

Measurements and searches for *tttt* production with ATLAS and CMS experiments Quake Qin (IFAE) on behalf of the ATLAS and CMS collaborations

<u>17th International Workshop on Top Quark Physics</u> (2024)

Funded by the European Union

MARIE SKŁODOWSKA-CURIE ACTIONS

Introduction

- $t\bar{t}t\bar{t}$ production is a rare process, in 13 TeV pp collisions:
 - NLO QCD+EW: $11.97_{-21\%}^{+18\%}$ fb (<u>R. Frederix, D. Pagani, M. Zaro</u>)
 - adding NLL' resummation: $13.37_{-11.4\%}^{+3.6\%}$ fb (M. Beekveld, A. Kulesza, L. Valero)
- and a number of four-fermion operators in EFT

Leading:
$$\mathcal{O}(\alpha_S^4)$$

State of the art

Measurements and searches in all channels lacksquare

	<u>LH</u>	<u>C Top WG Summ</u>	ary
ATLAS+CMS Preliminary	/	√s = 13 TeV, Novemb	ber 2
$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5} \text{ (scale) fb} \qquad \sigma_{t\bar{t}t\bar{t}}$ $JHEP 02 (2018) 031 \qquad arXiv$ $NLO(QCD+EW) \qquad NLC$	= 13.4 ^{+1.0} (scale+ v:2212.03259 D(QCD+EW)+NLL'	PDF) fb + + + + + + + + + + + + + + + + + +	
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118		$\sigma_{t\bar{t}t\bar{t}} \pm tot. (\pm stat. \pm syst.)$ 26 $^{+17}_{-15}$ (±8 $^{+15}_{-13}$) fb	Ob 1.
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	┠┼╶╤╴┼╌┨	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.
CMS, 1L/2LOS/all-had, 138 fb ⁻¹ PLB 844 (2023) 138076	┠╌┼──╋──┼─┨	36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb	3.
CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	▼ ∦	17±5 (±4 ±3) fb	4.
ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496	┠┼╌═╾┼┨	22.5 ^{+6.6} _{-5.5} (^{+4.7 +4.6} _{-4.3 -3.4}) fb	6.
CMS, 2LSS/3L, 138 fb ⁻¹ PLB 847 (2023) 138290	┣╌━╶╢	17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb	5.
0	20 40	60 80 100 σ _{tītī} [fb]	J

State of the art

Measurements and searches in all channels

Observation in 2LSS/ML by <u>ATLAS</u> and <u>CMS</u>

State of the art

- Measurements and searches in all channels
- BSM searches
 - ATLAS
 - <u>1L/2LOS</u> channels (submitted to EPJC) ullet
 - <u>2LSS/ML</u> channels (JHEP 07 (2023) 203)
 - resonance search using 1L events (EPJC 84 (2024) 157)
 - CMS ullet
 - dedicated search <u>using partial Run 2 data</u> \bullet (EPJC 77 (2017) 578)
 - interpretation of previous <u>2LSS/ML results</u> (EPJC 80 (2020) 75) to constrain heavy resonances
 - Reinterpretation of EFT and Yukawa coupling in various ATLAS/CMS measurements

- Re-analysis of Run 2 data
- Both ATLAS and CMS used 2LSS/ML channel
- Benefited from the improved lepton/b-jet identification and selection

EPJC 83 (2023) 6

81	
<u> </u>	-
	-
8)	
ر ا و ا	1
10)	
	-
	1
	1
	1
	-
	-
	-
	-
	-
	1
	F
]
	1
	1
	-
	-
	-
1.0	-
1	
י חסי	.0
	y

- 2LSS/ML channels have a complicated background composition
- **Reducible** background mostly from $t\bar{t}$
 - events with non-prompt/fake and charge mis-identified (QmisID) leptons \bullet
- **Irreducible** background: $t\bar{t}W/t\bar{t}Z/t\bar{t}H$

- Non-prompt/fake
 - CMS used classic data-driven method (loose-to-tight ratio)
 - ATLAS had a finer classification:
 - HFe, HFµ, material conversion, internal photon conversion
 - each with a dedicated CR and free-floating normalisation
- $t\bar{t}W$
 - ATLAS: NLO QCD+EW, data-driven N_{jets} distribution (JHEP 10 (2012) 162) $R_{(j+1)/j} = \frac{N_{j+1}}{N_j} = a_0 + \frac{a_1}{a_2 + j} \qquad (a_2 = 0)$
 - CMS: NLO QCD MC, additional uncertainties based on JHEP 11 (2021) 029
 - free-floating normalisation

- Key improvement from signal-background discrimination strategy
- **ATLAS** use a single SR: ≥ 6 jets, ≥ 2 b-tagged jets, $H_T > 500 \text{ GeV}$ (scalar sum of lepton/jet p_T)
- Graph Neural Networks (GNN) for S-B separation
 - increased weights in training for ttW with ≥ 7 jets

