TOP2024 - 17th International Workshop on Top Quark Physics

Recent EFT results from CMS

Niels Van den Bossche on behalf of the CMS Collaboration

EFT at CMS during TOP2023

- SMEFT: symmetries of SM are valid
- Last year: direct EFT measurement of tt+X processes
- Outlook given by Kelci: combination with Higgs and Electroweak sector

Today, new CMS result:

to new

- Combined EFT interpretation of Higgs, Top, EWK and QCD measurements!
- CMS-PAS-SMP-24-003

Combined EFT interpretation of Higgs, top, EWK and QCD

- Global EFT fits allow to maximize sensitivity and pinpoint excesses to a single operator
- Fits combining multiple measurements have been performed outside experimental collaborations
 - Limited availability of full likelihoods
 - Internal combination allows to modify the analyses

Combined EFT interpretation of Higgs, top, EWK and QCD

- Dimension 6 CP-even operators in the topU3I basis
 - 64 Wilson Coefficients used in final fit
- The topU3I basis:
 - 1st/2nd generation quarks: q, u, d
 - 3rd generation: Q, t, b
 - \circ U(2)q x U(2)u x U(2)d symmetry
 - VCKM= 1

Combination of EWPO + 6 CMS analyses in 4 sectors, selection based on:

- Minimal overlap in event selection
- Covering a broad set of operators

X^3		ψ^4 , $(\overline{L}L)(\overline{L}L)$		$\psi^4, (\overline{L}L)(\overline{R}R)$	
\mathcal{Q}_{G}	\mathcal{Q}_{W}	$\mathcal{Q}_{1}^{(1)}$	$\mathcal{Q}_{1}^{(3)}$	\mathcal{Q}_{lu}	$\mathcal{Q}_{\mathrm{lt}}$
H^2	D^2	$\mathcal{O}_{12}^{(1)}$	$\mathcal{O}_{13}^{(3)}$	$\mathcal{Q}_{ ext{qu}}^{(1)}$	$\mathcal{Q}_{ m qu}^{(8)}$
$\mathcal{Q}_{\mathrm{H}\square}$	$\mathcal{Q}_{ ext{HD}}$	\sim_{IQ}	~IQ	$\mathcal{Q}_{\Omega u}^{(1)}$	$\mathcal{Q}_{\Omega_{11}}^{(8)}$
X^2	H^2	\mathcal{Q}_{QQ}	\mathcal{Q}_{ll}	$\mathcal{O}_{a}^{(1)}$	$\mathcal{O}_{a}^{(8)}$
$\mathcal{Q}_{ m HG}$	$\mathcal{Q}_{\mathrm{HW}}$	\mathcal{Q}_{qq}	$\mathcal{Q}_{qq}^{(1,0)}$	$O^{(1)}$	$O^{(8)}$
$\mathcal{Q}_{ ext{HB}}$	$\mathcal{Q}_{ ext{HWB}}$	$\mathcal{Q}_{qq}^{(3,1)}$	$\mathcal{Q}_{qq}^{(3,8)}$	\mathcal{Q}_{Qt}	Qt
ψ^2	H^3	$\mathcal{Q}_{Oa}^{(1,1)}$	$\mathcal{Q}_{\mathrm{Og}}^{(1,8)}$	$\mathcal{Q}_{qd}^{(1)}$	$\mathcal{Q}_{qd}^{(0)}$
$\mathcal{Q}_{ ext{tH}}$	\mathcal{Q}_{bH}	$\mathcal{O}_{2}^{(3,1)}$	$O_{2,8}^{(3,8)}$	$\mathcal{Q}_{\mathrm{Od}}^{(1)}$	$\mathcal{Q}_{\mathrm{Od}}^{(8)}$
ψ^2	XH	~Qq	$\sim Qq$	Qu	Qu
Q_{tW}	$\mathcal{Q}_{\mathrm{tB}}$	ψ^4 , (R.	R)(RR)		
\mathcal{Q}_{tG}		\mathcal{Q}_{et}	\mathcal{Q}_{tt}		
$\psi^2 I$	H^2D	$\mathcal{Q}_{uu}^{(1)}$	$\mathcal{Q}_{uu}^{(0)}$		
$\mathcal{Q}_{ extsf{HI}}^{(1)}$	$\mathcal{Q}_{_{ m HI}}^{(3)}$	$\mathcal{Q}_{tu}^{(1)}$	$\mathcal{Q}_{tu}^{(0)}$		
$\mathcal{Q}_{ ext{He}}^{ ext{III}}$	III	$\mathcal{Q}_{dd}^{(1)}$	$\mathcal{Q}_{\rm dd}^{(0)}$		
$\mathcal{Q}_{ m Hg}^{(1)}$	$\mathcal{Q}_{ m Hg}^{(3)}$	$\mathcal{Q}_{\mathrm{ud}}^{(1)}$	$\mathcal{Q}_{\mathrm{ud}}^{(8)}$		
$\mathcal{Q}_{\mathrm{Hu}}^{-1}$	$\mathcal{Q}_{\mathrm{Hd}}^{-1}$	$\mathcal{Q}_{ ext{td}}^{(1)}$	$\mathcal{Q}_{\mathrm{td}}^{(8)}$		
$\mathcal{Q}_{ m HO}^{(1)}$	$\mathcal{Q}_{\mathrm{HO}}^{(3)}$				
$\mathcal{Q}_{\mathrm{Ht}}$	$\mathcal{Q}_{\mathrm{Hb}}$				

