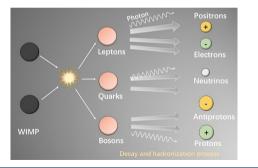
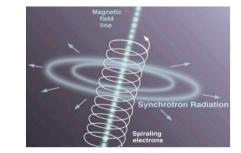


Unveiling Dark Matter in Reticulum II Using MeerKAT

Shibre Semane, Dr Geoff Beck and Dr Sphesihle Makhathini

University of the Witwatersrand (Wits)


December 13, 2024


NuDM-2024

Indirect Detection in Radio

$\mathsf{WIMPs} \to \mathsf{Standard} \ \mathsf{Model} \ \mathsf{Particles} \to \mathsf{Synchrotron} \ \mathsf{Emission}$

NuDM-2024

Diffusion and Energy Losses

$$\frac{\partial}{\partial t}\frac{dn_e}{dE} = \underbrace{\nabla \cdot \left(D(E,r)\nabla \frac{dn_e}{dE} \right)}_{\text{Diffusion term}} + \underbrace{\frac{\partial}{\partial E} \left(b(E,r,z)\frac{dn_e}{dE} \right)}_{\text{Energy loss term}} + \underbrace{\frac{Q(E,r)}{Source term}}_{\text{Source term}}$$

where

$$b(E,r,z) = b_{\mathsf{sync}} + b_{\mathsf{IC}} + b_{\mathsf{brem}} + b_{\mathsf{coul}}$$

with the synchrotron loss term approximated as

$$b_{\rm sync} \approx 0.0254 \, \left(\frac{E}{1\,{\rm GeV}}\right)^2 \, \left(\frac{B(r)}{1\,\mu{\rm G}}\right)^2 \,$$

And

$$Q(E,r) = rac{\langle \sigma v
angle
ho_{\chi}^2(r)}{2m_{\chi}^2} rac{dN}{dE}$$

Where: $\langle \sigma v \rangle$ is the dark matter particle annihilation cross-section, m_{χ} is the mass of the dark matter particle, $\rho_{\chi}(r)$ is the dark matter density and dN/dE is the energy spectrum of the electrons and positrons produced by the annihilations

- DarkMatters tool was used. Developed by Dr Michael Sarkis and Dr Geoff Beck [arXiv:2408.07053]
- Key Parameters
 - Dark matter properties
 - Density profile
 - Annihilation cross section
 - WIMP mass
 - Environments
 - Magnetic field
 - \circ Diffusion
 - Energy loss
- * Output \rightarrow Radio Flux

Radio Regime for Indirect Search

Advantages

- Can probe lower dark matter masses
- Complements other wavelength searches
- Excellent sensitivity for diffuse emission
 - Potential dark matter signal
- · These requires
 - Large collecting area
 - Ability to detect faint, diffuse emission
 - Good resolution
 - Solution: Interferometry

- A network of antennas working together to function as one large telescope
- Pair of antennas in the array creates a baseline
 - Resulting in
 - $\circ\;$ Short and Long baselines; based on the distance between the antennas

Short vs Long Baselines

- Short baselines
 - Better sensitivity to diffuse emission
 - Important for detecting faint, extended signals
- Long baselines
 - Better angular resolution
 - Important for resolving fine structure
- · Combination provides complete picture
 - Sensitive to both diffuse emission and fine details
 - Crucial for dark matter searches

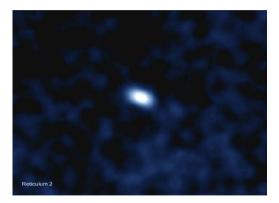
The MeerKAT Radio Telescope Array

- A radio interferometer of 64 dishes and precursor to the SKA
- Built in South Africa, Northern Cape
- Operated by the South African Radio Astronomy Observatory (SARAO)

Figure: MeerKAT

Astronomical Targets

- Dwarf Spheroidal galaxies (dSphs)
 - One of the best targets for indirect dark matter searches: Dark matter-dominated objects
 - Clean environments
 - Less astrophysical background


dSphs of the Local Group

- Newly being discovered and nearby
- No recent/ongoing star formation
- Very high M/L ratio
- High and known J factor

Our target: Reticulum II ; a Milky Way Satellite

- Very high dark matter-dominated object with M/L ratio of \sim 500
- distance of 30 kpc
- Well below the galactic plane

Figure: Discovered by DES (2015)

MeerKAT Observation of Reticulum II

- Observed for 8 hours
- In UHF Band [544 to 1088 MHz]

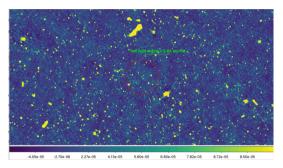
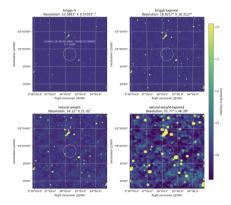


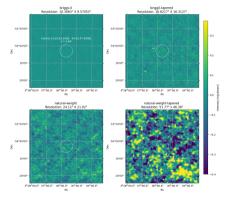
Figure: Reticulum II: From MeerKAT

Data Reduction: Imaging and Calibration

Cross Calibration

- The process of calibrating the calibrators to apply the solutions to the target
- Calibrators are sources of known flux and spectra
- CARACAI pipeline (https://github.com/caracal-pipeline)




Imaging and self-calibration

- Imaging the calibrated target
- Iterative self-calibration using the initial image
- WSClean (arXiv:1407.1943) and Quartical (https://github.com/ratt-ru/QuartiCal) were used
- Bright Sources Subtraction
 - pybdsf (https://github.com/lofar-astron/PyBDSF)

Reticulum II for different weights and taper

Figure: Residudals

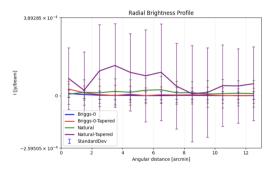
Figure: Before source subtraction

NuDM-2024

Why weight and taper?

