

17th International Workshop on Top Quark Physics (TOP2024, Saint-Malo, Brittany, France) [23/09/2024]

Charlie Chen (University of Victoria) On behalf of the ATLAS Collaboration

University of Victoria

Introduction

- The **top quark** has the largest mass of all known Standard Model particles and carries several unique properties.
 - Decays before hadronization, allowing for the study of a bare quark (through its decay products).
 - Most top properties can be directly measured (e.g., mass, decay width, branching ratio, polarization, cross-sections, etc.).

- As a "top factory", the LHC produces top quarks predominantly via the **strong interaction** in $t\bar{t}$ pairs or via the **electroweak interaction** in singly-resonant production.
- Measurements probe the limits of perturbative QCD at NNLO precision.
 - Top quark production is relatively wellmodeled → discrepancies in measurements could be windows to New Physics.
- Top processes constitute the main background in many Beyond the Standard Model (BSM) searches.
 - Measurements constrain MC generator parameters and improves the modeling of SM backgrounds.

Contents

- This talk will highlight selected <u>ATLAS</u> Run 2 (13 TeV) and early Run 3 (13.6 TeV) results, including analyses involving heavy ion collisions.
- Single top-quark inclusive production cross-section analyses:
 - *tW* single-top measurement at 13 TeV (dilepton) <u>arXiv:2407.15594</u>
 - Single top t-channel cross-section at 13 TeV JHEP 05 (2024) 305
 - Single top t-channel cross-section at 5.02 TeV Phys. Lett. B 854 (2024) 138726
- $t\bar{t}$ inclusive production cross-section analyses:
 - *tt* production cross-section and ratio to Z production cross-section at 13.6 TeV <u>Phys. Lett. B</u> 848 (2024) 138376
 - Observation of top pair production in proton-lead collisions at 8.16 TeV arXiv:2405.05078

Single-Top Inclusive Cross-Section Measurements

- Two dominant channels for single-top production: **t-channel** and **tW**.
 - Involves electroweak interaction containing a $t \rightarrow Wb$ vertex \rightarrow measure V_{tb} CKM matrix element.

calculated at NNLO (SingleTopNNLORef).

tW single-top measurement at 13 TeV (dilepton)

- Event selection: chosen to reduce backgrounds from $t\bar{t}$, W+jets, Z+jets, and diboson.
 - 2 leptons $(e^{\pm}\mu^{\pm}), \geq 1$ b-jet.
 - Classify events into 3 signal regions, 1j1b, 2j1b, 2j2b.
- Profile Likelihood Fit (PLF) applied to Boosted Decision Tree (BDT) discriminant.

- Systematic uncertainties are taken as nuisance parameters included in the fit.
 - *tt* modeling: 13.2%
 - Jet Energy Scale (JES): 12.0%
 - E_T^{miss} recon. & calib.: 11.0%

<u>arXiv:2407.15594</u>, $\sqrt{s} = 13 \, TeV$, 140 fb^{-1}

tW single-top measurement at 13 TeV (dilepton)

- Excluding certain BDT ranges relaxes constraints imposed on certain uncertainties (e.g. interference on double-counting between single-top and $t\bar{t}$, DR vs. DS) (see backup).
 - More reliable measurement at the cost of loss of precision.

6

Single top t-channel cross-section at 13 TeV

Event selection:

- Exactly 1 lepton (p_T $> 28 \, GeV$).
- Exactly 2 jets ($p_T > 30 \text{ GeV}$), exactly 1 b-jet.
- Additional cuts on E_T^{miss} , • $m_T(W)$ reduces multijet backgrounds.
- Define 2 signal regions (SR plus, SR minus).
- D_{nn} distributions used in profile maximum likelihood fit (in each signal region) to determine signal yields and calculate total cross-section.
- on a combined tq and $\bar{t}q$ sample.

Single top t-channel cross-section at 13 TeV

- $\sigma(tq) = 137^{+8}_{-8} pb$
- $\bullet \quad \sigma(\bar{t}q) = 84^{+6}_{-5} \, pb \quad \langle 7\%$

Differences between $\sigma(tq)$ and $\sigma(\bar{t}q)$ driven by differences in PDFs for quarks and antiquarks.