Combined EFT interpretation: Higgs and EWPO input

Measurement of Higgs production cross section in the $H \rightarrow \gamma \gamma$ decay channel:

- Differential measurement in STXS stage 1.2 binning
- Signal strength parameterized as function of relevant operators
 - SMEFTSim3 and SMEFT@NLO for various production modes
 - Analytically for Higgs decay

EWPO measurements from LEP and SLC:

- Analytic evaluation of SMEFT operators on the observables
- Γ_Z , σ_{had} , R_I , R_c , R_b , $A_{FB}(I)$, $A_{FB}(c)$, $A_{FB}(b)$

Combined EFT interpretation: $W\gamma$, WW, Z

 10^{4}

10³

10²

10-1 10^{-2} 10^{-3} 10-

< Events / GeV

Data/Exp.

WW differential cross section (PRD 102, 092001 (2020))

- 2016 only
- Observable: m_"
- $Z \rightarrow vv$ differential cross section (JHEP 05 (2021) 205)
 - 2016 only
 - Observable: $p_{\tau}(Z)$

 W_{Υ} double differential cross section (PRD 105 (2022) 052003)

- Full Run 2
- Observable: $p_{T}(\gamma) \times |\phi_{f}|$

SMEFTSim3 simulation of EFT effects

Combined EFT interpretation: QCD and tt

QCD Inclusive jets measurement (JHEP 02 (2022) 142)

- AK7-jets, double differential in p_T, |y| used as input
- New PDF set introduced leading to improved agreement with data (CT18 replaces CT14)

tt differential cross section (PRD 104 (2021) 092013)

- Single lepton + jets
- Includes boosted top quark reconstruction
- m(tt) used in combination

Both are included with a simplified likelihood (X^2)

Combined EFT interpretation: ttX multilepton Lepton

- Only direct EFT search of all presented results:
 - Expected events in each bin is parameterized as function of WCs
 - Preference over dedicated differential measurements of ttX processes due to large overlap in signature
- 26 WCs considered in original analysis in 6 processes:
 - ttW, ttZ, tZq (including off-shell)
 - ttH, tHq, tttt
- Fit to distribution of max p_{T} of any combination of 2 leptons and/or

ℓ charge

sum

multiplicity

2b

3b

1b

2b

1b

2b

2b

on Z

off Z

 $2\ell ss$

31

Jet

multiplicity

Combined EFT interpretation: ttX multilepton

- Only direct EFT search of all presented results:
 - Expected events in each bin is parameterized as function of WCs
 - Preference over dedicated differential measurements of ttX processes due to large overlap in signature
- 26 WCs considered in original analysis in 6 processes:
 - ttZ, ttW, tZq (including off-shell)
 - ttH, tHq, tttt
- Fit to distribution of max p_T of any combination of 2 leptons and/or jets

In the combination:

