

Probing the Sterile Neutrino Dipole Portal with Coherent Elastic Solar Neutrino-

Nucleus Scattering

Based on arXiv:2412.03140 [Supported by TÜBITAK Project No: 123F186]

M F Mustamin^a, M Demirci^{*,b} ^a mfmustamin@ktu.edu.tr, ^{*,b} mehmetdemirci@ktu.edu.tr

International Conference on Neutrinos and Dark Matter, Cairo, Egypt

13 Dec 2023

M F Mustamin | Karadeniz TU

Outline

1 Sterile Neutrino Dipole Portal

2 Coherent Elastic Neutrino Nucleus Scattering

3 Solar Neutrinos

4 Event Rate

5 Analysis and Results

6 Summary

M F Mustamin | Karadeniz TU

Sterile Neutrino Dipole Portal 0000000

Sterile Neutrino Dipole Portal

M F Mustamin | Karadeniz TU

Sterile Neutrino Dipole Portal

- The observation of neutrino flavor oscillation implies non-zero neutrino masses (Fukuda *et al.*, 1998; Ahmad *et al.*, 2002).
- This indicate that the standard model (SM) need to be expanded to include neutrino masses.
- Many known mechanisms involve fermionic neutral SM-gauge-group singlets, or heavy neutral leptons, or simply sterile neutrinos (Pontecorvo, 1967; Kusenko, 2009, Dasgupta & Kopp, 2021).

- The idea is often motivated by solving anomalies, found in short-baseline oscillation and reactor experiments: LSND (Athanassopoulos *et al.*, 1998), MiniBoone (Aguilar-Arevalo *et al.*, 2010), MicroBoone (Arguelles *et al.*, 2022).
- The eV-mass scale of sterile neutrinos could explain these anomalies and potentially play an important role in core-collapse supernovae (McLaughlin, Fetter, Balantekin, & Fuller, 1999).
- In the higher mass ranges, sterile neutrino could also be a DM candidate (Dodelson & Widrow, 1994).
- Other area that could influenced by sterile neutrinos: extra dimensions (Khan, 2023), evolution of the Early Universe (Mirizzi *et al.*, 2012), effective neutrino magnetic-moment (Balantekin & Vassh, 2014).

The Lagrangian

- The ν_4 could be produced by neutrino beams electromagnetically up-scattered on nuclei by the presence of a transition magnetic moment between active neutrinos and sterile neutrino.
- The relevant Lagrangian is

$$\mathcal{L}_{\rm int} \supset \frac{\mu_{\nu_{\ell 4}}}{2} \bar{\nu}_{\ell L} \sigma^{\mu \nu} P_R \nu_4 F_{\mu \nu} + h.c., \tag{1}$$

- It is only valid at energies below the electroweak (EW) scale.
- The coherent elastic neutrino-nuclues scattering (CE ν NS) occurs at energies well below the EW scale and thus it remains applicable.

Sterile Neutrino Dipole Portal 000000

An incoming active neutrino ν_ℓ exchanges a photon with a target nucleus N and up-scatters to a sterile neutrino ν₄. The matrix element of this process can be written as

$$i\mathcal{M} = (\mu_{\nu_{\ell 4}})^* [\bar{u}_{\nu_4} \sigma^{\mu\nu} P_L q_\nu u_{\nu_\ell}] (\frac{-ig_{\mu\lambda}}{q^2}) j_{\mathcal{N}}^{\lambda}, \qquad (2)$$

with the hadronic current of the nucleus

$$j_{\mathcal{N}}^{\lambda} = -ieZ(\bar{u}_{\mathcal{N}}\gamma^{\lambda}u_{\mathcal{N}})F(|\vec{q}|^2), \qquad (3)$$

7

where the target nucleus is considered as a spin-1/2 particle. *M F Mustamin | Karadeniz TU NuDM 13, December 2024*