Good agreement with SM predictions. $\sigma(tq) = 134.2^{+2.6}_{-1.7} pb$ $\sigma(\bar{t}q) = 80.0^{+1.8}_{-1.4} pb$

JHEP 05 (2024) 305, $\sqrt{s} = 13 TeV$, 140 fb^{-1}

•
$$R_t = \sigma(tq) / \sigma(\bar{t}q) = 1.636^{+0.036}_{-0.034}$$

- Precision measurements of R_t are very useful.
 - Many systematic uncertainties cancel out.
 - Constrains PDFs if the measured R_t is included into future fits.
 - Distinguish between different PDF sets.
 - $|f_{LV}V_{tb}| = 1.015 \pm 0.031$ (3%)
 - The measured cross-sections can also be interpreted in an EFT framework (see <u>backup</u>).
 - See Maren's <u>talk</u> at the YSF.

Single top t-channel cross-section at 5.02 TeV

- Measurement at 5.02 TeV provides an independent test of the SM with different backgrounds and detector uncertainties.
- Event selection: exactly 1 lepton ($p_T > 18 \text{ GeV}$), exactly 2 jets ($p_T > 23 \text{ GeV}$), exactly 1 b-jet.
 - Additional cuts on E_T^{miss} , $m_T(W)$ reduces multijet backgrounds.

- Instrumental uncertainties estimated directly using the 5.02 TeV sample or extrapolated from high pileup 13 TeV sample.
 - Dominant uncertainties (see <u>backup</u>): statistical (16%), single-top modeling (8.6%), mis-ID leptons (6.3%), jet uncertainties (~ 4%). Phys. Lett. B 854 (2024) 138726, $\sqrt{s} = 5.02 TeV$, 255 pb^{-1}

Single top t-channel cross-section at 5.02 TeV

Inclusive cross-section [pb]

$t\bar{t}$ Inclusive Cross-Section Measurements

 Most recent tt cross section predictions (above) are calculated at NNLO+NNLL using soft gluon resummation (<u>TtbarNNLO</u>).

$t\bar{t}$ production and ratio to Z production crosssection at 13.6 TeV

• Fit reduces uncertainties in certain signal regions.

- Additional dilepton mass window applied in *ee* and $\mu\mu$ events \rightarrow estimate $Z \rightarrow ll$ contribution.
- Allows for very precise measurement of $R_{t\bar{t}/Z}$.
 - Cancellation of several systematic uncertainties.
 - Sensitive to gluon-to-quark PDF ratio.
- Use a profile likelihood fit (left) to extract $\sigma_{t\bar{t}}$ and $R_{t\bar{t}/Z}$.

<u>Phys. Lett. B 848 (2024) 138376</u>, $\sqrt{s} = 13.6 \, TeV$, 29 fb^{-1}

$t\bar{t}$ production and ratio to Z production crosssection at 13.6 TeV

Observation of top pair production in proton-lead collisions at 8.16 TeV

 In p + Pb collisions, measurements of top quarks access regions of nuclear PDFs (nPDF) that are not well-constrained by other measurements (e.g., gluon nPDFs are not well constrained due to limited data).

- $2\ell 1b$, $2\ell 2b$ event selection:
 - Discard events with an invariant mass $(m_{\ell\ell})$ within a Z-mass window (80 $< m_{\ell\ell} < 100 \ GeV$).
 - $m_{\ell\ell} > 15 (45) \text{ GeV}$ in the $e\mu$ (ee and $\mu\mu$) channel.
 - \geq 2 jets (\geq 1 b-jet).

- $1\ell 1b \ e$ +jets, $1\ell 2bincl \ e$ +jets, $1\ell 1b \ \mu$ +jets, $1\ell 2bincl \ \mu$ +jets) event selection.
 - Exactly 1 lepton.
 - \geq 4 jets, (\geq 1 b-jet).

- See <u>backup</u> for $1\ell 1b \mu$ +jets, $1\ell 2bincl \mu$ +jets control plots.
 - <u>arXiv:2405.05078</u>, $\sqrt{s_{NN}} = 8.16 \ TeV$, 165 nb^{-1}

Observation of top pair production in proton-lead collisions at 8.16 TeV

- Each $H_T^{l,j}$ distribution is entered into a binned profile likelihood fit.
- Systematic uncertainties are represented as Nuisance Parameters and are included as additional fit parameters.