- Additional operators have been added:
 - Adding operators is a possibility!
 - \circ $\;$ Addition of 2-heavy-2-light and $\mathcal{Q}_{H\Box}$
- Basis rotation: dim6top \rightarrow SMEFTSim3 topU3I

Combined EFT interpretation

- Dimension 6 CP-even operators using the topU3I basis
 - o 64 Wilson Coefficients considered
- EWPO combined with 6 CMS analyses in 4 sectors

General modifications to analyses:

• Normalization effect of theoretical uncertainties added to all results

Analysis	Type of measurement	Observables used	Experimental likelihood
${ m H} ightarrow \gamma \gamma$	Diff. cross sections	STXS bins [41]	\checkmark
$W\gamma$	Fid. diff. cross sections	$p_{\mathrm{T}}^{\gamma} imes \phi_{f} $	\checkmark
WW	Fid. diff. cross sections	$m_{\ell\ell}$	\checkmark
Z ightarrow u u	Fid. diff. cross sections	p_{T}^{Z}	\checkmark
tī	Fid. diff. cross sections	$\hat{M_{tar{t}}}$	×
EWPO	Pseudo-observables	Γ_Z , σ_{had}^0 , R_ℓ , R_c , R_b , $A_{FB}^{0,\ell}$,	×
		$A_{FB}^{0,c}, A_{FB}^{0,b}$	
Inclusive jet	Fid. diff. cross sections	$p_{\rm T}^{\rm jet} imes y^{\rm jet} $	×
tīX	Direct EFT	Yields in regions of interest	\checkmark

X^3	ψ^4 , $(\overline{L}L)(\overline{L}L)$
$Q_{\rm G}$ $Q_{\rm W}$	$\mathcal{Q}_{12}^{(1)} = \mathcal{Q}_{12}^{(3)}$
H^2D^2	$O^{(1)}$ $O^{(3)}$
$\mathcal{Q}_{\mathrm{H}\square}$ $\mathcal{Q}_{\mathrm{H}\mathrm{D}}$	\mathcal{Q}_{IQ} \mathcal{Q}_{IQ}
X^2H^2	$\mathcal{Q}_{QQ}^{(1)}$ \mathcal{Q}_{11}
$Q_{\rm HC}$ $Q_{\rm HW}$	$\mathcal{Q}_{qq}^{(1,1)} = \mathcal{Q}_{qq}^{(1,8)}$
$Q_{\rm HB}$ $Q_{\rm HWB}$	$\mathcal{Q}_{qq}^{(\overline{3},1)} \mathcal{Q}_{qq}^{(\overline{3},8)}$
$\psi^2 H^3$	$Q_{2}^{(1,1)} = Q_{2}^{(1,8)}$
$Q_{\rm tH}$ $Q_{\rm bH}$	$O_{q}^{(3,1)} = O_{q}^{(3,8)}$
$\psi^2 X H$	Qq Qq
Q_{tW} Q_{tB}	ψ^4 , $(\overline{R}R)(\overline{R}R)$
Q_{tG}	$\mathcal{Q}_{\mathrm{et}} \qquad \mathcal{Q}_{\mathrm{tt}}$
$\psi^2 H^2 D$	$\mathcal{Q}_{\mathrm{uu}}^{(1)} \qquad \mathcal{Q}_{\mathrm{uu}}^{(8)}$
$O^{(1)} O^{(3)}$	$\mathcal{Q}_{ ext{tu}}^{(1)} = \mathcal{Q}_{ ext{tu}}^{(8)}$
$\mathcal{Q}_{\mathrm{H}_{2}} = \mathcal{Q}_{\mathrm{H}_{2}}$	$\mathcal{Q}_{dd}^{(1)}$ $\mathcal{Q}_{dd}^{(8)}$
$O_{1}^{(1)}$ $O_{2}^{(3)}$	$\mathcal{O}^{(1)}$ $\mathcal{O}^{(8)}$
\mathcal{L}_{Hq} \mathcal{L}_{Hq}	$O^{(1)}$ $O^{(8)}$
\mathcal{Q}_{Hu} \mathcal{Q}_{Hd}	$\frac{\mathcal{L}_{td}}{\mathcal{L}_{td}} \frac{\mathcal{L}_{td}}{\mathcal{L}_{td}}$
Q _{HQ} Q _{HQ}	$\frac{\psi^{r},(LL)(KK)}{Q}$
$Q_{\rm Ht}$ $Q_{\rm Hb}$	\mathcal{Q}_{lu} \mathcal{Q}_{lt}
	$Q_{qu} \qquad Q_{qu}$
	$\mathcal{Q}_{Qu}^{(1)} \qquad \mathcal{Q}_{Qu}^{(8)}$
	$\mathcal{Q}_{qt}^{(1)} = \mathcal{Q}_{qt}^{(8)}$
	$\mathcal{O}_{1}^{(1)}$ $\mathcal{O}_{2}^{(8)}$
	$\mathcal{O}_{t}^{(1)}$ $\mathcal{O}_{t}^{(8)}$
	\mathcal{Q}_{qd} \mathcal{Q}_{qd}
	$\mathcal{Q}_{\mathrm{Qd}}^{(1)}$ $\mathcal{Q}_{\mathrm{Qd}}^{(8)}$
	10

