

Financiado por la Unión Europea NextGenerationEU

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Higgs synergies with top in ATLAS and CMS

Lorenzo Varriale (IFIC, CSIC-UV) on behalf of the ATLAS and CMS collaborations

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale

Talk outline

-2InA

- Why ttH/tH?
- Measuring ttH/tH
- Run 2 ATLAS and CMS measurements:
 - \circ ttH \rightarrow bb
 - $\circ \quad t t H \to \gamma \gamma$
 - $\circ \quad \text{tt} H \rightarrow \text{multilepton}$
- Why CP studies?
- Run 2 CP studies:
 - $H \rightarrow \gamma \gamma$ (ATLAS)
 - \circ H \rightarrow WW, H \rightarrow $\tau\tau$ (CMS)
 - $\circ \quad \mathsf{H} \to \mathsf{bb} \text{ (ATLAS \& CMS)}$
- Summary & conclusions

24/09/2024

TOP2024 - Saint-Malo

--- 95% CL exp./obs

2

best fit

Top-Higgs boson synergies

Top-Higgs relation central for multiple reasons

https://link.springer.com/article/10.1007/JHEP08(2012)098

- Connection between top and Higgs masses has a crucial role in the stability of the electroweak vacuum
 - at the borderline of the stability of the electroweak vacuum on top mass - Higgs mass plane
- Yukawa coupling Higgs-fermions proportional to fermions mass:
 - top-Higgs is largest coupling in the SM ($\lambda_t \approx 1$)
 - cannot be observed directly in Higgs decays
 - contributes to ggF and H $\rightarrow \gamma\gamma$ decays: could be used to determine λ_t but under model assumptions

TOP2024 - Saint-Malo

3

Why measure ttH and tH?

- **ttH** production is a direct probe of the top-Higgs interaction:
 - direct measure of top-Higgs Yukawa coupling λ_{t}
 - tree-level process with cross-section proportional to λ_t^2
 - sensitive to BSM effects

Observed by ATLAS Phys. Lett. B 784 (2018) 173 and CMS Phys. Rev. Lett. 120 (2018), 231801 in 2018

- **tH** production subdominant but other important probe of the top-Higgs interaction:
 - information regarding sign of λ_{t}
 - final state orthogonal to ttH
- No evidence/observation found neither in ATLAS nor in CMS
- An upper limit of ten times the SM prediction set in $H \rightarrow \gamma \gamma$ analysis
 - most stringent experimental constraint on tH production

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale

Measuring ttH and tH

[qd] (X+H 10

a(pp

PDG review

 $pp \rightarrow H (N3LO QCD + NLO EW)$

- Not easy to measure
- Production channels with low cross-sections
 - ttH: ~0.5 pb at \sqrt{s} = 13 TeV (@ NNLO)
 - tH: ~an order of magnitude lower (~0.09 pb)
- Rely on multiple analyses:
 - diverse decays of both top and Higgs
 - many objects involved (leptons, jets, etc...)

• Results usually expressed in terms of signal strength $\mu = \sigma/\sigma_{SM}$ or coupling modifier κ_{t}

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale

5

M(H)= 125 GeV

(NNLO QCD + NLO EW)

Main issue: modelling of ttbb and ttW processes

• Searches limited by modelling uncertainties of ttbb and ttW (main bkgs)

- Previous results from ATLAS & CMS measured higher cross sections than the state-of-the-art predictions
 - cross-section measured in data higher than theoretical predictions (bigger at low jet multiplicities)
 - predictions at high multiplicities with additional partons using NLO are in better agreement with data than NLO+PS Powheg prediction
- LHC Higgs and Top WG efforts to improve this
- Common MC modelling note on ttbb and ttW published by the Higgs cross-section WGs: <u>arXiv:2301.11670</u>

ttH/tH Run 2 analyses

24/09/2024

0

Ο

0

Ο

0

Ο

0

Ο

0

Ο

TOP2024 - Saint-Malo

Lorenzo Varriale

ATLAS Run 2 t<code>TH</code> \rightarrow bb

Goal:

