} <315°), this could be enough to explain the observed asymmetry.

(Nucl.Phys.B774:1-52,2007, arXiv:hep-ph/0611338)

Neutrino Oscillation probability

- 1st oscillation max.: $A=0.3\sin\delta_{CP}$
- 2^{nd} oscillation max.: A=0.75 sin δ_{CP}

more sensitivity at 2nd oscillation max. (arXiv:1310.5992, arXiv:0710.0554)

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- >2.7x10²³ protons/year
 - almost pure v_{μ} beam
 - small v_e contamination which could be used to measure v_e cross-sections in a near detector

at 100 km from the target, per year (in absence of oscillations)

Cairo, 14/12/2024

Can we go to the 2nd oscillation maximum using our proton beam?

Yes, if we place our far detector at 350- 550 km from the neutrino source.

Megaton Water Cherenkov detector

- Neutrino Oscillations
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN \boldsymbol{v}
- Supernovae "relics"
- Solar Neutrinos
- Atmospheric Neutrinos
 - 500 kt fiducial volume (~20xSuperK)
 - Readout: ~20" PMTs
 - 30% optical coverage

below v_{τ} production, almost only QE events, not suffering too much by π^0 background

ESS modifications to produce a neutrino Super

Beam

Allona Spallation Source Linae

Cairo, 14/12

How to add to ESS a neutrino

facility?

Brilliance

ESS NEUTRON PULSE

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H⁻ source (instead of protons),
 - space charge problems to be solved.
- ~300 MeV neutrinos.
- Target station.
- Underground detector.
- Short pulses (~µs) will also allow DAR and coherent scattering experiments (as those proposed for SNS) using the neutron target.

time (ms)

Which baseline?

- ~60% δ_{CP} coverage at 5 σ C.L.
- >75% δ_{CP} coverage at 3 σ C.L.
- systematic errors: 5%/10% (signal/backg.)

Selected mine: Zinkgruvan

possible location of the detector

ESSvSB at the European level

A H2020 EU Design Study (Call INFRADEV-01-2017)

LBNO (2010-

2014)

COST Action

CA15139 (2015-2019)

(2008 - 2012)

ESSvSB

ISS (2005-

2007)

BENE (2004-

(2008-2010)

- **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
- Duration: 4 years
- Total cost: 4.7 M€
- Requested budget: 3 M€
- 15 participating institutes from
 11 European countries including CERN and ESS
- 6 Work Packages

Cairo, 14/12/2024

Cairo, 14/12/2024

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

Detectors

Cairo, 14/12/2024

After many Optimisations

- New Magriation Matrices for the far detector ٠
- Genetic Algorithm for Target Station optimisation ٠

Cairo, 14/12/2024

Final results

_=540 km

360

120

60

180

Comparison with current projects

δ_{CP} and model predictions

Test of flavour symmetry models: Typically, the models considered have a reduced number of parameters, leading to relations between the masses and/or mixing angles.

Examples are the so-called **sumrules**, e.g.:

$$\sin \theta_{23} - \frac{1}{\sqrt{2}} = \sin \theta_{13} \cos \delta$$
$$\cos \delta = \frac{t_{23}s_{12}^2 + s_{13}^2c_{12}^2/t_{23} - s_{12}^{\nu 2}(t_{23} + s_{13}^2/t_{23})}{\sin 2\theta_{12}s_{13}}$$

Figure 3: Posterior probability density functions for $\cos \delta$ for each of the solar sum rules considered in Section 3.1. The patterned regions are unphysical, which shows that the BM and GR3 sum rules could only be consistent with the known data if there is a significant deviation from the current best-fit values.

https://arxiv.org/abs/1410.8056

Figure 13: The same as in Fig. 12, but using the prospective 1σ uncertainties in the determination of the neutrino mixing angles within the Gaussian approximation (see text for further details). In the left (right) panel $\sin^2 \theta_{12} = 0.308$ (0.332), the other mixing angles being fixed to their NO best fit values.

Final ESSvSB facility configuration

Conceptual Design Report Cairo, 14/12/2024

Supporting institutions of ESSvSB

- COST Action EuroNuNet (CA15139): ended March 2020
 - https://euronunet.in2p3.fr
 - video for scientists: https://www.youtube.com/watch?v=PwzNzLQh-Dw
- EU-H2020 Design Study ESSvSB: 2018-2022
 - https://essnusb.eu
 - video for general public: https://www.youtube.com/watch?v=qAnvft0nAlg
- EU-Horizon Europe Design Study ESSvSB+: 2023-2026

ongoing

Cairo, 14/12/2024

SSnuSB Design Stu.

ESSnuSB Design Study Project

Muons at the level of the beam dump

more than $4 \times 10^{20} \mu$ /year from ESS compared to $10^{14} \mu$ used by all experiments up to now ($10^{18} \mu$ for COMET in the future).

- input beam for future 6D μ cooling experiments,
- low energy nuSTORM,
- Neutrino Factory,
- Muon Collider.