Limits on individual WCs

- In each fit, all WCs set to 0 except the one being profiled
- No significant deviations observed

2-heavy-2-light sensitivity from a combination of tt and ttX

- Not all WCs can be constrained simultaneously due to degeneracies
- PCA allows to identify a basis of linear combinations of WCs
 - Hessian matrix of the measurement parameterized in terms of the WCs: $H_{ij} = \frac{\partial^2 \ln \mathcal{L}}{\partial c_i \partial c_j}$
 - Can be diagonalized to obtain uncorrelated linear combinations of WCs (principal components)
 - Principal components with eigenvalue > 0.04 are kept, the other principal components are set to 0
- Final set of 42 linear combinations is used, others are removed

CMS Preliminary	Basis Rotation, including tTX	
EV1 ($\lambda^{-1/2} = 0.001$)	0.1 0.3 0.3 0.8 -0.1 0.3 0.1	
V2 (A ¹¹⁰ = 0.002) 0.7 0.2 -0.5 -0.4 -0.1		
vo (x = 0.005)0.4 -0.10 - 0.30.1 -0.1 - 0.1 -0.1 - 0.1 -0.1 - 0.1 -0.1 -		
V5 (λ ^{-1/2} = 0.007) - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.5 - 0.4		
/6 (λ ^{-1/2} = 0.011) 0.3 0.1 0.1 0.5 0.6 0.5 0.3 0.2 0.1		
	0.1 <mark>-0.5</mark> 0.1 <mark>0.4</mark> -0.3 0.2 0.1 -0.1 0.1 <mark>-0.6</mark> -0.2	
		0.1
$EV2(\lambda = 0.002)$ 0.70.2-0.5-0	0.4	-0.1
		ωT
		E E
$O O = \pm \pm$	$\leq \langle z \rangle \langle z \rangle \langle z \rangle \langle z \rangle$	$()$ (\vec{z})
	$\overline{1}$	
1 (A ^{1/2} = 0.47) -0.1 0.1 -0.10.1 -0.10.1 -0.10.1	2 -0.1 -0.2	0
22 (λ ^{1/2} = 0.61)020.2 -0.2 0.2 0.1 0.1 -0.1 0.2 0.1 0.3 0.1		0
3 (λ ¹¹⁶ = 0.66)	-0.2 0.4 -0.4 0.2 -0.1-0.4 -0.1-0.1-0.2 0.2 0.6 0.1	
4 (A = 0.69) 0.2 5 (1 ⁻¹² 0.7 A = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2	-0.2-0.2 0.6 -0.10.5 -0.3 0.1 -0.3 0.1 -0.2 0.1	
7 ($\lambda^{-1/2}$ = 0.95) -0.2 00 0.1 0.1 -0.2 -0.2 -0.2 0.1 0.2		
28 (λ ^{-1/2} = 1.4)	-0.2 0.5 0.1 -0.2 0.1 0.1 -0.7 -0.1 -0.3 -0.2 -0.2	
29 (λ ^{-1/2} = 1.6)	3 0.1 <mark>0.3 0.1</mark>	
0(\(\lambda\) ^{1/2} = 1.8) 0.1 0.2 -0.2 0.1 0.1 -0.2 0.3 0.5 -0.3 0.7 -0.2	2 0.2 0.1	
