

17th International Workshop on Top Quark Physics

September 22 to 27 aint-Malo, France

UNIVERSITEIT GENT © FACULTEIT WETENSCHAPPEN

TOP2024 Conference 23.09.2024, St. Malo

Jan van der Linden on behalf of the ATLAS and CMS Collaborations

jan.vdlinden@cern.ch

t+V measurements

Latest ATLAS measurements: ~same dataset but improved precision ($10\% \rightarrow 6\%$)

t+V

Dedicated tZq control region!
 → better bkg. control and estimation

EPJC 81 (2021) 737, JHEP 07 (2024) 163

DNN-tīZ output

• Improved control of ZZ/WZ backgrounds

→ Unreliable prediction by simulation at high $N_{jet_{300}}$ → VV + b/c/light split, tagging bins

ATLAS + Data tīZ tīZ ATLAS vs = 13 TeV, 140 ft tī+H √s = 13 TeV, 140 fb⁻¹ ZZ+I ZZ+c ttZ-3L WZ+c 100 − tīZ-4L ZZ+b tWZ 400 SR-3L-WZ ZZ+b WZ+ Other CR-4L-ZZ 350 Post-Fit F-e-HF ZZ+iets Post-Fit tWZ F-other F-u-HF F-e-HF Uncertainty 250 200 150 100 50 Data / Pred 1.1 1.25 0.9 0.75 270% Event Count b-tagging efficiency of the leading b-jet

Latest ATLAS measurements: ~same dataset but improved precision $(10\% \rightarrow 6\%)$

Inclusion of 2L SR (13% precision alone)
 → Difficult prompt backgrounds

• From fitting yields to DNN distributions

CMS approach – simultaneous measurements:

- In 3L: tWZ, tZq backgrounds large impact on results \rightarrow Measure simultaneously
- DNN in 3L signal region \rightarrow distinguish processes
 - \circ + 4L region for more ttZ, binned in N_h
 - + 3L0b control region for WZ, binned in jet multiplicity

Common challenges:

- Non-prompt background: fake leptons from tt and DY+jets events
 - \circ Difficult to estimate well from simulation \rightarrow data-driven estimations
- 2L prompt background from tt and DY+jets \rightarrow also data-driven
 - \circ Description of tt and DY at high $\mathrm{N_{iet}}$ bad \rightarrow do not want to rely on it
 - tt: eµ transfer region; DY: free-floating parameter for Z+b/c/light

CMS combined results

 $\sigma(t\bar{t}Z + tWZ) = 1.14 \pm 0.05 \text{ (stat)} \pm 0.04 \text{ (syst) pb},$ $\sigma(tZq) = 0.81 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst) pb}.$

Impact of fitting one process without the other \rightarrow tZq, tWZ fixed + norm. unc.:ttZ = 0.99 ± 0.07 pb \rightarrow tZq fixed, ttZ fixed + norm. unc.:tWZ = 0.39 ± 0.16 pb \rightarrow tZq fixed + norm. unc.:ttZ+tWZ = 0.88 ± 0.16 pb

CMS Preliminary 125SM ^{1.8} **9**1.6 20 ratio section 1 15 8.0<mark>088</mark> -10 Best fit – 1σ CL N0.6 ttZ+tW -2σ CL ♦ SM 0.2 0.6 0.8 tZq cross section ratio to the SM

ATLAS result $0.86 \pm 0.05 \text{ pb} = 0.86 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.) pb}$

Major limitations

- Data statistics, luminosity
- Background normalizations+modeling, signal modeling
- Calibrations of jets, b-tagging, leptons

PAS-TOP-23-004

- Both ATLAS and CMS profile LLH unfolding
 - CMS uses DNN-binning for additional sensitivity and ttZ / tZq / bkg. separation
 - Only 3L region for diff. XS in CMS (tZq and tWZ negligible in 4L)

PAS-TOP-23-004

- Both ATLAS and CMS profile LLH unfolding
 - CMS uses DNN-binning for additional sensitivity and ttZ / tZq / bkg. separation
 - Only 3L region for diff. XS in CMS (tZq and tWZ negligible in 4L)

t+V

- Both ATLAS and CMS profile LLH unfolding
 - CMS uses DNN-binning for additional sensitivity and ttZ / tZq / bkg. separation
 - Simultaneous ttZ and tZq differential cross section extraction
 - \rightarrow fewer ttZ bins limited by tZq binning, larger uncertainties