ESSvSB and (R&D) synergies

Cairo, 14/12/2024

Further proposed studies

(mainly cross-section measurements)

Cross-section measurements with:

- Low Energy nuSTORM: $\pi \rightarrow \mu \rightarrow e + \nu_{\mu} + \nu_{e}$
- Low Energy ENUBET: $\pi \rightarrow \mu + \nu_{\mu}$

Cairo, 14/12/2024

ESS Neutrino Super Beam Plus

- Design of a racetrack storage ring for low energy muons produced with a beam from the ESS linac.
- Design a transfer system from the initial collection and extraction of pions behind the target station, up to the injection point.
- 3. Design a **transfer line** from the ESSvSB ring-to-switchyard transfer line to the **nuSTORM target**.
- 4. Design an **injection scheme** for the racetrack storage ring
- 5. Design a **Monitored Neutrino Beam** (low energy ENUBET)
- 6. Optimize the performance of the ESSvSB accelerator complex

(Horizon Europe)

Participant no.	Participant organisation name	Part. short name	Country
1 (Coordinator)	Centre National de la Recherche Scientifique	CNRS	France
2	Université de Strasbourg	UNISTRA ¹	France
3	Rudjer Boskovic Institute	RBI	Croatia
4	Tokai National Higher Education and Research System, National University Corporation	NU ²	Japan
5	Uppsala Universitet	UU	Sweden
6	Lunds Universitet	ULUND	Sweden
7	European Spallation Source ERIC	ESS	Sweden
8	Kungliga Tekniska Hoegskolan	КТН	Sweden
9	Universitaet Hamburg	UHH	Germany
10	University of Cukurova	CU	Turkey
11	National Center for Scientific Research "Demokritos"	NCSRD	Greece
12	Aristotelio Panepistimio Thessalonikis	AUTH ¹	Greece
13	Sofia University St. Kliment Ohridski	UniSofia	Bulgaria
14	Lulea Tekniska Universitet	LTU	Sweden
15	European Organisation for Nuclear Research	CERN	IEIO ³
16	Universita degli Studi Roma Tre	UNIROMA3	Italy
17	Universita degli Istudi di Milano-Bicocca	UNIMIB	Italy
18	Istituto Nazionale di Fisica Nucleare	INFN	Italy
19	Universita degli Istudi di Padova	UNIPD ¹	Italy
20	Consorcio para la construccion, equipamiento y explotacion de la sede espanola de la fuente Europea de neutrones por espalacion	ESSB	Spain

1 Affiliated Partner

^[2] Associated Institute

[3] International European Interest Organisation

Research and Innovation actions

Innovation actions

Design Study HORIZON-INFRA-2022-DEV-01

Title of Proposal: Study of the use of the ESS facility to accurately measure the neutrino crosssections for ESSvSB leptonic CP violation measurements and to perform sterile neutrino searches and astroparticle physics.

Acronym of Proposal: ESSvSB+

July 2022

Dear Applicant,

I am writing in connection with your proposal for the above-mentioned call.

Having completed the evaluation, we are pleased to inform you that your proposal has passed this phase and that we would now like to start grant preparation.

Please find enclosed the evaluation summary report (ESR) for your proposal.

Invitation to grant preparation

Cairo, 14/12/2024

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

• 3 M€
• 4 years (2023-2026)

2nd ESSvSB+ annual meeting (Hamburg Uni, Sep. 2024)

Cairo, 14/12/2024

ESSvSB+WP

Stage 3 ESSnuSB CPV LBL

- H⁻ source, and transfer line to accumulator
- Accumulator ring, 5MW target station, horn for pion capture
- Decay tunnel, beam to END at 290 m from target and FD

Cairo, 14/12/2024

Possible ESSvSB schedule

(2nd generation neutrino Super Beam)

- The ESS proton linac will be soon the most powerful linac in the world.
- ESS can also become a neutrino facility (ESSvSB) with enough protons to go to the 2nd oscillation maximum and increase significantly the CPV sensitivity and make precise measurement of δ_{CP} .
- CPV: 5 σ could be reached over 70% of δ_{CP} range by ESSvSB with large physics potential with less than 8° precision.
- The European Spallation Source (for neutron) will start by 2025, upgrade decisions by this moment.
- Conceptual Design Report published including costing on arXiv.
- Rich muon program for future ESS upgrades.
- New studies for intermediate stages are under way.

Backup

ESS ESS SvSB sensitivity to constrain new physics

Performance versus time

Design Study ESSvSB (2018-2022)

H2020-INFRADEV-2017-	
----------------------	--

Call: Funding scheme: Proposal number: Proposal acronym: Duration (months):

RIA 777419 ESSnuSB

Maximum grant amount (proposed amount, after evaluation): 2,999,018.00 EUR

48

Feasibility Study for employing the uniquely powerful ESS linear accelerator to generate an intense neutrino beam for leptonic CP violation discovery and measurement. **INFRADEV-01-2017**

Activity:

Proposal title:

N.	Proposer name	Country
1	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS	FF
2	UPPSALA UNIVERSITET	SE
3	KUNGLIGA TEKNISKA HOEGSKOLAN	SE
4	EUROPEAN SPALLATION SOURCE ERIC	SE
5	UNIVERSITY OF CUKUROVA	TF
6	UNIVERSIDAD AUTONOMA DE MADRID	ES
7	NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS"	EL
8	ISTITUTO NAZIONALE DI FISICA NUCLEARE	П
9	RUDER BOSKOVIC INSTITUTE	HF
10	SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI	BG
11	LUNDS UNIVERSITET	SE
12	AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA	DI
	STASZICA W KRAKOWIE	PL
13	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	CH
14	UNIVERSITE DE GENEVE	CH
15	UNIVERSITY OF DURHAM	UK
	Total:	

partners: IHEP, BNL, SCK•CEN, SNS, PSI, RAL, NU

now finished end of March 2022

More information on: http://essnusb.eu/

Physics Performance

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

Physics Performance

