

SiW Ecal physics prototype Six years of running experience

Roman Pöschl LAL Orsay

CALICE Collaboration Meeting May 2011

SiW Ecal - Basics

The SiW Ecal in the ILD Detector

Basic requirements

- Extreme high granularity
- Compact and hermetic

Basic choices

- Tungsten as absorber material
 - $-X_0 = 3.5 \text{mm}, R_M = 9 \text{mm}, \lambda_1 = 96 \text{mm}$
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisation
 - Large signal/noise ratio

SiW Ecal designed as particle flow calorimeter

SiW Ecal Physics Prototype

30 layers of tungsten:

- 10 x 1.4 mm (0.4 X_0)
- 10 x 2.8 mm $(0.8 X_0)$
- 10 x 4.2 mm (1.2 X₀)
- ► 24 X_0 total, 1 λ_1

½ integrated in detector housing
 ⇒ Compact and self-supporting detector design

6x6 PIN diode matrix

Resistivity: $5k\Omega cm - 80$ (e/hole pairs)/ μm

Total: 9720 Pixels/Channels

Jaτion Meeting May 2011

Large scale beam tests

Experimental setup

Zoom into Ecal

Particle distance ~ 5 cm → No confusion !!!

- 2005 Ecal 2 / 3 equipped
- 2006, Ecal 2 / 3 equipped Low energy electrons (1-6 GeV at DESY), high energy electrons (6-50 GeV at CERN)
- 2007, Ecal nearly completely equipped High energy pions (6-120 GeV CERN), Tests of embedded electronics
- 2008 FNAL, Ecal completely equipped Pions at low energy,
- 2011 FNAL, Ecal completely equipped laboration Meeting May 2011

R&D for silicon wafers

Beyond the physics prototype

Calibration - Uniformity of response

Calibration with with wide spread µ-beam

18 Mio. Events Uniform response of all cells only 1.4‰ dead cells

Differences in response can attributed to different

- Manufacturers
- Production series

Experience to deal with different manufacturers and production series Essential for final detector ~3000m² of Silicon needed

Pedestal instabilities

- Fake differential in chip PHY3 makes pedestals strongly dependend on exterior effects
- Baseline of a whole PCB is changing dynamically
- Pedestal calculated in the pedestal events is no longer valid
- Calculation wrt to this pedestal may cause much too high values of energy deposit

Further noise problems

- All noise values for the cells on a PCB are too high
- Very sensitive to the delivered power, thus to the power supplies and/or the power cables
- Changing of power cable can solve the problem
- Several cables marked as "problematic" need replacements
- Access difficult in many cases (danger to do more harm than good)

Offline correction of correlated noise

Application of offline correction

Noise problems annoyed shift crews but **don't** compromise data analysis

Fighting the correlated noise

New patch panel (2008)

Proper grounding of Ecall layers and DAQ

Net effect:

< 2008 Daily error bursts 2008 long periods w/o noise problems 2011 Only very occasional noise problems

Ecal slow control and diagnostics

- Ecal SC was easy to operate and Sufficient for 99% of the running time
- ... the remaining 1%
- Only monitoring of entire system
- No access/monitoring of individual Components
- => Occuring problems required Always manual intervention
- => Time consuming and accident prone

Example: Wafer break through (?) in 2011 Could only be diagnosed upon disassembly of the detector

Stability of detector - Example calibration

High correlation between calibration constants

Constants obtained in 2007 were still applied for 2011 online monitor

No sign of ageing

Wafer Breakthrough in 2011?

Summary and conclusion

- Successful running of SiW Ecal between 2005 and 2011
- Quick installation and easy operation
- Stable response over 6 years
- Occurring noise problems could be largely remedied by careful revision of detector grounding
 Offline corrections
- Calibration procedure fairly simple
- Slow control and diagnostics to be improved for next prototype

Backup Slides

Stability of calibration?

Important Criterium during evaluation process of detector concepts

Affects both: precision and operability of detector: $\sim 10^8$ calo cells in LC Detector

Calibration Constants on testbench and in beam test campaign

High Correlation between calibration constants

For "final" detector:

Detector modules can be calibrated in beam test prior to installation

Linearity of response

Residuals

- Highly linear response over large energy range
- Linearity well reproduced by MC
 MIP/GeV ~ 266.5 [1/GeV]
- Non-linearity O(1%)

Energy resolution

0.25

Example 30 GeV electron beam:

Gaussian like calorimeter response

Resolution curve shows typical √E dependency

$$\frac{\Delta E_{meas.}}{E_{meas.}} = \left[\frac{16.6 \pm 0.1 (stat.)}{\sqrt{E \text{ [GeV]}}} \oplus (1.1 \pm 0.1) \right] \%$$

- Resolution well described by MC
- Confirms value used in LOI

Design emphasises spatial granularity over energy resolution

Calorimeter for Particle Flow

Exploiting the high granularity – Particle separation High granularity allows for application of advanced imaging processing techniques

E.g. Hough transformation

Events recorded in test beam

Granularity and hadronic cascades

(Start of) Hadronic showers in the SiW Ecal

Inelastic reaction in SiW Ecal

Nucleon ejection in SiW Ecal

High granularity permits detailed view into hadronic shower

Transversal shower profiles and shower radius

Affects overlap of showers <-> Importance for PFA

Small energy ok for 'BERT' models Towards high energy: Underestimation of content in SiW Ecal Relatively small difference between models ($\sim 15\%$)

Longitudinal energy profiles

Sensitivity to different shower components

Shower components:

- electrons/positrons
 knock-on, ionisation, etc.
- protonsfrom nuclear fragmentation
- mesons
- others
- sum

Significant difference between Models

Particularly for short range component (protons)

Granularity of SiW Ecal allows (some) disentangling of components

Further studies for shower decomposition are ongoing