- First measurement of tt system in ttZ \rightarrow also observing **trends in p_T of top quarks?**
 - Uses ~550 signal events in ATLAS measurement
 - \circ Compare to first indication of tt differential p_T trends (~3500 tt events)

Complicated backgrounds

• ttZ / ttH / diboson $\rightarrow N_{b} / N_{iet}$ bins in CRs

Complicated backgrounds

- Non-prompt: fake leptons, photon conversions, etc
- Many control regions, data-driven corrections
- Most normalizations determined in situ

CMS:

- Neural network in 2L SR, split by lepton charges
- m(3L) in 3L, split by lepton charges an N_{iet} **ATLAS:**
- $N_{\rm jet},\,N_{\rm bjet}$, lepton charge bins in 2L and 3L Additional Lepton flavor bins in 2L

JHEP 05 (2024) 131

First individual ttW measurements \rightarrow Newly established measurement strategies

000000000

 W^{\pm}

- Process has strong charge asymmetry \rightarrow probes different valence quarks in pdf
- SM prediction: **R** = **ttW**⁺ / **ttW**⁻ ~ 2
- Reparameterization of inclusive fit strategies
- ➤ CMS: R ~ 1.6 (rather low)
- ATLAS: R ~1.96 (good agreement)

- Simultaneous differential measurement in 2LSS and 3L regions
 - Distributions binned in observable, lepton charges, number OS-SF pairs in 3L

JHEP 05 (2024) 131

JHEP 05 (2024) 131

 $A_{\rm C}^{\rm rel} =$

 $\underline{\sigma(t\bar{t}W^+)} - \sigma(t\bar{t}W^-$

 $\sigma(t\bar{t}W^+) + \sigma(t\bar{t}W^-)$

- Simultaneous differential measurement in 2LSS and 3L regions
 - Provides diff. XS, normalized diff. XS and diff. charge asymmetry¹
- Comparison to a range of simulation approaches
 - \circ Mostly the inclusive XS is off \rightarrow differential distributions still limited in precision
 - N_{iet} largest discrepancies at low $N_{iet} \rightarrow$ independent of add. partons and merging schemes

ttΖ

- Inclusive measurements at 6% level \rightarrow surpass precision of predictions
- First combined ttZ, tWZ, tZq measurement by CMS
- Improvements in ZZ and WZ background estimations

ttW

- Inclusive measurements at 10% level \rightarrow remain 1–2 sigma higher than predictions
- Differential XS by ATLAS start showing some (not yet very significant) differences to simulation
- Charge ratio of ATLAS agrees with PDF predictions, CMS ratio significantly lower

ttZ uncertaintes

Source	$\sigma(t\bar{t}Z + tWZ)$	$\sigma(tZq)$
Trigger	2%	2%
Trigger prefiring	$<\!1\%$	2%
Lepton identification efficiencies	1%	2%
b tagging	1%	2%
Jet energy scale	1%	3%
Jet energy resolution	$<\!1\%$	1%
Missing transverse momentum	$<\!1\%$	3%
Nonprompt background	2%	3%
Pileup	$<\!1\%$	1%
Luminosity	2%	2%
Statistical	3.7%	10%
Background modeling	2%	4%
Factorization scale	1%	1%
Renormalization scale	1%	2%
Parton shower	$<\!1\%$	2%
PDF and α_S	<1%	$<\!1\%$
Underlying event and color reconnection	1%	2%
tWZ modeling	$<\!1\%$	$<\!1\%$
MC statistical	$<\!1\%$	1%
Total	6%	13%

Uncertainty Category	$\Delta\sigma_{t\bar{t}Z}/\sigma_{t\bar{t}Z}[\%]$		
Background normalisations	2.0		
Jets and $E_{\rm T}^{\rm miss}$	1.9		
<i>b</i> -tagging	1.7		
$t\bar{t}Z \mu_{\rm f}$ and $\mu_{\rm r}$ scales	1.6		
Leptons	1.6		
Z+jets modelling	1.5		
tWZ modelling	1.1		
$t\bar{t}Z$ showering	1.0		
$t\bar{t}Z$ A14 tune	1.0		
Luminosity	1.0		
Diboson modelling	0.8		
tZq modelling	0.7		
PDF (signal & backgrounds)	0.6		
MC statistical	0.5		
Other backgrounds	0.5		
Fake leptons	0.4		
Pile-up	0.3		
Data-driven tī	0.1		