- Measuring $t\bar{t}H(H \rightarrow b\bar{b})$ process both inclusive and in bins of Higgs p_{T} (STXS)
 - decay channel gives access to high-p_T kinematic regime (boosted) not so easily accessible in other channels (lack of statistics)

Strategy:

- Using lowest unprescaled single-lepton triggers for event selection
- 2 channels: based on number of leptons (*r*-veto to ensure orthogonality)
 - Single lepton: Exactly one lepton ($N_r < 2$)
 - Dilepton: Exactly two leptons ($N_r = 0$)
- Main challenges related to tt+bb background
 - difficult separation from signal
 - difficult modelling uncertainties

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale ⁸

ATLAS Legacy Run 2 ttH \rightarrow bb

Observed (expected) sensitivity increased to 4.6σ (5.4 σ)!

Strategy:

NEW!

- Sensitivity of previous measurement limited by syst. unc. in dominant tt background modelling (ttbb)
 - revised treatment of different flavour components of tt+jets and new modelling for ttbb
- Improve reconstruction and particle ID
 - \circ object definition \rightarrow jets p-flow and b-tagging
 - \circ looser event selection \rightarrow 8 CRs for better bkg control in data
- Improve MVA-techniques → attention-based transformer network (better Higgs reco and SR/CRs definition)
 - DNN-based H → bb tagger for SL channel (per-jet classification) → identify large-R jets coming from Higgs decays (boosted topologies)

9

ATLAS Legacy Run 2 ttH \rightarrow bb

arXiv:2407.10904

- Select 64% (29%) more single lepton (di-lepton) events \rightarrow observed (expected) significance = **4.6** (**5.4**) σ
- Inclusive cross-section consistent with SM

$$\begin{split} \sigma_{t\bar{t}H} &= 411^{+54}_{-54}(stat.)^{+85}_{-75}(syst.) \text{fb} \\ \sigma_{t\bar{t}H,SM} &= 507^{+35}_{-50} \text{fb} \end{split}$$

CMS Run 2 t $tH \rightarrow bb$

- 3 different final states of top quark decays considered (number of leptons)
- BDT for jet-parton assignment
- \circ Signal extracted through DNN multi-classifiers \rightarrow Simultaneous fit of discriminant scores
- Difficult modelling of ttbb irr. background

Results:

• ttH production rate (relative to SM expectation):

arXiv:2407.10896

0.33 ± 0.17 (stat) ± 0.21 (syst)

VFM

 An observed (expected) upper limit on the tH production rate relative to the SM expectation of 14.6 (19.3) at 95% is derived

ATLAS Run 2 t $tH \rightarrow \gamma \gamma$

Clean final-state topology: can be used to effectively distinguish it from background processes One of the most important channels for precision measurements of Higgs boson properties

Goal:

- Measure inclusive and production mode cross-sections
- Include EFT and k-framework interpretation

Strategy:

- Select di-photon events and divide them in orthogonal categories
- Target ttH/tH production via STXS \rightarrow cross-section measured as a function of truth $p_{\tau}(H)$
 - from 45 to 28 STXS regions \rightarrow based on targeted production, $p_{T}(H)$ and number of jets
- Multi-classifier BDT sensitive to particular STXS regions + additional binary BDT trained to distinguish S from B

Results presented in terms of several descriptions of Higgs boson production:

- Overall signal strength of Higgs boson production measured in the diphoton decay channel
- Separate cross-sections for the main Higgs boson production modes
- Cross-sections in 28 merged STXS regions

24/09/2024

ATLAS Run 2 t $tH \rightarrow \gamma \gamma$

- Signal extraction by a simultaneous fit to mass of the photons
- Signal strength µ treated in the LH as a single POI which scales the exp. yields in all STXS regions

