

International Conference on Neutrino and Dark Matter December 14, Cairo, Egypt

Dark matter searches at the LHC with the CMS

Maria Savina, BLTP JINR, Russia on behalf of the CMS Collaboration

Maria.Savina@cern.ch

DM searches at the LHC – are you serious about this?

Definitely YES !!

1.Additional search tool to DD, significant contributions in different models in the moderate mass region, where there is a severe loss of DD sensitivity

2. A unique opportunity to feel an extended dark sector as opposed to just one DM particle

The long-term LHC search program on DM/DS

M. Savina, JINR, Russia

NuDM-2024

14.12.2024

2/48

Simplified dark sector, portal approaches

Exotic higgs decays $h \rightarrow Za, Z \rightarrow ll, a \rightarrow 2$ gamma

CMS HIG-22-003

The first search of such type for axion-like particles (ALPs) at the LHC. Pseudoscalar portal, the light enough ALP, Z^o-ALPs interactions

C_i are Wilson coefficients in the EFT approach that describe the ALP/SM couplings

$$\mathcal{L}_{EFT} = \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

M. Savina, JINR, Russia

NuDM-2024

14.12.2024 10/48

Exotic higgs decays $h \rightarrow Za, Z \rightarrow ll, a \rightarrow 2$ gamma

CMS HIG-22-003

The first search of such type for axion-like particles (ALPs) at the LHC. Pseudoscalar portal, the light enough ALP, Z^o-ALPs interactions

C_i are Wilson coefficients in the EFT approach that describe the ALP/SM couplings

$$\mathcal{L}_{EFT} = \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

M. Savina, JINR, Russia

NuDM-2024

14.12.2024 11/48

(Pseudo)scalar dilepton resonance in association with V/ $t\bar{t}$ -pair

Extended dark sector and "full" theories

14.12.2024

19/48

MSSM as a natural SUSY

$$\sum_{sons} m^2 - \sum_{fermions} m^2 = M_{SUSY}^2$$
$$M_h^2 \sim g^2 M_{SUSY}^2 \sim M_h^2.$$

 $R = (-1)^{3(B-L)+2s}$

5

- Natural SUSY: weak-scale supersymmetric masses for neutralino (at least for the lightest two ones), for stops and gluino
- SUSY breaking, soft mass terms ambiguity of spectrum arrangement
- R-parity preserved (RPC SUSY) pair SP production/decays
- Natural DM candidate LSP/gravitino
- Cascade decays up to LPS, hard multijet / SS leptons / 2 gamma ... +

large MET (to reduce SM background)

8

1

GMSB, low scale SSB: a basis

 $(\Phi_i, \overline{\Phi_i}, ..., i = 1, ... N_f)$

messenger sector

physical scalar states :

SM+SP, SUSY

one(two)loop suppressed interactions with MS, soft SP masses, no flavor violation enhancement from soft terms, LSP – gravitino!

Masses are depend on *F*, *M*, *N*

chiral scalar superfield(s), fund. rep. 5+anti-5 (also 10+anti-10) of SU(5) or 16+anti-16 of SO(10) for the GUT group

$$W = \lambda_{ij} \bar{\Phi}_i X \Phi_j$$

tree level interaction goldstino-MS

 $\langle X \rangle = M + \theta^2 F$

$$M_{\Phi \widetilde{\Phi}} \sim (\lambda M)^2 \pm (\lambda F)$$

Χ,

M – SUSY mass scale, F – SSB energy scale !!

 $\delta \alpha_{GUT}^{-1} = -\frac{N}{2\pi} \ln \frac{M_{GUT}}{M} \quad N \lesssim 150 / \ln \frac{M_{GUT}}{M}$

GMSB SUSY, soft mass terms and universal spectrum

1-loop for gauginos, 2-loops for squarks

SUSY beyond MSSM: <u>low(zero)</u> p_T^{mis} signatures

"natural" mass spectrum

From prompt production to LLP:

1. Stealth SUSY JiJi Fan, Matthew Reece, Joshua T. Ruderman arXiv:1105.5135 [hep-ph] arXiv:1201.4875 [hep-ph] arXiv:1512.05781 [hep-ph] 2. RPV SUSY

Csaba Csaki, Yuval Grossman, and Ben Heidenreich arXiv:1111.1239 [hep-ph]

Stealth SUSY basis

SUSY is natural, low-scale SUSY breaking, hidden sector with (at least) one chiral singlet supefield (R-odd singlino, R-even singlet). LSP – gravitino (GMSB), NLSP decays to gravitino through a hidden sector.

HS states of order the EW scale, states approximately supersymmetric (F << M) – closely degenerated by masses.

Suppression of large missing E_T at the end of decay chain (gravitino assosiated).