The cross-section

• The differential cross section, concerning spin-1/2 nuclei, is

$$\begin{split} &\left[\frac{d\sigma}{dT_{nr}}\right] = \frac{\pi\alpha_{\rm EM}^2}{m_e^2} \left|\frac{\mu_{\nu_{\ell 4}}}{\mu_B}\right|^2 Z^2 F^2(|\vec{q}|^2) \\ &\times \left[\frac{1}{T_{nr}} - \frac{1}{E_\nu} - \frac{m_4^2}{2T_{nr}E_\nu m_N} \left(1 - \frac{T_{nr}}{2E_\nu} + \frac{m_N}{2E_\nu}\right) - \frac{m_4^4}{8m_N T_{nr}^2 E_\nu^2} \left(1 - \frac{T_{nr}}{m_N}\right)\right], \end{split}$$
(4)

- As $m_4 = 0$ we obtain the conventional active neutrino magnetic moment cross-section (Vogel, 1989).
- The *m*₄ must satisfy the following kinematic constraint

$$m_4^2 \le 2m_N T_{nr} \left(\sqrt{\frac{2}{m_N T_{nr}}} E_\nu - 1 \right).$$
(5)

M F Mustamin | Karadeniz TU

• For complementary, the cross section for spin-0 nuclei can be written as

$$\begin{bmatrix} \frac{d\sigma}{dT_{nr}} \end{bmatrix}_{spin-0} = \begin{bmatrix} \frac{d\sigma}{dT_{nr}} \end{bmatrix}_{spin-1/2} + \frac{\pi\alpha_{\rm EM}^2}{m_e^2} \left| \frac{\mu_{\nu_{\ell 4}}}{\mu_B} \right|^2 Z^2 F^2(|\vec{q}|^2) \\ \times \left[\frac{T_{nr}}{4E_{\nu}^2} - \frac{m_4^2}{8m_{\mathcal{N}}E_{\nu}^2} \left(1 + \frac{m_4^2}{m_{\mathcal{N}}T_{nr}} \right) \right],$$
(6)

- To show the effect from the two assumption, we define relative difference δ

$$\delta = \frac{\left| \left[\frac{d\sigma}{dT_{nr}} \right]_{\text{spin-1/2}} - \left[\frac{d\sigma}{dT_{nr}} \right]_{\text{spin-0}} \right|}{\left[\frac{d\sigma}{dT_{nr}} \right]_{\text{spin-1/2}}}.$$
 (7)

- Both cross-section have the same order of magnitude.
- The varied initial values are due to *m*₄.
- For T_{nr} increases, all lines begin to overlap as T_{nr} > 10 keV.
- The relative difference δ is in order of 10^{-5} to 10^{-13} for the considered T_{nr} .
- Hence the different spin states do not significantly alter the result.

Coherent Elastic Neutrino Nucleus Scattering (CE ν NS)

$CE\nu NS$ Process

- It is an SM process in which neutrinos interact with nucleus as a whole through Z-boson exchange, followed by recoiled nucleus.
- Theoretically proposed: (Freedman, 1974). Experimentally observed: COHERENT collaboration (Akimov et al, 2017).
- To observe the process: $E_{
 u} \lesssim$ 50 MeV, $T_{nr} \lesssim$ 50 keV.

- The largest observable among other processes involving neutrinos.
- It is difficult to observe; the nuclear recoil energy in low keV scales.
- Offering a novel framework for investigating fundamental parameters of the SM and testing physics scenarios beyond the SM (BSM).
- It triggers development of sensitive detector technology.

$CE\nu NS$ Cross-Section

The CE ν NS cross section is

$$\left[\frac{d\sigma}{dT_{nr}}\right]_{SM} = \frac{G_F^2 m_N}{\pi} Q_{SM}^2 \left(1 - \frac{m_N T_{nr}}{2E_\nu^2}\right) \times \left|F(|\vec{q}|^2)\right|^2,$$
(8)

with the weak charge coupling:

$$Q_{\rm SM} = g_V^p \mathcal{Z} + g_V^n \mathcal{N} \tag{9}$$

 $g_V^p = 1/2(1 - 4\sin^2 \theta_W) \approx 0.0229,$ $g_V^n = -1/2.$ Form factor: Klein-Nystrand (Klein & Nystrand, 1999)

the transfer momentum satisfies: $Q^2 \equiv -q^2 = 2m_N T_{nr}$

M F Mustamin | Karadeniz TU

$CE\nu NS$ Related Experiments

Neutrino Sources

Solar Neutrinos

Neutrinos from the Sun

- It is one of the most intensive natural neutrino sources on the earth.
- Neutrinos produced as electron neutrino by the nuclear fusion inside the Sun.
- The general information of solar neutrino is part of the Standard Solar Model.
- Two main process: pp chain and CNO cycle.