 $\mu = 1.04^{+0.10}_{-0.09} = 1.04 \pm 0.06 \text{ (stat.)}^{+0.06}_{-0.05} \text{ (theory syst.)} \stackrel{+0.05}{_{-0.04}} \text{ (exp. syst.)} \rightarrow$ good agreement with SM

- **tH upper limit**: excludes production rate of 10 times its SM prediction or greater at 95%
- Measured STXS cross-sections are compatible with their SM predictions (p-value of 93%)

CMS Run 2 t $tH \rightarrow \gamma\gamma$

JHEP 07 (2021) 027

- Measure range of production and coupling properties of the Higgs boson:
 - total Higgs signal strength relative to SM prediction measured to be 1.12 ± 0.09
 - o simultaneous measurement of signal strengths of the 4 main Higgs production mechanisms → compatible with SM prediction
 - Two measurements performed within STXS:
 - 17 and 27 independent kinematic regions measured simultaneously with p-values with respect to the SM of 31% and 70%
 - simultaneous measurement of ttH production in 5 different regions of p_tH measured for first time
- **tH upper limit**: excludes production rate of 14 times its SM prediction or greater at 95%

• All other results (couplings) also in agreement with the SM expectations.

<u>Eur. Phys. J. C 81</u> (2021) 378

CMS Run 2 ttH \rightarrow multilepton

- Analysis targeting $H \rightarrow WW/ZZ/\tau\tau$ decay channels
- Multitude of final states including e/μ leptons and τ_{had}

- Challenging background
 - irreducible: ttW, ttZ/gamma, diboson
 - reducible: non-prompt or fake leptons
- Dedicated categories sensitive to tH
 production

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale ¹⁵

Eur. Phys. J. C 81 (2021) 378

CMS Run 2 ttH → multilepton

- 10 event categories based on → lepton flavour, multiplicity and electric charge
- Signal extraction with → DNN in tH enriched categories, BDT in other categories
- 3 control regions to constrain ttW and ttZ bkg
- Simultaneous fit of signal and control regions
- Measured production rates corresponding to (respective SM expectations):

ttH and tH signal strength

$$u_{t\bar{t}H} = 0.92 \pm 0.19 \,(\text{stat})^{+0.17}_{-0.13} \,(\text{syst})$$

 $\mu_{tH} = 5.7 \pm 2.7 \,(\text{stat}) \pm 0.3 \,(\text{syst})$

 Corresponding observed significance: ttH: 4.7σ (5.2σ exp.), tH: 1.4σ (0.3σ exp.)

ATLAS Run 2 ttH \rightarrow multilepton

• Partial Run 2 (80 fb⁻¹ only)

ATLAS-CONF-2019-045

- 6 final states targeting Higgs decays to WW* , $\tau\tau$, and ZZ*
- Categorised by the number and flavour of charged-lepton candidates

Results:

- Excess of events over the expected background from SM processes found → observed significance of 1.8 standard deviations (expected 3.1 for SM Higgs)
- Best-fit result of observed ttH production cross-section (in agreement with the SM prediction 507⁺³⁵₋₅₀ fb):

$$\hat{\sigma}(t\bar{t}H) = 294^{+132}_{-127} \text{ (stat.)}^{+94}_{-74} \text{ (exp.)}^{+73}_{-56} \text{ (bkg. th.)}^{+41}_{-39} \text{ (sig. th.) fb} = 294^{+182}_{-162} \text{ fb}$$

- Modelling issues observed in regions dominated by ttW production
- Needed improved description of the ttW background for greater precision in the future \rightarrow ttW diff. meas.

24/09/2024

Why CP studies?