ttZ diff XSs

	Variable	Regularisation	τ^{particle}	$\tau^{\rm parton}$	Definition
	p_{T}^{Z}	No	-	-	Transverse momentum of the Z boson
	$ y^{Z} $	No	-	-	Absolute rapidity of the Z boson
$\ell + 4\ell$	$\cos heta_Z^*$	No	-	-	Angle between the direction of the Z boson in the detector reference frame and the direction of the negatively charged lepton in the rest frame of the Z boson
ŝ	p_{T}^{t}	Yes	1.5	1.4	Transverse momentum of the top quark
	$p_{\mathrm{T}}^{tar{t}}$	Yes	1.6	1.5	Transverse momentum of the $t\bar{t}$ system
	$ \Delta \Phi(t\bar{t},Z) /\pi$	Yes	2.4	2.1	Absolute azimuthal separation between the Z boson and the $t\bar{t}$ system
	$m^{t\bar{t}Z}$	Yes	1.5	1.6	Invariant mass of the $t\bar{t}Z$ system
	$m^{t\bar{t}}$	Yes	1.5	1.4	Invariant mass of the $t\bar{t}$ system
	$ y^{t\bar{t}Z} $	Yes	1.5	1.5	Absolute rapidity of the $t\bar{t}Z$ system
	$H^\ell_{ m T}$	No	-	-	Sum of the transverse momenta of all the signal leptons
3ℓ	$ \Delta \Phi(Z, t_{\text{lep}}) /\pi$	No	-	-	Absolute azimuthal separation between the Z boson and the top (anti-top) quark featuring the $W \rightarrow \ell \nu$ decay
	$ \Delta y(Z,t_{\rm lep}) $	No	-	-	Absolute rapidity difference between the <i>Z</i> boson and the top (anti-top) quark featuring the $W \rightarrow \ell \nu$ decay
	$p_{\mathrm{T}}^{\ell,\mathrm{non-}Z}$	No	-	-	Transverse momentum of the lepton that is not associated with the Z boson
	N _{jets}	No	-	-	Number of selected jets with $p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5
	H_{T}^ℓ	No	-	=	Sum of the transverse momenta of all the signal leptons
46	$ \Delta \Phi(\ell_t^+,\ell_{\bar{t}}^-) /\pi$	No	-	-	Absolute azimuthal separation between the two leptons from the $t\bar{t}$ system
	Njets	No	-	-	Number of selected jets with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$

ATLAS measurements: ~same dataset, improved precision $(10\% \rightarrow 6\%)$

- tWZ/tZq, ttZ, WZ/ZZ modeling impacts all decrease with new analysis
 → Improved simulations, more bins in fits, more detailed background estimation?
- Fake lepton impact decreased

Uncertainty	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z}$ [%]	Uncertainty Category	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z}$ [%]
$t\bar{t}Z$ parton shower	3.1	Background normalisations	2.0
tWZ modelling	2.9	Jets and E_{π}^{miss}	1.9
b-tagging	2.9	<i>b</i> -tagging	1.7
WZ/ZZ + jets modelling	2.8	$t\bar{t}Z \mu_{\rm f}$ and $\mu_{\rm r}$ scales	1.6
tZq modelling	2.6	Leptons	1.6
Lepton	2.3	Z+jets modelling	1.5
Luminosity	2.2	tWZ modelling	1.1
Jets + $E_{\rm T}^{\rm miss}$	2.1	$t\bar{t}Z$ showering	1.0
Fake leptons	2.1	$t\bar{t}Z$ A14 tune	1.0
tīZ ISR	1.6	Luminosity	1.0
$t\bar{t}Z \mu_f$ and μ_r scales	0.9	Diboson modelling	0.8
Other backgrounds	0.7	tZq modelling	0.7
Pile-up	0.7	PDF (signal & backgrounds)	0.6
tīZ PDF	0.2	Other backgrounds	0.5
Total systematic	8.4	Fake leptons	0.4
Data statistics	5.2	Pile-up	0.3
Total	10	Data-driven $t\bar{t}$	0.1

EPJC 81	(2021)	737,	JHEP	07	(2024)	163
					· · · · · · · · · · · · · · · · · · ·	

ATLAS measurements: ~same dataset, improved precision $(10\% \rightarrow 6\%)$

- 3L (11% \rightarrow 8%) and 4L (15% \rightarrow 12%) channels improved individually
 - + **inclusion of 2L** channel for incl. measurement (13% precision)
 - Adds to the precision, but difficult tt and DY+hf-jets backgrounds
- Higher signal efficiency / background reduction
 3L SR: 370 events (62% signal fraction)
 → 440 events (75% signal fraction)
 4L SR: 100 events (70% signal fraction)
 → 75 events (70% signal fraction)
 - Improved calibrations (leptons + b-tagging)

Ο

JHEP 07 (2024) 163

- More involved treatment of diboson backgrounds (ZZ, WZ)
 - Especially W+b/c/light backgrounds difficult (relatively bad predictions from sim.)
- Beyond TOP measurements \rightarrow dedicated ZZ+b and WZ+b measurements?
 - Improve our knowledge of these backgrounds + potential for improved sim.?

