
Probing the Sterile Neutrino Dipole Portal
with Coherent Elastic Solar Neutrino-

Nucleus Scattering
Based on arXiv:2412.03140

[Supported by TÜBITAK Project No: 123F186]

M F Mustamina, M Demirci∗,b
a mfmustamin@ktu.edu.tr, ∗,b mehmetdemirci@ktu.edu.tr

International Conference on Neutrinos and Dark Matter,
Cairo, Egypt

13 Dec 2023

M F Mustamin | Karadeniz TU NuDM 13, December 2024 1



Outline

1 Sterile Neutrino Dipole Portal

2 Coherent Elastic Neutrino Nucleus Scattering

3 Solar Neutrinos

4 Event Rate

5 Analysis and Results

6 Summary

M F Mustamin | Karadeniz TU NuDM 13, December 2024 2



Sterile Neutrino Dipole Portal

Sterile Neutrino Dipole
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Sterile Neutrino Dipole Portal

Sterile Neutrino Dipole Portal
• The observation of neutrino flavor oscillation implies non-zero

neutrino masses (Fukuda et al., 1998; Ahmad et al., 2002).
• This indicate that the standard model (SM) need to be

expanded to include neutrino masses.
• Many known mechanisms involve fermionic neutral

SM-gauge-group singlets, or heavy neutral leptons, or simply
sterile neutrinos (Pontecorvo, 1967; Kusenko, 2009,
Dasgupta & Kopp, 2021).
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Sterile Neutrino Dipole Portal

• The idea is often motivated by solving anomalies, found in
short-baseline oscillation and reactor experiments: LSND
(Athanassopoulos et al., 1998), MiniBoone (Aguilar-Arevalo
et al., 2010), MicroBoone (Arguelles et al., 2022).

• The eV-mass scale of sterile neutrinos could explain these
anomalies and potentially play an important role in
core-collapse supernovae (McLaughlin, Fetter, Balantekin, &
Fuller, 1999).

• In the higher mass ranges, sterile neutrino could also be a DM
candidate (Dodelson & Widrow, 1994).

• Other area that could influenced by sterile neutrinos: extra
dimensions (Khan, 2023), evolution of the Early Universe
(Mirizzi et al., 2012), effective neutrino magnetic-moment
(Balantekin & Vassh, 2014).
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Sterile Neutrino Dipole Portal

The Lagrangian

• The ν4 could be produced by neutrino beams
electromagnetically up-scattered on nuclei by the presence of a
transition magnetic moment between active neutrinos and
sterile neutrino.

• The relevant Lagrangian is

Lint ⊃
µνℓ4

2
ν̄ℓLσ

µνPRν4Fµν + h.c ., (1)

• It is only valid at energies below the electroweak (EW) scale.
• The coherent elastic neutrino-nuclues scattering (CEνNS)

occurs at energies well below the EW scale and thus it remains
applicable.
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Sterile Neutrino Dipole Portal

• An incoming active neutrino νℓ exchanges a photon with a
target nucleus N and up-scatters to a sterile neutrino ν4. The
matrix element of this process can be written as

iM = (µνℓ4)
∗[ūν4σ

µνPLqνuνℓ ](
−igµλ
q2 )jλN , (2)

γ

A
ZN

νℓ

A
ZN

ν4

with the hadronic current of the nucleus

jλN = −ieZ (ūNγλuN )F (|q⃗|2), (3)

where the target nucleus is considered as a spin-1/2 particle.
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Sterile Neutrino Dipole Portal

The cross-section
• The differential cross section, concerning spin-1/2 nuclei, is[

dσ

dTnr

]
=

πα2
EM

m2
e

∣∣∣∣µνℓ4

µB

∣∣∣∣2 Z 2F 2(|q⃗|2)

×
[

1
Tnr

− 1
Eν

− m2
4

2TnrEνmN

(
1 − Tnr

2Eν
+

mN
2Eν

)

− m4
4

8mNT 2
nrE

2
ν

(
1 − Tnr

mN

)]
,

(4)

• As m4 = 0 we obtain the conventional active neutrino
magnetic moment cross-section (Vogel, 1989).