- SM Higgs is a CP-even scalar \rightarrow no CP violation
- BSM: CP violation in Higgs interactions → evidence for new physics
- CP violation needed to explain baryon asymmetry of the universe
 - CKM and PMNS matrices insufficient to account for cosmic asymmetry
- Additional CP violating sources will be unequivocal signs of physics beyond the standard model
- CP-odd only couplings strongly excluded by ATLAS and CMS, while CP-even/odd mixing NOT
- Mixing typically modelled with a mixing angle between CP-even and CP-odd couplings

Eur. Phys. J. C 75 (2015) 6, 267 arXiv:1504.00611 [hep-ex]

ttH/tH $\rightarrow \gamma \gamma$ CP studies ATLAS

- Photons are CP-even \rightarrow provide a clean way to probe CP nature of Higgs boson
- Look for angular distributions of the photons and other variables that could indicate a CP-odd component

Phys. Rev. Lett. 125 (2020) 061802

- 2 channels: Leptonic or Hadronic based on top decay
- Event categorization in two steps:
 - BDT to separate ttH/non-resonant bkg
 - BDT to separate CP-even/CP-odd couplings
- Simultaneous fit to $m(\gamma\gamma)$ across all categories
- Strongly support CP even hypothesis:
 - pure CP-odd (α=90) excluded with 3.9σ and |α|>43 excluded at 95% CL

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale ²⁰

ttH/tH $\rightarrow \gamma \gamma$ CP studies ATLAS

JHEP07(2023)088

- Results interpreted in models of Higgs coupling modifiers
 - all couplings compatible to SM values
- In figure (neg log LH scans):
 - $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ either parametrised as a func. of κ_t (blue) or fixed to SM expectation (orange)
- Sensitivity to sign of κt thanks to tH categories
 - good agreement with SM κ_t =1 and κ_t < 0 excluded at 2.2 σ

24/09/2024

ttH/tH \rightarrow bb CP studies ATLAS

PLB 849 (2024) 138469

- Events containing one or two e or μ used
- MVA techniques used to select regions enriched in ttH and tH events where dedicated CP-sensitive observables are exploited (relying on angular separations between reconstructed top quarks or lepton candidates)
- Best-fit values and the exclusion contours in α and κ'_{t}
 - best-fit value for the *CP* mixing angle α is 11°–73°+52° and overall coupling strength κ_t' is 0.84–0.46+0.30
 - \rightarrow in agreement with SM expectations of α =0° and κ_t '=1
- Observed value of CP mixing angle:
 - exclude pure CP-odd scenario (α = 90°) at 1.2 σ level

ttH/tH (H \rightarrow WW or H \rightarrow $\tau\tau$) CP studies CMS

- Study targets H→ WW or H→ ττ with t→ Wb: final states with at least two leptons are studied
- ML techniques to enhance the separation of CP-even from CP-odd scenarios (final states with at least 2 leptons)
- 2-dim confidence regions set on κ_t and $\tilde{\kappa}_t$
- No significant fractional CP-odd contributions observed parametrised by |f^{Htt}_{CP}|
- $|f^{Htt}_{CP}| = 0.59$ with an interval of (0.24, 0.81) at 68% CL
- Combined results with previous $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ yielding twoand one-dimensional confidence regions constraining κ_t and $\tilde{\kappa}_t$ to be within (0.86, 1.26) and (-1.07, 1.07) at 95% CL
- Agreement with SM CP-even prediction (|f_{HttCP}|=0)

24/09/2024

ttH/tH (H \rightarrow bb) CP studies CMS

arXiv:2407.10896

Results of combination:

- Values of the LH ratio test statistic as a function of κ_t and κ_t for the individual channels and their combination
 → yields best fit values of (κ_t, κ_t) of (0.82, -0.65).
- Change of sign of $\tilde{\kappa}_t$ in H \rightarrow WW and H $\rightarrow \tau \tau$ channels not meaningful but reflects the degeneracy of the likelihood with respect to $\tilde{\kappa}_t$
- Sensitivity of combined result driven by non-bb channels
 - $H \rightarrow bb$ channel leads to slight improvement in sensitivity, visible in the reduction of the 68% and 95% CL confidence regions

24/09/2024

Summary & conclusions

• Why ttH/tH?

