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SiW Ecal - Basics

The SiW Ecal in the ILD Detector Basic requirements

- Extreme high granularity

- Compact and hermetic

Basic choices

- Tungsten as absorber material
- X,=3.5mm, R =9mm, A =96mm

- Narrow showers
- Assures compact design

- Silicon as active material
- Support compact design
- Allows for pixelisation
- Large signal/noise ratio

SiW Ecal designed as particle flow calorimeter
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SiW Ecal Physics Prototype

Structure 2.8 Structure 1.4
(2x1.4mm of W plates) (1.4mm of W plates)

Structure 4.2
(3xL.4mm of W plates)

——

Metal inserts
{interface)

ACTIVE ZONE

Detector slab (30) (18x18 cm?)

Shietding PCB

Front End
= | electronics zone

Silicon wafer

30 layers of tungsten:

* 10 x 1.4 mm (0.4 X,)
10 x 2.8 mm (0.8 X,)
10 x4.2 mm (1.2 X,)
> 24 X, total, 1 A

% integrated in detector housing
0 Compact and self-supporting
detector design

6x6 PIN diode matrix
Resistivity: 5kQcm - 80 (e/hole pairs)/um

Thickness:
525um

Total: 9720 Pixels/Channels 3
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Large scale beam tests
Experimental setup

_ Particle distance~ 5 cm
Zoom into Ecal > No confusion !!!
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- 2005 Ecal 2 / 3 equipped

- 2006, Ecal 2 / 3 equipped
Low energy electrons (1-6 GeV at DESY), high energy electrons (6-50 GeV at CERN)

- 2007, Ecal nearly completely equipped
High energy pions (6-120 GeV CERN), Tests of embedded electronics

- 2008 FNAL, Ecal completely equipped
Pions at low energy,

-2011 FNAL, Ecal CompletelyCﬁﬂ}tiEQ%anboration Meeting May 2011



Square pattern in wafer response

R&D for silicon wafers
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Attenuation of Xtalk

Beyond the physics prototype

Wafers with smaller pixels

5x5 mm?2 pixels
~optimal “ILD width”

Thickness: 325 um
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Characterisation
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Calibration - Uniformity of response
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Differences in response can
attributed to different

- Manufacturers
- Production series

Experience to deal with different
manufacturers and production series
Essential for final detector

~3000m? of Silicon needed

G, (ADC counts)
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Calibration with with wide spread p-beam

18 Mio. Events
Uniform response of all cells
only 1.4%. dead cells
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Pedestal instabilities

Fake differential in chip PHY3 makes pedestals strongly
dependend on exterior effects

Baseline of a whole PCB is changing dynamically

Pedestal calculated in the pedestal events is no longer
valid

Calculation wrt to this pedestal may cause much too high
values of energy deposit

Time: 12:49:23:471:761 Sun Jul 29 2007
Hits: 274 Energy: 350.079 mips hEcalHitsPerLayer | [ ]
&= T T T T T

Run 331105:0 Event 14970

l|.J.J.J.|.I.I.I.}.L.l.l{.J.J.J.l.l.l.l.I.L

energy (mip)
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Further noise problems

* All noise values for the cells on a PCB are too high

* Very sensitive to the delivered power, thus to the power
supplies and/or the power cables

 Changing of power cable can solve the problem

 Several cables marked as ,,problematic” - need
replacements

* Access difficult in many cases (danger to do more harm
than good)

hEcaIPedRMEChrpAveraﬂ 5int1?' |

Typical — E» !
noise value :

PedRMS5AverPerChip
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Offline correction of correlated noise
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Application of offline correction

Noise problems annoyed shift crews but don't compromise data analysis
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Fighting the correlated noise
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Proper grounding of Ecall layers and DAQ

Net effect:

< 2008 Daily error bursts
2008 long periods w/o noise problems
2011 Only very occasional noise problems

10
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Ecal slow control and diagnostics

- Ecal SC was easy to operate and
Sufficient for 99% of the running time

Hlow Control_NewDefaults, vi

VID‘J‘S Window Heb il e e e T 7 M' 7” i 4 "R the remaining 1%

- Only monitoring of entire system

- No access/monitoring of individual
Components

=> Qccuring problems required
Always manual intervention

=> Time consuming and
accident prone

Example: Wafer break through (?) in 2011
Could only be diagnosed upon
disassembly of the detector
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Stability of detector - Example calibration

Calibration constants in different beam test campaigns
PhD Thesis H. Li, LAL
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High correlation between calibration constants
Constants obtained in 2007 were still applied for 2011 online monitor

No sign of ageing
Wafer Breakthrough in 20117
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Summary and conclusion

- Successful running of SIW Ecal between 2005 and 2011
- Quick installation and easy operation
- Stable response over 6 years
- Occurring noise problems could be largely remedied by
careful revision of detector grounding
Offline corrections

- Calibration procedure fairly simple

- Slow control and diagnostics to be improved for next prototype

CALICE Collaboration Meeting May 2011
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Backup Slides
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Stability of calibration?

Important Criterium during evaluation process of detector concepts
Affects both: precision and operability of detector: ~10° calo cells in LC Detector

Calibration Constants on testbench and in beam test campaign
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High Correlation between calibration constants

For “final” detector:
Detector modules can be calibrated in beam test prior to installation
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Linearity of response

Overview Residuals
+2 / ndf 17.64 /32
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- Highly linear response over large energy range

- Linearity well reproduced by MC
MIP/GeV ~ 266.5 [1/GeV]

- Non-linearity O(1%)
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Energy resolution
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Example 30 GeV electron beam:

Gaussian like calorimeter response

Resolution curve shows typical VE dependency

AL, _|16.6%0.1(stat.)
E meas. \/E [GeV]

®(1.1+£0.1)|%

- Resolution well described by MC
- Confirms value used in LOI

Design emphasises spatial granularity over
energy resolution

Calorimeter for Particle Flow
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Exploiting the high granularity - Particle separation
High granularity allows for application of advanced imaging processing techniques

E.g. Hough transformation

Events recorded in test beam

Two entering

the SiW Ecal
Secondary muon within

electron shower

18
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y direction (pad number)

Granularity and hadronic cascades

(Start of) Hadronic showers in the SiW Ecal

Complex and impressive Simple but nice
18 —~ 18
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Initial Pion © ]
8 T 8 |
6 Interaction 5 -
Ejected Nucleon
* Outgoing %
o Fragments 5
B 5 10 15 20 25 30 ° s 10 15 20 25 30 °
z direction (layer number) z direction (layer number)
Inelastic reaction in SiW Ecal Nucleon ejection in SiW Ecal

High granularity permits detailed view into hadronic shower
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Transversal shower profiles and shower radius

Affects overlap of showers <-> Importance for PFA
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Towards high energy: Underestimation of content in SiW Ecal
Relatively small difference between models (~15%)
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<E>/MIPS

<E>/MIPS

Longitudinal energy profiles

Sensitivity to different shower components

Shower components:

- electrons/positrons
knock-on, ionisation, etc.

from nuclear fragmentation
- Mmesons
- others
- sum

Significant difference between Models

- Particularly for short range component
(protons)

Granularity of SiW Ecal allows
(some) disentangling of components

Further studies for shower decomposition
are ongoing
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