31 (λ = 2.0) -0.2 -0.10.1 -0.10.2 -0.40.2 0.7 0.1 -0.10.3 -0.1-0.1 0.1	-0.1-0.1	0.5
$\frac{2}{2}\left(\lambda^{-2}=2,2\right)$ -0.1 0.4-0.50.3 0.2 0.1 -0.2-0.20.2 0.1 0.1 0.5	-0.1-0.2-0.1	-0.5
$a_{1}(1) = a_{2}$	0.1 -0.1 -0.1 0.0-0.3-0.3 0.3 -0.8	
$r_{1}(n^{2}-2n)$ $r_{2}(n^{2}-2n)$ $r_{2}(n^{2$	2 0.1 0.1 0.1	
36 ($\lambda^{-1/2} = 2.8$)	0.3 0.1 -0.2 0.1 0.4 0.3 -0.5 0.6	
37 ($\lambda^{-1/2} = 3.1$) 0.1 -0.1 -0.4 -0.1 0.2 0.1 -0.1 0.1 0.2 -0.2 0.1 0.1 0.1 0.3 0.2 0.1 -0.3 0.6 0.1 -0.3	30.1-0.1 0.1	
38 ($\lambda^{-1/2}$ = 3.4) 0.1 0.2 0.1 0.5 0.2 0.1 0.3 0.1 0.4 0.2 0.2	0.1 0.1 0.1 0.1 -0.1-0.1 <mark>0.1</mark> -0.3-0.3-0.3 0.1	
/38 (λ. ¹¹² = 3.4) 0.1 0.2 0.1 -0.5 0.2 0.1 0.3 0.1 0.4 -0.2 -0.2 /39 (λ. ¹¹² = 3.4) 0.1 0.2 0.1 0.1 0.2 0.1 0.3 -0.1 -0.1	0.1 0.1 0.1 0.1 -0.1-0.10.1-0.3-0.3 0.3 0.1 -0.2 -0.1 -0.1-0.10.1 0.1 -0.20.4 0.5 0.4 0.1 -0.1	
$\sqrt{38}$ ($\lambda^{-1/2} = 3.4$) 0.1 0.2 0.1 0.3 0.1 0.4 0.2 -0.2 $\sqrt{39}$ ($\lambda^{-1/2} = 3.5$) 0.1 0.2 0.1 0.1 0.2 0.4 0.1 0.2 0.4 $\sqrt{40}$ ($\lambda^{-1/2} = 3.5$) 0.1-0.2-0.2 0.8 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 -0.1 -0.1 0.0 -0.3 -0.3 0.3 0.1 -0.2 -0.1 -0.1 -0.1 -0.1 0.1 -0.2 0.4 0.5 0.4 0.1 -0.1 1 0.1 0.1 0.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.1 0.1 0.1 0.1 -0.1-0.10.1-0.3-0.3 0.3 0.1 -0.2 -0.1 -0.1-0.10.1 0.1 -0.2 0.4 0.5 0.4 0.1 -0.1 1 0.1 0.1 0.1 0.1 -0.1 <mark>0.4 0.5 -0.2 -0.6 -0.2 0.1 0.1 0.1 -0.2</mark>	

13

20 0 - g - g - g - g \$\$- 5° 5 5° 5° 5° 14

Principal component analysis: results

- Less reliant on a single measurement for each fit parameter
- Mix of sensitivity to each linear combination highlights proper treatment of correlations between measurements is needed

Principal component analysis: results

- Less reliant on a single measurement for each fit parameter
- Mix of sensitivity to each linear combination highlights proper treatment of correlations between measurements is needed

Combined EFT interpretation: what is next?