Summary

- The latest inclusive cross-sections measurements of single- and double-top quark production have been presented.
 - Single-top cross-sections measured very precisely at the nominal 13 *TeV* in the fully-leptonic channel.
 - Multiple measurements of $|f_{LV}V_{tb}|$ in different single-top production channels \rightarrow independent tests of this factor.
 - In a single-top *t*-channel measurement at a special 5.02 *TeV* collision energy we studied different detector uncertainties in a low pileup environment.
 - Top quark pair production cross-section in the fully-leptonic channel measured using relatively new Run 3 data \rightarrow estimate $Z \rightarrow ll$ contribution.
 - Top quark pair production cross-section measured using heavy-ion collisions (p+Pb) \rightarrow constrain nuclear PDFS in regions that are not well-constrained by other measurements.
- Presently, we can measure $t\bar{t}$ cross-sections up to a precision of 1.8% (13 TeV).
- Have not yet observed s-channel single-top production due to large $t\bar{t}$ backgrounds and its uncertainties.
- All measurements agree well with current SM predictions.

Backup

tW single-top measurement at 13 TeV (dilepton)

				Variable Definition
Variable	1j1b	2j1b	2j2b	$p_{\rm T}(s)$ Transverse component of the vector sum of momenta m(s) Invariant mass of the system of multiple objects s
$p_{T}(\ell_{1}\ell_{2}j_{1}E_{T}^{miss})$ $p_{T}(j_{S1})$ Centrality($\ell_{1}\ell_{2}$) $m_{T}(j_{1}E_{T}^{miss})$ $m(\ell_{1}j_{1})$ $m(\ell_{2}j_{1})$ $\Delta p_{T}(\ell_{1},\ell_{2})$ $p_{T}(\ell_{1}\ell_{2})$ $m(\ell_{1}i_{1}E_{T}^{miss})$	1 2 3 4 5 6 7 8	3 2 5	1 4	• Several observables are constructed using the set of final place of the set of the se
$p_{\mathrm{T}}(j_{1}E_{\mathrm{T}}^{\mathrm{miss}})$	10			That-state objects $(o_1,, o_N)$ (top).
$\Delta R(\ell_2, j_1) p_{\rm T}(\ell_1 \ell_2 E_{\rm T}^{\rm miss})$		6	6	 These are used as input to the BDT, ranked by importance in each of the 3 defined signal regions
$m(\ell_1 j_2)$	-	1	2	(left).
$p_{\rm T}(\ell_1\ell_2j_1j_2E_{\rm T}^{\rm miss})$	_	4		
$H_{\mathrm{T}}^{\mathrm{ratio}}(\ell_1\ell_2,\ell_1\ell_2j_1j_2E_{\mathrm{T}}^{\mathrm{miss}})$	_	7		
$H_{\rm T}^{\rm ratio}(\ell_1\ell_2,\ell_1\ell_2j_1E_{\rm T}^{\rm miss})$	_	8		
$p_{\mathrm{T}}(j_2)$	-		3	
$m(\ell_2 j_2)$	_		5	

tW single-top measurement at 13 TeV (dilepton)

- Certain BDT ranges are excluded \rightarrow avoids overconstraining certain uncertainties (*DR* vs. *DS*, $t\bar{t}$ partonshowering) in non-physical ways.
 - Remove sources of uncertainty if their effects fall below a certain threshold (normalization: < 0.05%, shape effects: at least one bin must vary > 0.1%).
 - Ratio between post-fit to pre-fit uncertainties relaxed from 30-40% to 60-90%.
 - Results in loss of precision \rightarrow post-fit error on fitted signal strength (μ_{tW}) increases from 13% to 19%.

