TOP Differential Cross Sections

Will focus on top pair production, single top differential results are covered in talk by Javier Del Riego Badas

- Top Workshop, Saint-Malo, 23 Sep 2024
 - Olaf Behnke, DESY

on behalf of the ATLAS and CMS Collaborations

Differential tt production at the LHC

- \rightarrow study kinematical & topological distributions:
- ✓ Sensitive to theory parameters

Today's Menu: review of RUN 2 results

 Make a round trip through the observable systems and kinematic distributions Compare most comprehensive ATLAS and CMS results with state-of-the-art predictions

Today's Menu: review of RUN 2 results

• Make a round trip through the observable systems and kinematic distributions Compare most comprehensive ATLAS and CMS results with state-of-the-art predictions

Featured Analyses

Exp.	Journal or arXiv:	Channel	Lumi fb-1	Phase space	Unfolding	Тор	tt	Decay particle	Additional Jets	Largest Sys
CMS	<u>2402.08486</u>	Dilepton	138	Resolved	TUnfold					JES/R
CMS	PRD 104 (2021) 092013	I+jets	137	Resolved +Boosted	MLE					JES/R
CMS	<u>PRD 97,112003</u> (2018)	l+jets	36	Resolved	D'Agostini					JES/R
ATLAS	<u>JHEP 08 (2024)</u> <u>182</u>	I+jets	140	Resolved	D'Agostini					JES/R
ATLAS	<u>JHEP07 (2023)</u> <u>141</u>	emu	140	Resolved	Bin-by-bin					tt - tW interf s and b model
ATLAS	<u>JHEP 04 (2023)</u> <u>080</u>	All had	139	Both tops Boosted	D'Agostini					Top tagging
ATLAS	<u>JHEP 06</u> (2022)063	I+jets	139	Boosted	D'Agostini					JES/R, tt modeling
ATLAS	<u>EPJC 79 (2019)</u> <u>2018</u>	l+jets	36	Resolved +Boosted	D'Agostini					JES/R

Today's Menu: review of RUN 2 results

Key questions:

- Phase space coverage, precisions, sensitivities?
- Which systems are well or not so well described by NLO+PS or NNLO?

 Make a round trip through the observable systems and kinematic distributions Compare most comprehensive ATLAS and CMS results with state-of-the-art predictions

Featured Analyses

Exp.	Journal or arXiv:	Channel	Lumi fb-1	Phase space	Unfolding	Тор	tt	Decay particle	Additional Jets	Largest Sys
CMS	<u>2402.08486</u>	Dilepton	138	Resolved	TUnfold					JES/R
CMS	<u>PRD 104 (2021)</u> <u>092013</u>	l+jets	137	Resolved +Boosted	MLE					JES/R
CMS	<u>PRD 97,112003</u> <u>(2018)</u>	l+jets	36	Resolved	D'Agostini					JES/R
ATLAS	<u>JHEP 08 (2024)</u> <u>182</u>	l+jets	140	Resolved	D'Agostini					JES/R
ATLAS	<u>JHEP07 (2023)</u> <u>141</u>	emu	140	Resolved	Bin-by-bin					tt - tW interf s and b model
ATLAS	<u>JHEP 04 (2023)</u> <u>080</u>	All had	139	Both tops Boosted	D'Agostini					Top tagging
ATLAS	<u>JHEP 06</u> (2022)063	l+jets	139	Boosted	D'Agostini					JES/R, tt modeling
ATLAS	<u>EPJC 79 (2019)</u> <u>2018</u>	l+jets	36	Resolved +Boosted	D'Agostini					JES/R

Previous Review in 2020 by M. Romano and O.B.

Models to compare to All ref

- NLO+PS Reference model: POWHEG+PYTHIA (POW)
- Effort towards common ATLAS/CMS tt MC settings

ATL-PHYS-PUB-2022-052

- For results today: ATLAS and CMS POW settings difference
- ATLAS also uses POW with $P_T(t)$ reweighted to NNLO