- Weight
 - Trade-off between sensitivity and resolution

- Taper
 - de-imphasizing longer baselines \rightarrow prioritizing sensitivity to diffuse faint emission over resolution



Signal Analysis

- Steps:
 - Radial brightness profiles
 - Calculated mean brightness in concentric annuli
 - From center outwards
 - Statistical analysis (chi-square)

Radial Brightness Profiles

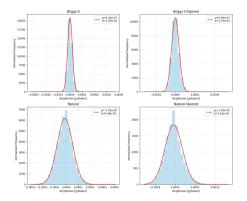


Figure: Histogram: Residuals

- A residual consistent with noise
- No signal that stands out above the noise
- We can calculate the upper limits since we see no dark matter signal
- We require a model flux for the chi-square

Model flux Calculation

- DarkMatters tool [arXiv:2408.07053] (introduced earlier...) was used
- · We assumed Einasto Profile for the density distribution,

$$\rho(r) = \rho_{-2}^{-2/\alpha((r/r_{-2})^{\alpha} - 1)}$$

where the index $\alpha=0.4$ and the characteristic scale radius $r_{-2}=0.2~{\rm kpc}$ (for our target)

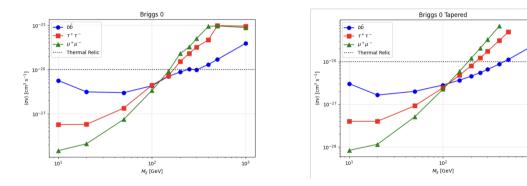
- Calculated for
 - Frequency: 0.7960 (GHz)
 - $\circ\;$ The same frequency (central) as the image from the observation
 - Annihilation cross section = 10^{-26} cm³/s
 - Ranges of WIMP masses
 - 3 output channels

χ^2 Likelihood Analysis for Upper Limits

- Compared residual data and models at different annihilation cross sections $\langle \sigma v \rangle$ via chi-square

$$\chi^2 = (1/N_{beam}) imes \sum [({
m model} - {
m data})^2/\sigma^2]$$

- Number of independent beams (N_{pix}/N_{beam}) in our 1024×1024 pixel analysis region are:
 - Briggs-0: 83,886 independent beams
 - Briggs-0-tapered: 30,358 independent beams
 - Natural-weighted: 16,461 independent beams
 - Natural-weighted-tapered: 3,472 independent beams


· Calculated chi-square difference from minimum

$$\Delta \chi^2 = \chi^2 - \chi^2_{\rm minimum}$$

- + Excluded cross sections where $\Delta\chi^2 > 2.71$ (at 95% CL)
- Set upper limits on the excluded annihilation cross sections

Reticulum II upper limits of MeerKAT (Preliminary. i.e. In prep yet)

Figure: Briggs-0-Tapered

NuDM-2024

103

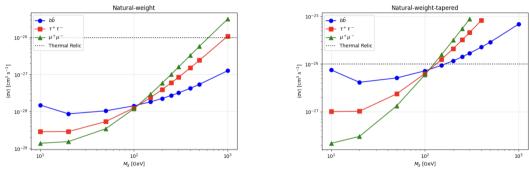


Figure: Natural Weight

Figure: Natural-Weight-Tapered

- · These excluded cross sections over predicts the dark matter signal
- The signal must be below this; we would have seen it otherwise

Reticulum II upper limits Compared to ATCA's

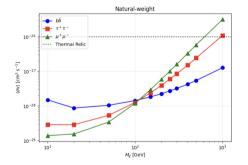


Figure: Natural Weight

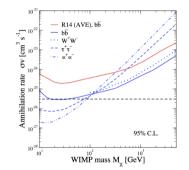


Figure: ATCA's: Regis 2017: https://doi.org/10.48550/arXiv.1703.09921

Sensitivity Comparison of MeerKAT to ATCA for Reticulum II observations

- MeerKAT
 - Observed for 8 hours
 - rms sensitivity: 0.0015 mJy/beam
- ATCA
 - Observed for 30 hours
 - rms sensitivity: 0.01mJy/beam
- MeerKAT is doing much better than ATCA for dark matter searches
 - From one to two orders of magnitude improvements on the upper limit

- Our results showed radio is a promising regime to rule out WIMP models at lower masses
- Will be capable of detecting the signal, as sensitivity increases (i.e. SKA)
- The more sensitive we are the more we get to rule out over-predicting models
- Sensitivity is the most important parameter and we need resolution for accurate source subtraction

Thank You!

30/30