Additional content in ATLAS measurement

Spin correlation measurements

- ttZ has different tt spin correlation w.r.t. tt (different qq/qg fractions)
 → good cross check
- + small longitudinal polarization induced by Z emission
 - \rightarrow probe additional parameters which are 0 in tt

Definition of observables (down-type t \rightarrow W decay product carries top spin information)

- **4L:** all observables defined via leptons (but low yield)
 - **3L:** requires down type quark ID
 - \rightarrow s jet candidates in W decay: c jets more likely to be tagged than s jets \rightarrow 42% ID eff
- Results mostly stat dominated
- Combination favors spin correlation hypothesis

 $O = f_{\text{SM}} \cdot O_{\text{spin-on}} + (1 - f_{\text{SM}}) \cdot O_{\text{spin-off}}$. $f_{\text{SM}}^{\text{obs.}} = 1.20 \pm 0.63 \text{ (stat.)} \pm 0.25 \text{ (syst.)} = 1.20 \pm 0.68 \text{ (tot.)}$.

JHEP 07 (2024) 163

A theorist's view...

- qq-induced at LO ($\sim \alpha_s^2 \alpha$)
- qg-induced at NLO ($\sim \alpha_s^{3} \alpha$)
- qq-induced LO EW contributions ($\sim \alpha^3$)
- qg-induced NLO EW contributions ($\sim \alpha^3 \alpha_s$)
- virtual 2-loop contributions at NNLO difficult

NNLO QCD + NLO EWK

$$\begin{split} \sigma(\text{ttW}) &= 745 \text{ fb} \quad \pm 50 \text{ fb (scale)} \\ &\pm 13 \text{ fb (2-loop approx.)} \\ &\pm 19 \text{ fb (PDF, } \alpha_{\text{S}}) \end{split}$$

ttW is absolutely disgusting. This process has so many external particles and internal masses, it's a shitshow. The cross section starts to converge with the inclusion of NNLO corrections, but we still don't have the NNLO 2-loop amplitudes... \bigcirc

000000000000

 W^{\pm}

NLO QCD only: 711 fb, real NLO EW +5%, virtual EW -2.4%, remaining EW +7%

00000000

 W^{\pm}

 W^{\pm}

000000000

 $Z/\gamma *$

A theorist's view...

Also, experimentalists, please provide some full phase space parton level differential cross sections for me, so I can compare them to my calculations.

 \bigcirc

- Comparison to range of simulation approaches
 - \circ Slight improvement at high H_{τ} for FxFx merged simulation

How to tW?

The challenges

- Overlap with tt at NLO \rightarrow requires diagram removal / subtraction (DR/DS) schemes
 - More appropriate / the future: combined measurement of $tt+tW \rightarrow bb4l$ simulations Ο
- tW cross section 1 order of magnitude smaller and similar to tt \rightarrow difficult to isolate

Exploit small kinematic differences in some MVA Ο

Comparison of CMS and ATLAS approaches

138 fb⁻¹ (13 TeV

BDT discriminant

VV+tīV

Non-W/Z

🔆 Uncertainty

Common features

Analysis in eu channel (no Z background) Separate jet / b-tag categories BDT for tW / tt separation

Cross section agrees with predictions

Limited by tt modeling and jet energy corrections

- Full range of BDT used in fit
- Only tW cross section extraction

ATLAS

Restrict BDT range to not constrain DR/DS uncertainties and tt PS uncertainties

Data / Pred

×10

CMS

e±u∓

DY

12⊢ (1i1b)

16

14

10

1.05

0.95

Events

Simultaneous tW and tt cross section • extraction

ATLAS measurement strategy

• Full range of BDT distributions \rightarrow fit constrains DR/DS and tt PS modeling parameters

Common

LHCTopWG Summary Figures

Comparison of tW leading impacts

