

Concept and status of the LED calibration system

Mathias Götze, Julian Sauer, Sebastian Weber and Christian Zeitnitz

Short reminder on the analog HCAL

Design is driven by particle flow requirements, minimal dead space and high granularity

- Placed inside the tracker's magnetic field, self-supporting sampling structure of 2cm steel + 3mm scintillator + embedded readout
- 8·10⁶ scintillator tiles, each with silicon photomultiplier (SiPM)

• SiPM: insensitive to magnetic fields, highly miniaturized, high gain (10⁵), low supply voltage (40V), plain wiring

SiPM structure and signal

- SiPM are arrays of ~10³ avalanche photo diodes ('Pixels'), wired in parallel
- Pixels are single photon sensitive
- Operated in Geiger mode:
 fixed charge per avalanche
 → analog signal quantized by
 pixel discharge
- Single photon spectrum (SPS):
 histogram of the SiPM signal
 for small light pulses shows
 quantization

Overlaying SiPM signals cluster around 'integer' pixel discharges

SiPM gain calibration

SiPM disadvantages:

SiPM gain varies up to 300% from the manufacturing process

SiPM gain shows temperature and supply voltage dependance

the SiPM supply voltages

→ use the latter characteristic to equalize the gains by adjusting

Extract the gain from SPS as peak distance

Saturation correction

- Once fired, a pixel has a dead time, finite number of pixels
 - → exponential SiPM response for large photon numbers
- Coupling of tile to SiPM can change the number of effective pixels
 - → strong but short light pulses can saturate the SiPM
- Pulses must be short to avoid re-firing

Embedded calibration system

- SPS creation with short light pulses for gain calibration
- Saturation correction with large but short pulses
 - → wide dynamic range
- System must be scalable to millions of channels (mechanically, financial)

Approach:

- Calibration system as part of the embedded readout electronics (one LED + pulse circuit per tile)
 - → Optimal scalability
- Developed by DESY & Uni Wuppertal

Embedded calibration system II

Choice of LED and pulse circuit are essential for the calibration performance: optimized for shortest pulses

- Pulse circuit idea:
 - Capacitor discharge via fast transistor through LED, V_calib steers light yield
- Several different LED types tested
 - Lowest internal capacitance necessary
 - Single-quantum-well LEDs are good (usually UV-LEDs)

Pulse length could be fixed at around 8ns for reasonable
 V_calib (3-10V) → see next slide

Pulse length

- Pulse length should be comparable to the light pulse of a traversing particle
 (time constant of tile is about 10ns)
- Measurement with fast PMT
- V_calib steers the light yield
- Low light yield dependence

Pulse length and SPS quality

- V_calib range, that yields
 SPS is limited
 - → shorter pulses allow for more peaks, before SPS gets diffuse
 - → better overall quality
- Mean of the SPS
 corresponds to light yield
 → possible to create SPS
 for much higher photon
 counts per pulse
- Important for multi SiPM systems

Calibration of multi SiPM systems

- More parameters to be taken into account:
 - LED Spread in light yield, collection efficiency of the tiles
 - → Changes the received photon count for a given V_calib
- Problem: disjunct V_calib ranges for SPS between SiPM if the V_calib range is to small
- Example for >30ns pulses from an electronic prototype (HBU0)

for 39 SiPM 5 V_calib settings needed

Multi SiPM calibration

More benchmarks: Calibration speed, low failure rate (no SPS creation), optional: optical crosstalk measurements

Keep system simple: common V_calib for all channels (no programmable V calib supply per channel)

- Importance of SPS quality:
 - → broader spectra allow bigger overlap (ideal: no disjunction)
 - → clear spectra require less statistic
 - → more tolerance for long SiPM signal tails (to be shown)
- Minimize the spread in light yield and collection efficiency
 - → parallel capacitors to unify LED light yield
 - → LED preselection (vendor or CALICE)
 - Mechanical realization challenging!

Current studies:

- Repeat calibration of HBU0 (65 SiPM channels) with optimized pulse circuit
 - Former calibration took 5 different
 V_calib sets, 22 SiPM showed
 smeared spectra (no SPS possible)
- Use calib. environment (light-proof, temperature controlled XYZ table) to bring same pulse circuit to each tile of the setup
 - repeat measurement and compare:how many V_calib settings needed?Possible to recover smeared spectra?
 - Saturation comparison

Saturation

- High V_calib pulses into tile, PMT scans LED backside
 - Measuring partially the same light pulse at fixed ratio
 - → Distinguish SiPM and PMT or LED saturation

V_calib in mV (not proportional to photon count)

PMT single in pixel-equivalents (approx.) Full dynamic range: 12V ~ 15k pixels

Outlook

- First multi SiPM setup in Wuppertal:
 - Calibration studies with new pulser about to begin
 - Compare pulser performances for swift and complete calib. for all SiPM → duration full HCAL calibration
 - Develop a calib. procedure, optimize fits etc.
- Crosstalk measurements: using the XYZ table to pulse single tiles; implement pulse pattern option for the calib. system → determine crosstalk matrix for each cell of setup
- New electronic prototype: new HBU using a 'state of the art pulser', 72 SiPM setup
 - Use for inter-pulser comparison (refit XYZ table, bring tile to pulser)