- There is a full new run of data available!
- Identify analyses to provide sensitivity to the 22 linear combinations that can't be constrained yet!
- How to improve? There are top inputs not (yet) included:
 - Processes with orthogonal signature:

ttγ

- single top (+ X) with forward jets
- With modelling advances: tt + HF, tWZ, triple tops
- Machine learning to increase EFT sensitivity

Conclusions

- New CMS result probing 4 sectors of the SM with EFT: CMS-PAS-SMP-24-003
- Limits on 64 WCs individually (CP-even, topU3I basis) and 42 linear combinations of WCs

Backup

Search for lepton flavor violation

- Predicted by many BSM models, EFT used to perform a model-independent search
- New analysis focuses on CLFV with a top quark, muon and **tau** lepton!
- Simulation with SmeftFR, events reweighed to match SMEFTSim predictions
- Signal extraction with a DNN split in 3 categories: Signal Single top, signal ttbar, background
- Limits for a Scalar, Vector and Tensor boson mediator

Search for violation of Lorentz invariance

Prefit Tt SM

V+jets

⊠tťV Data

- Motivated by String theory or Loop Quantum Gravity
- Only second result testing Lorentz-invariance with top quarks
- All Lorentz-violating operators added to the SM Lagrangian:

$$\mathcal{L}_{\rm SME} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_5 \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{\rm t} \bar{\psi} \psi$$

Differential cross section of tt as a function of sidereal time

Uncertainties and corrections need to be derived as a function of sidereal time!

Integrated luminosity and pileup show large dependence on sidereal time

Search for violation of Lorentz invariance

- Motivated by String theory or Loop Quantum Gravity
- Only second result testing Lorentz-invariance with top quarks
- All Lorentz-violating operators added to the SM Lagrangian:

$$\mathcal{L}_{\rm SME} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_5 \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{\rm t} \bar{\psi} \psi$$

• Differential cross section of tt as a function of sidereal time

Uncertainties and corrections need to be derived as a function of sidereal time!

• Integrated luminosity and pileup show large dependence on sidereal time

PLB 857 (2024) 138979

A reminder on EFT

Most often, we look at SMEFT, where symmetries of the SM are still valid

 $\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{d,i} rac{c_j^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_j^{(d)}$

- But this is no strict requirement! Operators can be introduced that lead to:
 - **CP** violation Ο
 - by Miriam Watson Lepton flavour universality violation Ο
 - Baryon number conservation violation Ο
 - Violation of Lorentz-invariance \bigcirc

New CMS result since last year:

Combined EFT interpretation of 4 sectors (CMS-PAS-SMP-24-003)

Definition of 64 WC's (1)

	X ³		
$\mathcal{Q}_{\mathrm{G}} = f^{abc} G^{a u}_{\mu} G^{b ho}_{ u} G^{c\mu}_{ ho}$	$\mathcal{Q}_{\mathrm{W}} = arepsilon^{ijk} W^{i u}_{\mu} W^{j ho}_{ u} W^{k\mu}_{ ho}$		
	H^4D^2		
$\mathcal{Q}_{\mathrm{H}\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$	$\mathcal{Q}_{\mathrm{HD}} = (D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$		
	X^2H^2		
$\mathcal{Q}_{\mathrm{HG}} = H^{\dagger} H G^{a}_{\mu\nu} G^{a\mu\nu}$ $\mathcal{Q}_{\mu\nu} = H^{\dagger} H W^{i} B^{\mu\nu}$	$\mathcal{Q}_{\mathrm{HW}} = H^{\dagger} H W^{i}_{\mu \nu} W^{i \mu \nu}$	$\mathcal{Q}_{\mathrm{HB}} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu}$	
$\approx HWB - HHWHWB$	2.2		
	$\psi^2 H^3$		
$\mathcal{Q}_{\mathrm{tH}} = (H^{\dagger}H)(QHt)$	$\mathcal{Q}_{bH} = (H^{\dagger}H)(QHb)$		
	$\psi^2 X H$		
$\mathcal{Q}_{\mathrm{tW}} = (\overline{Q}\sigma^{\mu u}t)\sigma^{i}\widetilde{H}W^{i}_{\mu u}$	$\mathcal{Q}_{tB} = (\overline{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$	$\mathcal{Q}_{tG} = (\overline{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	
$\psi^2 H^2 D$			
$\mathcal{Q}^{(1)}_{\mathrm{Hl}} = (H^{\dagger} i \overset{\leftrightarrow}{D_{\mu}} H) (\bar{l}_{p} \gamma^{\mu} l_{r})$	$\mathcal{Q}_{\mathrm{HI}}^{(3)} = (H^{\dagger} i \overset{\leftrightarrow}{D_{\mu}^{i}} H) (\bar{l}_{p} \sigma^{i} \gamma^{\mu} l_{r})$	$\mathcal{Q}_{\mathrm{He}} = (H^{\dagger} i \overset{\leftrightarrow}{D_{\mu}} H) (\overline{e}_{p} \gamma^{\mu} e_{r})$	
$\mathcal{Q}_{\mathrm{Hq}}^{(1)} = (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\overline{q} \gamma^{\mu} q)$	$\mathcal{Q}_{\mathrm{Hq}}^{(3)} = (H^{\dagger} i D^{i}_{\mu} H) (\overline{q} \sigma^{i} \gamma^{\mu} q)$	$\mathcal{Q}_{\mathrm{Hu}} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\overline{u} \gamma^{\mu} u)$	
$\mathcal{Q}_{\mathrm{Hd}} = (H^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} H) (\overline{d} \gamma^{\mu} d)$	$\mathcal{Q}_{\mathrm{HQ}}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D_{\mu}} H) (\overline{Q} \gamma^{\mu} Q)$	$\mathcal{Q}_{\mathrm{HQ}}^{(3)} = (H^{\dagger} i D^{i}_{\mu} H) (\overline{Q} \sigma^{i} \gamma^{\mu} Q)$	
$Q_{\rm Ht} = (H^{\dagger}i \overleftrightarrow{D_{\mu}} H)(\bar{t}\gamma^{\mu}t)$	$Q_{\rm Hb} = (H^{\dagger}i \widetilde{D_{\mu}}H)(\overline{b}\gamma^{\mu}b)$		

