CALICE Meeting CERN 20.05.11

Saturation Studies at ITEP

(very preliminary results)

M.Danilov

Saturation of SiPM response in scintillator tile readout

Simulation of light collection in WLS fiber

Distribution of absorption points in WLSF

Distribution of light at SiPM surface at various SiPM-fiber distances

Saturation curves (MC)

Ratio of saturation curves for SiPM in tile and uniformly illuminated one

Ratio of SiPM saturation curves illuminated by a fiber in tile and illuminated with uniform light

Ratio of SiPM saturation curves illuminated by a fiber in tile and illuminated with uniform light

Ratio of SiPM saturation curves illuminated by a fiber in tile and illuminated with uniform light (examples)

Data are quite similar to MC simulation

Saturation curve measured for uniform illumination of SiPM

Light (pixels)

Fit with simple formula: N*(1-e-x/N) is quite good $\sigma\sim2\%$

Fit of saturation curves measured in tile

Top -
$$N*(1-e^{-x/N})$$

$$N*(1-e^{-x/N})*(1+a*x+b*x^2+c*x^3);$$

x < 30; x > 300

Deviation from fit

One parameter fit is may be acceptable

Six parameter fit is very good: σ ~1%

Light in log scale 10~ 30MIP 20~ 300MIP

Saturation curve is stable within \sim 5% for HV variation of $\pm 0.3V$ equivalent to huge T variation of ± 15 degrees

Temperature sensitivity of breakdown voltage

$$V_{bd} = V_{bd}(T_0) - dV_{bd}/dT^*(T - T_0)$$

CPTA SiPMs have much smaller T sensitivity than MEPhI and Hamamatsu SiPMs

VERY preliminary studies of required dynamic range

Treatment of hits above $M_{limit} = 90(100)$ MIP

- Showers contained in AHCAL (start in the first 5 AHCAL layers)
- $= E_{reco} = E_{ECAL} + E_{HCAL} + E_{TCMT}$
- CALICE software v04-01, em scale, e/pi = 1.19
- Mean E and sigma σ derived from Gaussian fit
- Data: π⁻ at 10, 40 and 80 GeV from CERN 2007 test beam

Method 1: if $e_{hit} \ge M_{limit}$ then e_{hit} is replaced by the mean for the hits above M_{limit} for given energy.

Method 2: if $e_{hit} > M_{limit}$ then $e_{hit} = M_{limit}$

No changes in resolution for 10 GeV

- Fraction of events with e_{hit} ≥ 90 MIP ~0.2%
- Fraction of events with e_{hit} ≥ 100 MIP < 0.1%

Improvement for 40 GeV

Fraction of events with:

 $e_{hit} \ge 90 \text{ MIP: } \sim 12\%$

 $e_{hit} \ge 100 \text{ MIP}: ~8\%$

Method 1: rel. improvement ~1% Method 2: rel. improvement ~4%

Method 1: rel. improvement ~0.3% Method 2: rel. improvement ~3%

Shift of mean value < 0.3%

Improvement for 80 GeV

Fraction of events with:

 $e_{hit} \ge 100 \text{ MIP: } \sim 36\%$

Method 1: rel. improvement ~4%

Shift of mean value ~0.4%

Method 2: rel. improvement ~8%

Shift of mean value ~1.6%

Method 1: rel. improvement ~3% Shift of mean value ~0.3%

Method 2: rel. improvement ~7% Shift of mean value ~1.3%

Looks promising but there are many questions

Why mean value changes slightly for method 1? Is improvement in method1 due to suppression of e/m parts of shower? There are 80 GeV runs with no improvement (but also without deterioration)

There is 10% (60%) deterioration of resolution for 30 (50) GeV positrons

Conclusions

- 1.Saturation of CPTA SiPMs in tiles depends on many factors
 (distance to fiber, shift, SiPM parameters like X-talk, efficiency, etc)
 but can be well described by a 6 parameter fit function.
 May be more simple fit function can be found (but it is not important)
- 2. Saturation curve dependence on T is very small for CPTA SiPMs (CPTA SiPMs have much smaller Vbd T sensitivity than other SiPMs) If changes in T are compensated by bias V adjustment saturation curve should not change at all.
- 3. Very preliminary studies of the required dynamic range indicate that 100MIP dynamic range is sufficient for hadron showers up to 80GeV, however there are still many questions.