• The m4 must satisfy the following kinematic constraint

m2
4 ≤ 2mNTnr

(√
2

mNTnr
Eν − 1

)
. (5)
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Sterile Neutrino Dipole Portal

• For complementary, the cross section for spin-0 nuclei can be
written as[

dσ

dTnr

]
spin-0

=

[
dσ

dTnr

]
spin-1/2

+
πα2

EM
m2

e

∣∣∣∣µνℓ4

µB

∣∣∣∣2 Z 2F 2(|q⃗|2)

×
[
Tnr

4E 2
ν

− m2
4

8mNE 2
ν

(
1 +

m2
4

mNTnr

)]
,

(6)

• To show the effect from the two assumption, we define relative
difference δ

δ =

∣∣∣∣[ dσ
dTnr

]
spin-1/2

−
[

dσ
dTnr

]
spin-0

∣∣∣∣[
dσ
dTnr

]
spin-1/2

. (7)
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Sterile Neutrino Dipole Portal

• Both cross-section have the
same order of magnitude.

• The varied initial values are
due to m4.

• For Tnr increases, all lines
begin to overlap as Tnr > 10
keV.

• The relative difference δ is in
order of 10−5 to 10−13 for
the considered Tnr .

• Hence the different spin
states do not significantly
alter the result.
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Coherent Elastic Neutrino Nucleus Scattering

Coherent Elastic
Neutrino Nucleus

Scattering
(CEνNS)
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Coherent Elastic Neutrino Nucleus Scattering

CEνNS Process

Z0

A
ZN

να

A
ZN

να

• It is an SM process in which neutrinos interact with nucleus as
a whole through Z -boson exchange, followed by recoiled
nucleus.

• Theoretically proposed: (Freedman, 1974). Experimentally
observed: COHERENT collaboration (Akimov et al, 2017).

• To observe the process: Eν ≲ 50 MeV, Tnr ≲ 50 keV.
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Coherent Elastic Neutrino Nucleus Scattering

(Akimov et. al., 2017)

• The largest observable
among other processes
involving neutrinos.

• It is difficult to observe; the
nuclear recoil energy in low
keV scales.

• Offering a novel framework
for investigating fundamental
parameters of the SM and
testing physics scenarios
beyond the SM (BSM).

• It triggers development of
sensitive detector technology.
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Coherent Elastic Neutrino Nucleus Scattering

CEνNS Cross-Section
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the transfer momentum satis-
fies: Q2 ≡ −q2 = 2mNTnr

The CEνNS cross section is[
dσ

dTnr

]
SM

=
G 2
FmN

π
Q2

SM

(
1 − mNTnr

2E 2
ν

)
×
∣∣F (|q⃗|2)∣∣2,

(8)

with the weak charge coupling:

QSM = gp
VZ + gn

VN (9)

gp
V = 1/2(1 − 4 sin2 θW ) ≈ 0.0229,
gn
V = −1/2. Form factor: Klein-

Nystrand (Klein & Nystrand, 1999)

F (|q⃗|2) = 3
J1(|q⃗|RA)

|q⃗|RA

(
1

1 + |q⃗|2a2
k

)
.

(10)

.
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Coherent Elastic Neutrino Nucleus Scattering

CEνNS Related Experiments
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Coherent Elastic Neutrino Nucleus Scattering

Neutrino Sources

Credit: Formaggio & Zeller, 2012.
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Solar Neutrinos

Solar Neutrinos
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Solar Neutrinos

Neutrinos from the Sun

• It is one of the most intensive natural neutrino sources on the
earth.

• Neutrinos produced as electron neutrino by the nuclear fusion
inside the Sun.

• The general information of solar neutrino is part of the
Standard Solar Model.

• Two main process: pp chain and CNO cycle.
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Solar Neutrinos
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Solar Neutrinos

• Solar neutrino fluxes with
their uncertainties from the
high-metallicity solar
neutrino model BS05(OP).
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Solar Neutrinos

Survival Probabilities
• Solar neutrinos oscillate as they propagate from the Sun to the

Earth.
• They arrive at a detector as a mixture of νe , νµ, ντ .
• The survival probabilities for each flavor can be written as

Φi
νe = Φi ⊙

νe Pee , (11)

Φi
νµ = Φi ⊙

νe (1 − Pee) cos
2 ϑ23, (12)

Φi
ντ = Φi ⊙

νe (1 − Pee) sin
2 ϑ23, (13)

where Φi ⊙
νe is the electron-neutrino flux, with i = hep and 8B,

etc.
• The Pee is the survival probability of νe which can be written

by

Pee =(c2
13c

m
13

2)

(
1
2
− 1

2
cos 2ϑm

12 cos 2ϑ12

)
+ (s2

13s
m
13

2) (14)

M F Mustamin | Karadeniz TU NuDM 13, December 2024 21



Solar Neutrinos

• In the notation, c13 = cosϑ13, s13 = sinϑ13 and the label m
represents the matter effect.