Definition of 64 WC's (2)

$\psi^4, (\overline{L}L)(\overline{L}L)$			
$\mathcal{Q}_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q} \gamma^\mu q)$	$\mathcal{Q}_{lq}^{(3)} = (\bar{l}_p \sigma^i \gamma_\mu l_r) (\bar{q} \sigma^i \gamma^\mu q)$	$\mathcal{Q}_{\mathrm{IQ}}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\overline{Q} \gamma^\mu Q)$	
$\mathcal{Q}_{\mathrm{lQ}}^{(3)} = (\bar{l}_p \sigma^i \gamma_\mu l_r) (\overline{Q} \sigma^i \gamma^\mu Q)$	$\mathcal{Q}_{QQ}^{(1)} = (\overline{Q}\gamma_{\mu}Q)(\overline{Q}\gamma^{\mu}Q)$	$\mathcal{Q}_{\mathrm{ll}} = (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	
$\mathcal{Q}_{\mathrm{qq}}^{(1,1)} = (\overline{q}\gamma_{\mu}q)(\overline{q}\gamma^{\mu}q)$	$\mathcal{Q}_{qq}^{(1,8)} = (\overline{q}T^a\gamma_\mu q)(\overline{q}T^a\gamma^\mu q)$	$\mathcal{Q}_{qq}^{(3,1)} = (\overline{q}\sigma^i\gamma_\mu q)(\overline{q}\sigma^i\gamma^\mu q)$	
$\mathcal{Q}_{qq}^{(3,8)} = (\bar{q}\sigma^i T^a \gamma_\mu q)(\bar{q}\sigma^i T^a \gamma^\mu q)$	$\mathcal{Q}_{Qq}^{(1,1)} = (\overline{Q}\gamma_{\mu}Q)(\overline{q}\gamma^{\mu}q)$	$\mathcal{Q}_{Qq}^{(1,8)} = (\overline{Q}T^a\gamma_\mu Q)(\overline{q}T^a\gamma^\mu q)$	
$\mathcal{Q}_{\mathrm{Qq}}^{(3,1)} = (\overline{Q}\sigma^{i}\gamma_{\mu}Q)(\overline{q}\sigma^{i}\gamma^{\mu}q)$	$\mathcal{Q}_{\mathrm{Qq}}^{(3,8)} = (\overline{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\overline{q}\sigma^{i}T^{a}\gamma^{\mu}q)$		
$\psi^4, (\overline{R}R)(\overline{R}R)$			
$Q_{\rm et} = (\bar{e}_p \gamma_\mu e_r) (\bar{t} \gamma^\mu t)$	$\mathcal{Q}_{\mathrm{tt}} = (\bar{t}\gamma_{\mu}t)(\bar{t}\gamma^{\mu}t)$	$\mathcal{Q}_{\rm uu}^{(1)} = (\overline{u}\gamma_{\mu}u)(\overline{u}\gamma^{\mu}u)$	
${\cal Q}^{(8)}_{ m uu} = (\overline{u}T^a\gamma_\mu u)(\overline{u}T^a\gamma^\mu u)$	$\mathcal{Q}_{\rm tu}^{(1)} = (\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$	$\mathcal{Q}_{ m tu}^{(8)} = (\overline{t}T^a\gamma_\mu t)(\overline{u}T^a\gamma^\mu u)$	
