

Future DHCAL Activities

José Repond Argonne National Laboratory

CALICE Meeting, CERN, May 19 – 21, 2011

Test Beam Activities

Run period	Date	Configuration	Muon events [10 ⁶]	Secondary beam events [10 ⁶]	Secondary beam momenta [GeV/c]
1	Oct 2010	DHCAL	1.4	1.5	2,4,8,10,12,16, 20,25,32
2	Jan 2011	DHCAL + partial TCMT	1.6	3.6	2,4,6,8,10,60
3	Apr 2011	ECAL + DHCAL + TCMT	3.5	4.8	4,8,12,16,20,25,32,40,50,60,120
4	Jun 2011	DHCAL + TCMT			32,40,50,60,120, rotation
5	Being discussed	DHCAL with Tungsten + TCMT			4,8,12,16,20,25,32,40,50,60,120
6		DHCAL w/o absorber			0.50,0.75,1.00, 1.25,1.50,2.00
TOTAL			6.5	+ 9.9	= 16.4M
		\checkmark			

Only cassette covers (2mm Cu + 2 mm Fe) Corresponds to ~ 1.23 interaction lengths Tertiary beam as built for the Minerva test beam

Test Beam Data Analysis

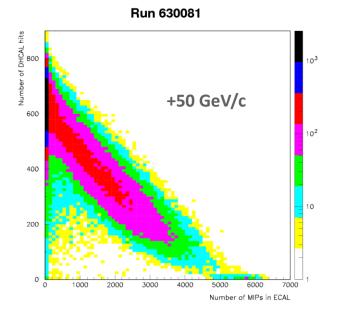
Instrumentation paper (Gary, Jim, John, Burak, Kurt, Daniel, Jacob, Lei, José)

Almost all ingredients in hand

Noise paper (Qingmin, Lei)

Rate, correlated noise, uncorrelated noise...

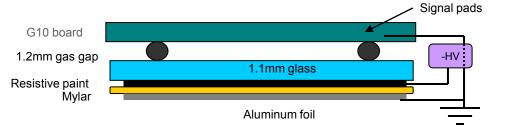
Muon papers (Daniel, Kurt, Lei, José)


Alignment, response, response across plane and across pad Tracks, track segments, calibration, simulation...

Positron papers (Burak, Jacob, José)

(Non)-linearity, resolution (corrected), shower shapes, simulation, software compensation...

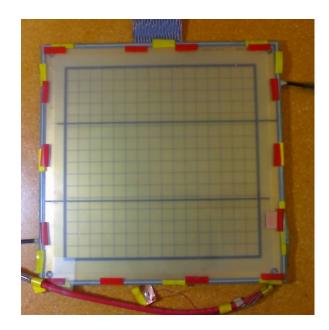
Pion papers (Burak, Jacob, José)


Linearity, resolution, shower shapes, simulation, software compensation, leakage correction...

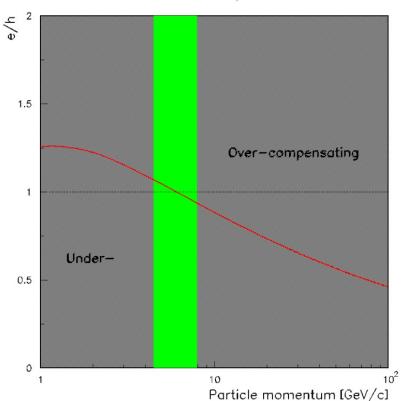
1-glass RPC

Advantages

Pad multiplicity close to unity Chamber thickness reduced by ~1 mm Surface resistivity not critical Rate capability x2 better



Disadvantages


Readout board part of chamber

Status of development

Have built 4 small size chambers Operated these for several months w/o problems Assembly technique for larger chambers to be developed

Pad sizes

DHCAL Response

Preliminary measurement

DHCAL

```
We chose 1 x 1 cm<sup>2</sup>
```

 \rightarrow Compensation around 4 – 8 GeV/c

1 – glass RPCs

Smaller pad sizes would make sense \rightarrow Extend region of **compensation**?

New pad board with 0.5 x 0.5 cm²

Can be used with same Front-end board To be designed...

High Voltage System

Development of a HV distribution system

Control of individual channels Measurement of currents

Status

First successes

Turn on/off channels w/o tripping HV supply

Gas Recycling System

DHCAL's preferred gas

Gas	Fraction [%]	Global warming potential (100 years, $CO_2 = 1$)	Fraction * GWP
Freon R134a	94.5	1430	1351
Isobutan	5.0	3	0.15
SF ₆	0.5	22,800	114

300 lbs of R-134a or 200 tons of CO_2 or 22,000 gallons of gas or 545,000 miles in an average car or 22 times around the globe

Recycling mandatory for larger system

Status

CERN has recycling systems operational (not exactly what we need) Interest worldwide in RPC community to develop viable system Starting to pull together various interest groups in US, Asia... Discussions with industry, chemical engineers...

New Front-end Readout

DCAL III

0.25 μ m technology No (known) design faults Power consumption not minimized \rightarrow requires active cooling Each chip has its on readout lines Relatively reliable (lost very few chips in test beam so far, reasons not yet known)

DCAL IV

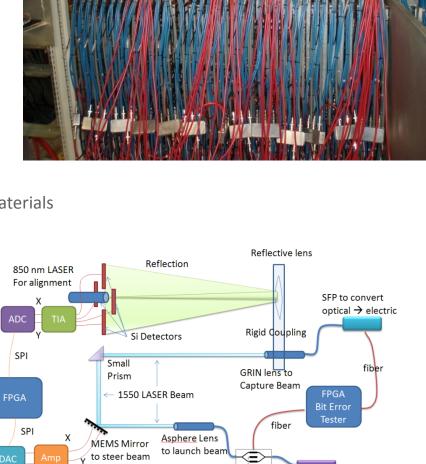
Minimize power consumption (not power pulsing!) Double readout channels??? Token ring passing Additional reliability/redundancy Not packaged? With 1-glass RPCs reduces active layer thickness to 4 mm!!! Smaller feature size (0.25 µm technology obsolete by now)

Status

Agreement for future chip development between FNAL and ANL Ready to start design work...

Cable-less Transmission

Signal transmission


Currently via Ethernet cables 6 cables/layer

Cable-less transmission

Being developed at Argonne Collaboration of HEP and Center for Nanoscale Materials Using lasers and light modulators

DHCAL

Ideal test bed for new technologies Proposal submitted to DOE...

Modulator

Summary

Too much to do...