Stealth SUSY simplified, prompt/LLP

JiJi Fan, Matthew Reece, Joshua T. Ruderman

arXiv:1105.5135 [hep-ph]

arXiv:1201.4875 [hep-ph]

arXiv:1512.05781 [hep-ph]

Field set: LOSP – gluino, stop, higgsino only The lightest R-odd SUSY particle – gravitino/axino

NLSP neutralino decay width
$$\Gamma(\chi_1^0 \to \gamma \tilde{G}) = \frac{k^2 \kappa_{\gamma} m_{\chi_1^0}^5}{16\pi F^2} = k^2 \kappa_{\gamma} \left(\frac{m_{\chi_1^0}}{100 \text{ GeV}}\right)^5 \left(\frac{100 \text{ TeV}}{\sqrt{F}}\right)^4 2 \times 10^{-3} \text{ eV}$$
NLSP gluino decay width
$$\Gamma(\tilde{g} \to g \tilde{G}) = \frac{m_{\tilde{g}}^5}{48\pi M^2 m_{\tilde{G}}^2} = 1.1 \times 10^{-9} \text{ GeV} \left(\frac{m_{\tilde{g}}}{250 \text{ GeV}}\right)^5 \left(\frac{m_{\tilde{G}}}{1 \text{ eV}}\right)^{-2}$$
Typically LLP signatures in a wide parameter space region!! $(c\tau_0 > 8 \text{ mm for F} \sim 10 \text{ GeV})$

Stealth SUSY, gluino pair production, gluino/stop as NLSP

SY \overline{Y} : GMSB-like: messengers in 5, $\overline{5}$ of SU(5), m_S ~ 100 GeV, m_Y ~ TeV – supersymmetric soft masses

Soft Unclustered Energy Patterns (SUEPs)

m_{q_D} < Λ_D , Λ_D << √s arXiv:2403.05311 [hep-ex]
 HV concept, quasi-conformal DS, dark mesons masses much smaller than S mediator mass. S charged under both SU(3) and SU(3)_D
 Spherically symmetric FS distributions, high multiplicity of soft PS
 Boltzmann distr. for pseudoscalar p_T, depending on T_D (Λ_D) and m_φ
 Decay φ → γ_Dy_D, → SM FS trough γ - γ_D mixing, prompt decays

Summary and outlook on DM searches

- ✓ Wide variety and an extensive list of analyses on DM and hidden sector at CMS
- ✓ Still no signals of new DM particles/mediator
- Further development of an analysis (scouting triggers, new signatures like semivisible jets, novel prompt/LLP reconstruction algorithms) and related theory/simplified model approaches, new interaction channels, new frameworks

CMS analyses summary on DM search and much more:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Thank you for your attention!

M. Savina, JINR, Russia

NuDM-2024

14.12.2024 42/48

Backup slides

M. Savina, JINR, Russia

NuDM-2024

14.12.2024 43,

43/48

GMSB, the lightest neutral partner from messenger sector as DM

Dark sector with Long-Lived Particles at the LHC

LLP:

a proper lifetime $c\tau_0$ is greater than or comparable to the characteristic size of the (sub)detectors

 \checkmark small $c\tau_0$ that comparable to the inner tracker size, no displaced tracks \rightarrow "standard" prompt decay

 \checkmark intermediate $c\tau_0$ \rightarrow LLP

✓ very large/infinite large $c\tau_0 \rightarrow$ stable particles, "standard" **MET** signatures

M. Savina, JINR, Russia

NuDM-2024

14.12.2024

46/48

Resonant production of strongly coupled DM for semivisible jets

JHEP 06 (2022) 156 CMS EXO-19-020

CMS

Resonant production of strongly coupled DM for semivisible jets

JHEP 06 (2022) 156

CMS EXO-19-020

The first CMS study of jet ivsisible contribution with dark sector I nterpretation. The fraction r_{inv} of stable invisible dark hadrons in between 0 (dijet, small MET) and 1 (large MET)

LLP summary plots, CMS, 2023

 10^{-2}

cτ [m]

100

10²

132 fb⁻¹

137 fb-1

132 fb-1

35.9

12.9

12.9

38.6

38.6

39 fb⁻¹

101 fb-1

137 fb-1

137 fb-1

137 fb-1

138 fb⁻¹

138 fb⁻¹

118 fb⁻¹

137 fb⁻¹

137 fb-1

137 fb-1

137 fb-1

101 fb-1

118 fb⁻¹

132 fb⁻¹

117 fb⁻¹

138 fb-1

138 fb-1

138 fb-1

138 fb⁻¹

138 fb⁻¹

138 fb⁻¹

16.1

104

36.7 fb⁻¹ (13.6 1

20 fb⁻¹ (8 TeV)

77.4

>0.7 m

>7.5 m

RPC Š SU

Higgs+Other