${\cal Q}_{ m dd}^{(1)} ~= (\overline{d} \gamma_\mu d) (\overline{d} \gamma^\mu d)$	$\mathcal{Q}_{\rm dd}^{(8)} = (\overline{d}T^a\gamma_\mu d)(\overline{d}T^a\gamma^\mu d)$	$\mathcal{Q}_{\mathrm{ud}}^{(1)} = (\overline{u}\gamma_{\mu}u)(\overline{d}\gamma^{\mu}d)$	
$\mathcal{Q}^{(8)}_{\mathrm{ud}} = (\overline{u}T^a\gamma_\mu u)(\overline{d}T^a\gamma^\mu d)$	$\mathcal{Q}_{\mathrm{td}}^{(1)} = (\overline{t}\gamma_{\mu}t)(\overline{d}\gamma^{\mu}d)$	$\mathcal{Q}_{\rm td}^{(8)} = (\bar{t}T^a\gamma_{\mu}t)(\bar{d}T^a\gamma^{\mu}d)$	
ψ^4 , $(\overline{L}L)(\overline{R}R)$			
$\mathcal{Q}_{\mathrm{lu}} = (\overline{l}_p \gamma_\mu l_r) (\overline{u} \gamma^\mu u)$	$Q_{\rm lt} = (\bar{l}_p \gamma_\mu l_r) (\bar{t} \gamma^\mu t)$	$\mathcal{Q}_{\mathrm{qu}}^{(1)} = (\overline{q}\gamma_{\mu}q)(\overline{u}\gamma^{\mu}u)$	
${\cal Q}^{(8)}_{ m qu} ~= (\overline{q}T^a\gamma_\mu q)(\overline{u}T^a\gamma^\mu u)$	$\mathcal{Q}_{Qu}^{(1)} = (\overline{Q}\gamma_{\mu}Q)(\overline{u}\gamma^{\mu}u)$	$\mathcal{Q}_{\mathbf{Q}\mathbf{u}}^{(8)} = (\overline{Q}T^a\gamma_\mu Q)(\overline{u}T^a\gamma^\mu u)$	
${\cal Q}_{ m qt}^{(1)} = (ar q \gamma_\mu q) (ar t \gamma^\mu t)$	$\mathcal{Q}_{qt}^{(8)} = (\overline{q}T^a\gamma_\mu q)(\overline{t}T^a\gamma^\mu t)$	$\mathcal{Q}_{\text{Qt}}^{(1)} = (\overline{Q}\gamma_{\mu}Q)(\overline{t}\gamma^{\mu}t)$	
$\mathcal{Q}_{\mathrm{Qt}}^{(8)} = (\overline{Q}T^a\gamma_\mu Q)(\overline{t}T^a\gamma^\mu t)$	$\mathcal{Q}_{\rm qd}^{(1)} = (\overline{q}\gamma_{\mu}q)(\overline{d}\gamma^{\mu}d)$	$\mathcal{Q}_{\mathrm{qd}}^{(8)} = (\overline{q}T^a\gamma_\mu q)(\overline{d}T^a\gamma^\mu d)$	
${\cal Q}^{(1)}_{ m Qd} ~= (\overline{Q}\gamma_\mu Q)(\overline{d}\gamma^\mu d)$	$\left \begin{array}{c} \mathcal{Q}_{\mathrm{Qd}}^{(8)} &= (\overline{Q}T^a\gamma_{\mu}Q)(\overline{d}T^a\gamma^{\mu}d) \end{array} \right.$		