All references provided in the ATLAS/CMS papers

(THIA (POW) settings

	 Other press 	dictions shown toda					
	NLO+PS o(α _s ³) or higher	 POWHEG+HERWIG MCatNLO+PYTHIA MCatNLO+HERWIG FXFX (based on MC@N SHERPA 					
	NNLO o(α _s 4) or higher	 NNLO (Czakon et al.) Stripper (Czakon et al.) Matrix (Grazzini et al.) 					
ent	$\mathbf{NNLO} + \mathbf{PS}$	 MINNLOPS (Monni e 					
	o(α _s ⁴) or nigner						

ettings different ed to NNLO

p_T(t) l+jets 137 fb⁻¹ (13 TeV) JHEP 06 (2022) 063 $1/\sigma_{t\overline{t}} \cdot d \sigma_{t\overline{t}} / d p_T^{t,h}$ [1/GeV] • Data **ATLAS** 10⁻¹ ----- PWG+PY8 ---· PWG+PY8 (NNLO rw.) $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ---- PWG+H7 ---- MCatNLO+PY8 Boosted ---· PWG+PY8 $h_{damp} = 3 \times m_t$ — Sherpa Fiducial phase-space 10^{-2} ---- PWG+PY8 ISR_Up --- PWG+PY8 ISR_Down Particle level Stat.+Syst. unc. Stat. unc. 10^{-3} 10-4 10⁻⁵ <u>Prediction</u> Data 1.2 0.8 Prediction Data 1.2 0.8 1100 1600 500 1000 1500 $p_{T}(t_{h})$ [GeV] POW/ATLAS: NNLO rw. POW/ATLAS: ----- \Rightarrow Known since long time: NNLO improves p_T(t) prediction

"NLO+PS p_T(t) problem" - learn from multi-differential studies

• POW/Data $p_T(t)$ slope is • Mostly visible for 0 or 1 additional jets, see left Plot • Increases with m(tt), see <u>Plot</u>

• At high m(tt): $\Delta \eta(t, \bar{t})$ larger in data than in MC, see <u>Plot</u>

 \Rightarrow Do we need further studies?

p_T(tt)

I+jets, Parton level

11

Dilepton, Parton level, Resolved

Probing dynamics of tt production * decay

 \Rightarrow NNLO seems to improve the description

 \Rightarrow All models predict more back-to-back leptons than seen in data \Rightarrow Double differential xsec $|\Delta \Phi^{e\mu}|$: m^{eµ} is among the ones described worst \rightarrow MC Tuning potential!

Looking even deeper into tt events:

PRD 109 (2024) 112016

Boosted top Jet-substructure I+jets, all had

particle flow

2407.10879

Measurement of the Lund jet plane I+jets

- Hadronically decaying top jets, R=1, p_T>350 GeV, cluster from tracks
- Go backwards in the clustering, reinterpret mergings as emissions

Conclusion

- No model is able to describe all distributions
- NNLO improves NLO+PS descriptions for LO observables, e.g. P_T(t), but not so much for higher order observables, e.g. P_T(tt)
- Multi-differential distributions seem less well described, example: the precise ATLAS measurements of $|\Delta \Phi^{e\mu}|$: m^{eµ}

Decay particles: <u>l,b,q,q</u>'

Outlook

- Awaiting first differential σ_{tt} results
- Expect to collect ~200M+ $t\bar{t}$ events per experiment (end 2025)
- Exciting new methodic avenues ahead:
 - $d^{m}\sigma_{tt}/dx^{m}$ using Machine Learning (ML) unfolding, example: ATLAS Z+jets 2405.20041 with m=24; Find here recent overview talk on ML Unfolding
 - Providing deep tomography, perhaps even anomaly detection
 - Compete with/complementary to profile likelihood fit unfolding?
 - ML based improved top tagging and kinematic reconstructions
 - rapidly growing field \Rightarrow measure more accurately and in finer bins

Decay particles: I.b.q.q'

Backup

I+jets, Particle level, Resolved

 \Rightarrow POW with problems for leading additional jet p_T distribution, for various N^{extra jets} NNLO reweighting helps!

рт(j,1)

Particle level, with 1 boosted top quark

y(tt) vs m(tt) in bins of Nextra jet

⇒ Known from <u>1904.05237</u> to provide simultaneous sensitivity to m_t, α_s and g(x) Could still explore a great variety of not yet measured triple differential σ_{tt} , e.g. y(t):p_T(t):m(tt)

$p_{T}(t)$ in bins of m(tt)

$\Delta\eta(t,\bar{t})$ in bins of m(tt)

EPJ C 80 (2020 658

