

Detector alignment for CERN 2007 testbeam runs

CALICE Collaboration meeting May 2011, CERN

Sebastian Weber
University of Wuppertal

CALICE Prototype: testbeam CERN'07

- Si/Tungsten
- 30 layers
- 18x18 "Pads" of 1cm²
- XY-stage
- rotary

TCMT

HCAL (38 Lagen)

· Steel / Scintillator

HCAL

- 38 layers
- "tiles" of 3x3 to 12x12cm²
- XY-stage
- Rotary (layer wise)

TCMT (16 Lagen)

- TailCatcherMuonTracker
- "coarse resolution" HCAL
- Stripes instead of tiles

Global alignment

- Detectors
 - Slight shift against reference coordinate system
 - XY-stage to change impact point
 - Hit coordinates should maintain coordinate system

Global alignment - first look at HCAL (y)

- In general low offset (~10-15mm)
- Sign error in handling of stage (y-)position
 - This is why alignment is done
- Changes in detector position visible
- Allows definition of run ranges without change of detector position

Global alignment - first look at HCAL (x)

- In general larger offset (~30-40mm)
- No systematic sign errors
- Still some errors, usually when stage position changed
- Variation in offset of adjacent runs visible

Variations

- Effect 1: Particle types
- Mainly electron runs:
 - shower in ECAL
 - only tail in HCAL
 - Fades to HCAL center for lower Energies as signal vanishes in noise
- Effect 2: Beam properties
 - beam sweeping ~10mm over tile gives offset sweeping the same magnitude
 - Dependency on beam width / showers

Improvement:

- Correlation of COG and true position
- Normalized to beam profile
- Almost linear distribution
- Fit with slope 1 to get offset
- Slight effect of discrete tiles (steps) still visible but neglible

Not satisfying for muons:

Global alignment (HCAL)

- Pions show distribution without large variations
- Sort out garbage runs
- Concatenate runs with same offset to increase statistics
- For comparison: electrons

Global alignment (ECAL)

- Process transferable to ECAL
- Situation relaxed: Can use all types of particles
- Pad size < beam width
- By now, stage position not taken into account...

Status of global alignment

- Analysis has been done for CERN 2007 runs 330xxx-331xxx (ECAL + HCAL)
- Runs 335xxx (HCAL only) still need review
- Todo:
- Concatenate runs with same offsets
- Fix offsets and write to database

Muon alignment

Offsets of single layers in HCAL and ECAL

Use muons due to their clean tracks

- Step function due to discrete cell positions
- Fit of s-curves
- Center of cells in between

Testbeam data

- Few steps due to beam profile
- Normalize to beam profile
- ... and to hits per cell

Muon alignment (HCAL)

- Horizontal Offset
 - Spread: 8,1 mm (RMS: 4,6mm)
 - Assembly issue?
- Vertical Offset
 - Spread: 1,4 mm (RMS: 0,54mm)

<u>Muon alignment (HCAL)</u>

- Muon alignment works for many runs also pion runs!
- Inter-layer-offset almost stable visible as ribbon
- Still some tuning needed for muon selection

Status of Muon alignment

- Alignment is working fine for muon runs so far
- Also applicable to pion runs
 - Still needs some tuning
 - Lower statistics
- Identify and concatenate runs with same offsets
- Fix and write to database

Outlook

- Muon alignment also possible for TCMT
- So far, only ECAL&HCAL of CERN'07 used
 - No track information for FNAL
 - Should be possible to roughly check data
 - Consider beam at (0,0)
 - Compare ECAL
 ← HCAL