• The cos 2ϑm
12 is the matter angle. We consider the day-night

asymmetry due to the Earth matter effect in the calculation of
the survival probabilities.

• We take the normal-ordering neutrino oscillation parameters
from the latest 3-ν oscillation of NuFit-5.3, without the
Super-Kamiokande atmospheric data (Esteban et al., 2020).
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Event Rate

Event Rate
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Event Rate

Event Rate

• The maximum nuclear recoil energy obeys Tmax
nr = 2E2

ν
2Eν+mN

.
• The differential event rate of the CEνNS:

dR

dTnr
= NT

∫ Emax
ν

Emin
ν

dEν
dΦ(Eν)

dEν

dσ(Eν ,Tnr )

dTnr
. (15)
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Event Rate

• The minimum neutrino energy,
for the active case, satisfies
Emin
ν = Tnr

2

(
1 +

√
1 + 2mN

Tnr

)
,

• Meanwhile, for the sterile case
the minimum energy is
Emin
ν4

=
m2

4+2mNTnr

2(
√

Tnr (Tnr+2mN )−Tnr )
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Event Rate

Quenching Factor

• The observed physical quantity is electron equivalent energy.
To relate this with nuclear recoil energy, quenching factor
Y (Tnr ) is needed.

• For this purpose, we utilize the Lindhard quenching factor
(Lindhard et. al., 1963):

Y (Tnr ) =
kg(ϵ)

1 + kg(ϵ)
, (16)

with

g(ϵ) = 3ϵ0.15 + 0.7ϵ0.6 + ϵ

ϵ =11.5Z−7/3Tnr ,
(17)

where k = 0.16, closely matches the recent low-energy
measurement (Bonhomme et. al., 2022).
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Event Rate

• The Linhard formula is acceptable for high recoil energy,
namely 0.254 keV < Tnr < 10 keV.

• Below this range, in the range of 0.04 keV < Tnr < 0.254 keV
(Essig et. al., 2018), we consider for Ge target

Y (Tnr ) = 0.18
[
1 − exp

(
15 − Tnr

71.03

)]
(18)

• The Tnr (keV) can be converted into Tee(keV) by

Tee = Y (Tnr )Tnr . (19)

• Hence, the differential rate in term of the electron equivalency
is given by

dR

dTee
=

dR

dTnr

1

Y (Tnr ) + Tnr
dY (Tnr )
dTnr

. (20)
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Analysis and Results

Analysis and Results
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Analysis and Results

The Data

• We are interested testing the CDEX-10 result (Geng et. al.,
2023) to constraint active-sterile transition magnetic moment
through CEνNS process.

• The collaboration reported 20 data points in their effort on
searching for DM signal.

• We obtain the data via communication with one of the
CDEX-10 member.

• It is given in terms of electron-equivalent recoil energy. We
convert this into the nuclear recoil energy using the Linhard
quenching factor.

• We further accommodate three projections regarding
experimental advancement in the near future.

• Next-generation → 150 kg year, 1 keVnr.
• Future 1 → 1.5 ton year, 1 keVnr.
• Future 2 → 1.5 ton year, 0.1 keVnr.
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Analysis and Results

χ2-Analysis

• We adopt the pull approach of the χ2 function (Fogli et. al.,
2002):

χ2 = min(ξj )

20∑
i=1

(
R i
obs − R i

exp − B −∑j ξjc
i
j

∆i

)2

+
∑
j

ξj

(21)

.
• R i

obs and R i
exp are the observed and expected event rates,

respectively. in the i-th energy bin.
• ∆i denotes the experimental uncertainty.
• The solar neutrino flux uncertainty is represented by c ij .
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Analysis and Results

Single-Flux Case

• The CDEX-10 data can address the µνℓ4 .
• 8B provides stringent constraints than the hep.
• The projection results address an improvement to the existing

limits.
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Analysis and Results

Flavor-dependent Cases
• Dominates stopped-pion results, previous DD, and others in

low m4 region.
• Yet to reach neutrino-electron channels.
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Analysis and Results

Effective Case

• In addition to the previous, the projection can reach constraint
from supernova, cover most of the ν4 → νγ.
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Summary

Summary
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Summary

Summary

• Sterile neutrino is an interesting scenario to explore with
CEνNS utilizing solar neutrino.

• The considered CDEX-10 data can address constraints of the
active-sterile transition magnetic moment.

• Our configured projections provide a better constraints which
could cover some of the available limits in the literature.

• High exposure and small nuclear energy threshold indicate the
possible obtainment of stringent limits.
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Summary
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