

DHCAL Pion and Positron Analysis

Burak Bilki, University of Iowa (José Repond, Argonne National Laboratory)

CALICE Meeting, CERN, May 19 – 21, 2011

Test Beam Activities

Run period	Date	Configuration	Muon events [10 ⁶]	Secondary beam events [10 ⁶]	Secondary beam momenta [GeV/c]
1	Oct 2010	DHCAL	1.4	1.5	2,4,8,10,12,16, 20,25,32
2	Jan 2011	DHCAL + partial TCMT	1.6	3.6	2,4,6,8,10,60
3	Apr 2011	ECAL + DHCAL + TCMT	3.5	4.8	4,8,12,16,20,25,32,40,50,60,120
TOTAL			6.5	+ 9.9	= 16.4M

Preliminary Analysis

First look at data

To provide possible feedback to data taking and setup Speed is important!

Develop analysis tools

Final analysis will require large effort This is the beginning...

Ultimate goals

Validate the DHCAL concept Measure hadronic showers in great detail

Analysis Strategy

Event selection

Cluster hits in each layer using closest-neighbor clustering (1 common side)

- 1) Exactly 1 cluster in layer 0 (←rejects multi-particle events)
- 2) Not more than 4 hits in layer 0 (\leftarrow rejects upstream interactions)
- 3) At least 3 layers with hits (\leftarrow rejects spurious triggers, cosmic rays)
- 4) No hits in outer 2 rows (← improves lateral containment of showers)

Identify muon tracks

- 1) Count layers with at least 1 hit = N_{active}
- 2) Draw line from cluster in layer 0 with last cluster in stack
- 3) Count clusters in intermediate layers and within 2 cm of line = N_{match}
- 4) Identify layers with additional hits within a cylinder with 1.5 cm < R < 25 cm around line

If $N_{match} = N_{active} \rightarrow$ Identify as muon

If N_{match} > 0.8 N_{active} and no 2 consecutive layers with additional hits \rightarrow Identify as muon

Test muon ID

Muon Run 600008 Efficiency ~ 97% Remaining 3% not included in pion/positron sample, due to longitudinal containment cut

Pion ID

(Easy at high momenta, tough < 8 GeV/c) Identify MIP segment starting from layer 0 Identify last cluster in stack and draw line to last MIP cluster If at least 4 intermediate clusters \rightarrow **Identify as pion** If 2 track segments found with at least 3 layers and angle > 20⁰ \rightarrow **Identify as pion**

Pion and Positron ID

Only for events not already classified Calculate

If $r_{rms} > 5 \rightarrow$ **Identify as pion** (this adds 4% of pions) If $r_{rms} < 5 \rightarrow$ **Identify as positron** (this is the only positron selection)

Results - October 2010 Data

CALICE Preliminary

CALICE Preliminary

8

CALICE Preliminary

For p < 8 GeV/c

Beam dominated by positrons DHCAL close to compensating Pion ID not reliable → **more work needed**

Pion Selection

CALICE Preliminary (response not calibrated)

16 (off), 32 GeV/c (effects of saturation expected) data points are not included in the fit.

Standard pion selection + No hits in last two layers (longitudinal containment

Pion Selection

CALICE Preliminary (response not yet calibrated)

B. Bilki et.al. JINST4 P10008, 2009.

MC predictions for a large-size DHCAL based on the Vertical Slice Test.

32 GeV data point is not included in the fit.

Standard pion selection

+ No hits in last two layers (longitudinal containment)

Correction for non-linearity

Needed to establish resolution Correction on an event-by-event basis Data (points) and MC (red line) for the Vertical Slice Test and the MC predictions for a largesize DHCAL (green, dashed line).

14

16

Positron Selection

Positron Selection

CALICE Preliminary (response not calibrated)

Uncorrected for non-linearity Corrected for non-linearity

1st Attempt at Calibration

Track segment analysis

Use neighboring layers to reconstruct track segments Measure response $\varepsilon\mu$ = calibration factor

Calibration factor

One entry per run

Before Calibration

After Calibration

16 and 32 GeV not used

All points used 32 GeV point close to line (as expected)

Longitudinally contained π^+ showers

After Calibration

Before Calibration

16 and 32 GeV not used

All points used

Constant term somewhat reduced (as expected)

Result strikingly similar to AHCAL w/out SW compensation

Conclusion

Preliminary analysis

Developed particle ID 1st attempt at implementing calibration

Results

Response appears to be quite linear (perhaps some saturation at 32 GeV/c) Resolution as expected

Lot's to do

Include low momentum runs: 2,4,6 GeV/c Improve particle ID (e.g. use Cerenkov) Study effect of noise...

The DHCAL at 120 GeV

In average ~1400 hits

Combined system in 3D