- top-Higgs Yukawa coupling direct measurement
- sensitive to BSM
- ATLAS measurements
 - ttH \rightarrow bb: great improvement wrt previous round \rightarrow observed (expected) significance = 4.6 σ (5.4 σ)
 - $\circ \quad t\bar{t}H \to \gamma\gamma:$
 - **tH upper limit**: excludes production rate of 10 times its SM prediction or greater at 95%
 - sensitivity κ_t sign thanks to tH categories \rightarrow agreement with SM and $\kappa_t < 0$ excluded at 2.2 σ
 - $t\bar{t}H \rightarrow multilepton$: partial Run 2 dataset only, modelling issues in $t\bar{t}W$ dominated regions
- CMS measurements
 - ttH \rightarrow bb: observed (expected) upper limit on the tH production cross section relative to the SM expectation of 14.6 (19.3) at 95%
 - **ttH** $\rightarrow \gamma\gamma$: excludes production rate of 14 times its SM prediction or greater at 95%
 - ttH \rightarrow multilepton: ttH: 4.7 σ (5.2 σ exp.), tH: 1.4 σ (0.3 σ exp.)
- CP interpretation
 - no evidence for a CP-odd component in Higgs boson interactions

- Grants PID2021-124912NB-I00 and PID2021-125069OB-100 funded by MCIN/AEI/ 10.13039/501100011033 and by "ERDF A way of making Europe"
- Project ASFAE/2022/010 funded by MCIN, by the European Union NextGenerationEU (PRTR-C17.I01) and Generalitat Valenciana

24/09/2024

BACKUP

24/09/2024

ATLAS ttH-ML and $H \rightarrow bb$ ranking plots

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale ²⁸

CMS ttH/tH ($H \rightarrow bb$)

CMS PAS HIG-19-011

- Simultaneous fit of the ttH and tH signal strength modifiers:
 - observed and expected values of the LH-ratio test statistic with best fit values of μ_{tH} , $\mu_{ttH} = -3.83$, 0.35
 - correlation between the ttH and tH signal strength modifiers moderate → demonstrates the discrimination between the two signal processes achieved in this analysis

CMS ttH/tH (H→ multilepton)

<u>Eur. Phys. J. C 81</u> (2021) 378

24/09/2024

TOP2024 - Saint-Malo

Lorenzo Varriale ³⁰

CP interpretation

- Measurements in fermionic couplings:
 - CP-odd mixing may occur in Yukawa couplings at tree level, most notably with heavier third generation fermions (taus and top quarks), and can be introduced via an effective term
- Typically modelled with a mixing angle between CP-even and CP-odd couplings

$$\begin{aligned} \mathcal{L} &= -\kappa_t \bar{\psi} e^{i\alpha\gamma^5} \psi h \\ &= -\kappa_t \bar{\psi} (\cos\alpha + i\gamma^5 \sin\alpha) \psi h \\ &= \underbrace{-\kappa_t \cos\alpha \bar{\psi} \psi h}_{\text{CP-even part}} - \underbrace{i\kappa_t \sin\alpha \bar{\psi} \gamma^5 \psi h}_{\text{CP-odd part}} \end{aligned}$$

Choice of α , κ_t affects the cross section and the kinematical properties of processes

ttH/tH \rightarrow bb CP studies ATLAS

- Analysis split into *t*+jets and dilepton categories
 - Further division according to number of jets, b-jets, and boosted signatures

- BDTs trained for various purposes:
 - Reconstruction: assigns jets from Higgs or top quark decays
 - Classification: separates ttH from background
- CP sensitive observables:
 - p1/2 = top quark momenta,
 pz = beam axis
 - Assumes knowledge of neutrino 4-momenta to reconstruct p1/2 → z-component obtained using

neutrino weighting

CP studies ATLAS

 $ttH/tH \rightarrow \gamma\gamma$

Lorenzo Varriale ³³

TOP2024 - Saint-Malo

24/09/2024