17th International Workshop on Top Quark Physics (TOP2024) Charlie Chen (University of Victoria)

Single top t-channel cross-section at 13 TeV

No.	Symbol Description		
1.	m(jb)	Invariant mass of the untagged jet (j) and the <i>b</i> -tagged jet (b)	
2.	$ \eta(j) $	Absolute value of the pseudorapidity of the untagged jet	Left: physical observables used
3.	$ \Delta p_{\rm T}(W,jb) $	Absolute value of the difference in transverse momentum between the reconstructed W boson and the jet pair	for training of the NN, ordered
4.	$ \Delta\phi(W,jb) $	Absolute value of the difference in azimuthal angle between the reconstructed W boson and the jet pair	by their diserminating power.
5.	m(t)	Invariant mass of the reconstructed top quark	 Initially 30 variables were
6.	$ \Delta \eta(\ell,j) $	Absolute value of the difference in pseudorapidity between the charged lepton (ℓ) and the untagged jet	defined, marginal improvements found after including more
7.	$\Delta R(\ell, j)$	Angular distance of the charged lepton and the untagged jet	variables
8.	$ \Delta\eta(b,\ell) $	Absolute value of the difference in pseudorapidity between the b -tagged jet and the charged lepton	
9.	$m_{\mathrm{T}}\left(W ight)$	Transverse mass of the W boson	
10.	$m(\ell b)$	Invariant mass of the charged lepton and the b -tagged jet	
11.	$H_{\rm T}(\ell,{\rm jets},E_{\rm T}^{\rm miss})$	Scalar sum of the transverse momenta of the charged lepton and the jets and $E_{\rm T}^{\rm miss}$	
12.	$ \Delta\eta(b,j) $	Absolute value of the difference in the pseudorapidity of the two jets	
13.	$ \Delta\phi(j,t) $	Absolute value of the difference in the azimuthal angle between the untagged jet and the reconstructed top quark	
14.	$\cos\theta^*(\ell,j)$	Cosine of the angle θ^* between the charged lepton and the untagged jet in the rest frame of the reconstructed top quark	
15.	$ \eta(\ell) $	Absolute value of the pseudorapidity of the charged lepton	
16.	S	Sphericity defined as the sum of the 2nd and 3rd largest eigenvalues of the sphericity tensor multiplied by $3/2$	
17.	$ \Delta p_{\rm T}(\ell,j) $	Absolute value of the difference in transverse momentum of the charged lepton and the untagged jet	JHEP 05 (2024) 305. $\sqrt{s} = 13 TeV. 140 fb$

Single top t-channel cross-section at 13 TeV

Good agreement with SM predictions.

- Fit results:
 - $\bullet \quad \sigma(tq) = 137^{+8}_{-8} \, pb \, \left< \frac{6\%}{6\%} \right.$
 - $\sigma(\bar{t}q) = 84^{+6}_{-5} pb$ (7%)

 $R_t = \sigma(tq) / \sigma(\bar{t}q) = 1.636^{+0.036}_{-0.034}$

Differences between $\sigma(tq)$ and $\sigma(\bar{t}q)$ driven by differences in PDFs for quarks and antiquarks.

Confidence contours calculated from maximumlikelihood scans in various $f_{LV}|V_{tq}|$ planes.

- Standard Model Effective Field Theory (SM) treats the current SM as a low-energy approximation of a more fundamental theory at an energy scale, Λ .
- In this SMEFT, two operators are considered: $O_{Qq}^{3,1}$ (four-quark operator) and $O_{\phi Q}^{3}$ (coupling the third quark generation to the Higgs boson doublet, ϕ).
- When interpreted in the EFT approach, 95% CL for these operators are estimated:

$$-0.37 < O_{Qq}^{3,1}/\Lambda^2 < 0.06 \ -0.87 < O_{\phi Q}^3/\Lambda^2 < 1.42$$

<u>JHEP 05 (2024) 305</u>, $\sqrt{s} = 13 \, TeV$, 140 fb^{-1}

Single top t-channel cross-section at 5.02 TeV

- BDT is trained using 9 input variables based on combinations of objects kinematics and global event topology.
 - Variables with highest discriminating power: scalar sum of transverse momentum of all objects (H_T) , p_T difference between W four-vector sum of untagged and b-tagged jet $(|\Delta p_T(W, ub)|)$.