M F Mustamin | Karadeniz TU

 Solar neutrino fluxes with their uncertainties from the high-metallicity solar neutrino model BS05(OP).

Components	$Flux [cm^{-2}s^{-1}]$	Uncertainty [%]
pp	5.99×10^{10}	0.8%
pep	1.42×10^8	1.3%
hep	$7.93 imes 10^3$	15.4%
⁸ B	$5.69 imes10^6$	12.6%
⁷ Be	$4.84 imes 10^9$	9.3%
¹³ N	$3.07 imes10^8$	20.2%
¹⁵ O	$2.33 imes 10^8$	23.3%
¹⁷ F	$5.84 imes 10^6$	25.1%

Survival Probabilities

- Solar neutrinos oscillate as they propagate from the Sun to the Earth.
- They arrive at a detector as a mixture of ν_e, ν_μ, ν_τ .
- The survival probabilities for each flavor can be written as

$$\Phi^{i}_{\nu_{e}} = \Phi^{i \odot}_{\nu_{e}} P_{ee}, \qquad (11)$$

$$\Phi_{\nu_{\mu}}^{i} = \Phi_{\nu_{e}}^{i\odot} \left(1 - P_{ee}\right) \cos^{2} \vartheta_{23}, \qquad (12)$$

$$\Phi^{i}_{\nu_{\tau}} = \Phi^{i\odot}_{\nu_{e}} \left(1 - P_{ee}\right) \sin^{2}\vartheta_{23}, \qquad (13)$$

where $\Phi_{\nu_e}^{i\,\odot}$ is the electron-neutrino flux, with i = hep and ⁸B, etc.

• The P_{ee} is the survival probability of ν_e which can be written by

$$P_{ee} = (c_{13}^2 c_{13}^{m^2}) \left(\frac{1}{2} - \frac{1}{2}\cos 2\vartheta_{12}^m \cos 2\vartheta_{12}\right) + (s_{13}^2 s_{13}^{m^2}) \quad (14)$$

M F Mustamin | Karadeniz TU

- In the notation, $c_{13} = \cos \vartheta_{13}$, $s_{13} = \sin \vartheta_{13}$ and the label *m* represents the matter effect.
- The cos $2\vartheta_{12}^m$ is the matter angle. We consider the day-night asymmetry due to the Earth matter effect in the calculation of the survival probabilities.
- We take the normal-ordering neutrino oscillation parameters from the latest 3-ν oscillation of NuFit-5.3, without the Super-Kamiokande atmospheric data (Esteban *et al.*, 2020).

Event Rate 0000

Event Rate

M F Mustamin | Karadeniz TU

NuDM 13, December 2024

23

Event Rate

- The maximum nuclear recoil energy obeys $T_{nr}^{max} = \frac{2E_{\nu}^2}{2E_{\nu}+m_N}$.
- The differential event rate of the CE ν NS:

$$\frac{dR}{dT_{nr}} = N_T \int_{E_{\nu}^{min}}^{E_{\nu}^{max}} dE_{\nu} \frac{d\Phi(E_{\nu})}{dE_{\nu}} \frac{d\sigma(E_{\nu}, T_{nr})}{dT_{nr}}.$$
 (15)

- The minimum neutrino energy, for the active case, satisfies $E_{\nu}^{min} = \frac{T_{nr}}{2} \left(1 + \sqrt{1 + \frac{2m_N}{T_{nr}}} \right),$
- Meanwhile, for the sterile case the minimum energy is $E_{\nu_4}^{\min} = \frac{m_4^2 + 2m_N T_{nr}}{2(\sqrt{T_{nr}(T_{nr} + 2m_N) - T_{nr}})}$