Single top t-channel cross-section at 5.02 TeV

Category	$\delta\sigma(tq+\bar{t}q)/\sigma(tq+\bar{t}q)[\%]$	$\delta R_t/R_t$ [%]
Single-top quark signal modelling	8.6	4.1
Parton distribution functions	0.5	0.8
Misidentified leptons background	6.3	11.1
$W+ \ge 1b$ jets modelling	3.9	4.4
$W+ \ge 1c$ jets modelling	2.7	3.4
Z+jets normalisation	1.1	2.1
$t\bar{t}$ modelling	0.8	1.2
Single-top quark background modelling	0.6	2.1
$W+ \geq 1$ light jets modelling	0.3	0.4
Diboson normalisation	0.1	0.3
Jet energy resolution	4.6	7.8
$\sqrt{s} = 5.02 \text{ TeV}$ JES correction	4.4	5.1
Jet energy scale	4.0	5.3
Flavour tagging	2.0	1.3
Electron reconstruction	1.4	0.5
Muon reconstruction	1.3	0.7
Integrated luminosity	1.3	0.4
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.6	2.4
Jet-vertex tagging	0.07	0.05
Simulation's statistical uncertainty	2.3	6.5
Data's statistical uncertainty	16	38
Total systematic uncertainty	15	18
Total uncertainty	21	42

Some sources of uncertainties increases significantly during the measurement of R_t (e.g. statistical.

•

Phys. Lett. B 854 (2024) 138726, $\sqrt{s} = 5.02 \ TeV$, 255 pb^{-1}

Inclusive and differential cross-sections for dilepton $t\bar{t}$ production at 13 TeV

- Focus on the total inclusive cross-section measurement.
- Events must contain an electron, a muon, and either one or two b-tagged jets.
 - All reconstructed objects have $p_T > 25 \ GeV$.

- Mismodeling of events with ≥ 3 b-jets are considered using an additional $t\bar{t}$ sample with an enriched rate of events generated with ≥ 3 b-jets.
- Unfold detector-level distributions, validated using bootstrapping.
- Count number of events in fiducial phase space and normalize by number of generated events to calculate total inclusive cross-section.

<u>JHEP 07 (2023) 141</u>, $\sqrt{s} = 13 \, TeV$, 140 fb^{-1}

Inclusive and differential cross-sections for dilepton $t\bar{t}$ production at 13 TeV

Source of uncertainty	$\Delta \sigma_{t\bar{t}}^{\mathrm{fid}} / \sigma_{t\bar{t}}^{\mathrm{fid}}$ [%]	$\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ [%]
Data statistics	0.15	0.15
MC statistics	0.04	0.04
Matrix element	0.12	0.16
$h_{\rm damp}$ variation	0.01	0.01
Parton shower	0.08	0.22
$t\bar{t}$ + heavy flavour	0.34	0.34
Top $p_{\rm T}$ reweighting	0.19	0.58
Parton distribution functions	0.04	0.43
Initial-state radiation	0.11	0.37
Final-state radiation	0.29	0.35
Electron energy scale	0.10	0.10
Electron efficiency	0.37	0.37
Electron isolation (in situ)	0.51	0.51
Muon momentum scale	0.13	0.13
Muon reconstruction efficiency	0.35	0.35
Muon isolation (in situ)	0.33	0.33
Lepton trigger efficiency	0.05	0.05
Vertex association efficiency	0.03	0.03
Jet energy scale & resolution	0.10	0.10
b-tagging efficiency	0.07	0.07
$t\bar{t}/Wt$ interference	0.37	0.37
Wt cross-section	0.52	0.52
Diboson background	0.34	0.34
$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
Z + jets background	0.05	0.05
Misidentified leptons	0.32	0.32
Beam energy	0.23	0.23
Luminosity	0.93	0.93
Total uncertainty	1.6	1.8

The resulting computed total inclusive cross-section is the most precise measurement of the inclusive $t\bar{t}$ cross-section to date.

 $\sigma_{t\bar{t}} = 829 \pm 1 (stat.) \pm 13 (syst.) \pm 8 (lumi.) \pm 2 (beam) pb \langle 29 \rangle$

Improvements in precision can be traced to a reduction in the luminosity uncertainty.

Final total cross-section is in very good agreement with SM predictions.

Observation of top pair production in proton-lead collisions at 8.16 TeV

<u>arXiv:2405.05078</u>, $\sqrt{s_{NN}} = 8.16 \, TeV$, $165 \, nb^{-1}$