Quenching Factor

- The observed physical quantity is electron equivalent energy. To relate this with nuclear recoil energy, quenching factor $Y(T_{nr})$ is needed.
- For this purpose, we utilize the Lindhard quenching factor (Lindhard *et. al.*, 1963):

$$Y(T_{nr}) = \frac{kg(\epsilon)}{1 + kg(\epsilon)},$$
(16)

with

$$g(\epsilon) = 3\epsilon^{0.15} + 0.7\epsilon^{0.6} + \epsilon \epsilon = 11.5\mathcal{Z}^{-7/3}T_{nr},$$
(17)

where k = 0.16, closely matches the recent low-energy measurement (Bonhomme *et. al.*, 2022).

M F Mustamin | Karadeniz TU

- The Linhard formula is acceptable for high recoil energy, namely 0.254 keV $< T_{nr} < 10$ keV.
- Below this range, in the range of 0.04 keV < T_{nr} < 0.254 keV (Essig *et. al.*, 2018), we consider for Ge target

$$Y(T_{nr}) = 0.18 \left[1 - \exp\left(\frac{15 - T_{nr}}{71.03}\right) \right]$$
(18)

• The T_{nr} (keV) can be converted into T_{ee} (keV) by

$$T_{ee} = Y(T_{nr})T_{nr}.$$
 (19)

• Hence, the differential rate in term of the electron equivalency is given by

$$\frac{dR}{dT_{ee}} = \frac{dR}{dT_{nr}} \frac{1}{Y(T_{nr}) + T_{nr} \frac{dY(T_{nr})}{dT_{nr}}}.$$
 (20)

M F Mustamin | Karadeniz TU

Analysis and Results

The Data

- We are interested testing the CDEX-10 result (Geng *et. al.*, 2023) to constraint active-sterile transition magnetic moment through CEνNS process.
- The collaboration reported 20 data points in their effort on searching for DM signal.
- We obtain the data via communication with one of the CDEX-10 member.
- It is given in terms of electron-equivalent recoil energy. We convert this into the nuclear recoil energy using the Linhard quenching factor.
- We further accommodate **three projections** regarding experimental advancement in the near future.
 - Next-generation \rightarrow 150 kg year, 1 keVnr.
 - Future $1 \rightarrow 1.5$ ton year, 1 keVnr.
 - Future $2 \rightarrow 1.5$ ton year, 0.1 keVnr.

M F Mustamin | Karadeniz TU

 χ^2 -Analysis

• We adopt the pull approach of the χ^2 function (Fogli *et. al.*, 2002):

$$\chi^{2} = \min_{(\xi_{j})} \sum_{i=1}^{20} \left(\frac{R_{obs}^{i} - R_{exp}^{i} - B - \sum_{j} \xi_{j} c_{j}^{i}}{\Delta^{i}} \right)^{2} + \sum_{j} \xi_{j}$$
(21)

- R_{obs}^{i} and R_{exp}^{i} are the observed and expected event rates, respectively. in the *i*-th energy bin.
- Δ^i denotes the experimental uncertainty.
- The solar neutrino flux uncertainty is represented by c_i^i .

Single-Flux Case

- The CDEX-10 data can address the $\mu_{
 u_{\ell 4}}$.
- ⁸B provides stringent constraints than the hep.
- The projection results address an improvement to the existing limits.

Flavor-dependent Cases

- Dominates stopped-pion results, previous DD, and others in low m_4 region.
- Yet to reach neutrino-electron channels.

32

Effective Case

• In addition to the previous, the projection can reach constraint from supernova, cover most of the $\nu_4 \rightarrow \nu \gamma$.

Summary

Summary

- Sterile neutrino is an interesting scenario to explore with CE ν NS utilizing solar neutrino.
- The considered CDEX-10 data can address constraints of the active-sterile transition magnetic moment.
- Our configured projections provide a better constraints which could cover some of the available limits in the literature.
- High exposure and small nuclear energy threshold indicate the possible obtainment of stringent limits.

Thank You for Your Time!

Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey under Project 123F186.

M F Mustamin | Karadeniz TU