CMS has a more complicated design of the SR ullet

- lacksquarejets/b-jets and H_T
- ulletand non-prompt+QmisID

ttt production has an important role (back up slide)

11

BSM Interpretation – Yukawa coupling

Top-Yukawa coupling κ_t and **CP** mixing

- ATLAS: using the observation results, observed (expected) 95% CL limit $|\kappa_r| < 1.9$ (1.6) CMS: using the <u>all-had/1L/2LOS/2LSS/ML combination</u> (best-fit μ =1.4)

BSM Interpretation – EFT

- heavy-heavy type four-fermion operators:
 - 5 operators with different coupling structures
 - 4 degrees of freedoms

ATLAS observation results

Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
O_{OO}^1	[-2.5, 3.2]	[-4.0, 4.5]
$O_{Ot}^{\tilde{1}\tilde{z}}$	[-2.6, 2.1]	[-3.8, 3.4]
$ ilde{O_{tt}^1}$	[-1.2, 1.4]	[-1.9, 2.1]
O_{Qt}^8	[-4.3, 5.1]	[-6.9, 7.6]

 $\mathcal{O}_{t\bar{t}}^{1} = (\bar{t}_{R}\gamma^{\mu}t_{R})(\bar{t}_{R}\gamma_{\mu}t_{R})$ $\mathcal{O}_{OO}^1 = (\bar{Q}_{\rm L} \gamma^{\mu} Q_{\rm L}) (\bar{Q}_{\rm L} \gamma_{\mu} Q_{\rm L})$ $\mathcal{O}_{Ot}^1 = (\bar{Q}_{\rm L} \gamma^{\mu} Q_{\rm L}) (\bar{t}_{\rm R} \gamma_{\mu} t_{\rm R})$ $\mathcal{O}_{Ot}^{8} = (\bar{Q}_{\mathrm{L}} \gamma^{\mu} T^{\mathrm{A}} Q_{\mathrm{L}}) (\bar{t}_{\mathrm{R}} \gamma_{\mu} T^{\mathrm{A}} t_{\mathrm{R}})$ $\mathcal{O}_{OO}^8 = (\bar{Q}_{\rm L} \gamma^{\mu} T^{\rm A} Q_{\rm L}) (\bar{Q}_{\rm L} \gamma_{\mu} T^{\rm A} Q_{\rm L})$

 $t_{\rm R}$: right-handed weak isospin singlet $Q_{\rm L}$: left-handed weak isospin doublet

CMS <u>1L/2LOS channel</u> + <u>2LSS/ML channel</u> using 35.9 fb-1 Run 2 data (2018) - best-fit $\mu = 1.4^{+1.2}_{-1.0}$

Operator	Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV ⁻²)
\mathcal{O}_{tt}^1	[-2.0, 1.9]	[-2.2, 2.1]
$\mathcal{O}_{\mathrm{QQ}}^1$	[-2.0, 1.9]	[-2.2, 2.0]
$\mathcal{O}^1_{\mathrm{Qt}}$	[-3.4, 3.3]	[-3.7, 3.5]
\mathcal{O}_{Qt}^{8}	[-7.4, 6.3]	[-8.0, 6.8]

BSM Interpretation – EFT

Higgs oblique parameter \hat{H} modifies the propagation of the SM Higgs boson

$$\mathscr{L}_{\hat{H}} = \frac{\hat{H}}{m_h^2} |D^{\mu} D_{\mu} H|^2$$

- Better sensitivity via $t\bar{t}t\bar{t}$ production than on-shell Higgs production in other channels
- 95% CL upper limit
 - CMS interpretation of the previous 2LSS/ML results (best-fit $\mu = 1.0$) \bullet
 - $\hat{H} < 0.12$
 - ATLAS interpretation of the observation result ullet
 - $\hat{H} < 0.23$ (0.11) observed (expected)

C. Englert, G. F. Giudice, A. Greljo, M. McCullough

Search for 2HDM $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ JHEP 07 (2023) 203

- ATLAS 2LSS/ML channel: similar strategy as the observation analysis
- Additional BDT to separate BSM vs SM *tttt*

- ATLAS 1L/2LOS channel (arXiv:2408.17164, submitted to EPJC)
- Events categorised using number of jets and various b-tagging requirements
- The b-tagging requirements enhance separation between different $t\bar{t}$ subcategories: $t\bar{t}$ +>1b, $t\bar{t}$ +>1c and $t\bar{t}$ +light
 - using particle-level jets matched to b/c hadrons
 - $t\bar{t} + \geq 1b$: $t\bar{t} + b/B/bb/\geq 3b$
 - according to number of jets matched to b-hadrons
 - b vs. B: a single vs. a pair of b-hadrons matched to a particle-level jet

3bL = Light-flavour enriched 3bH = Heavy-flavour enriched 3bV = Validation region

- Data-driven corrections on $t\bar{t}$ +jets background
 - \bullet

- GNN to optimise the signal-background discrimination
 - A list of higher-level variables (sum of jet b-tag scores, H_T , ...) included as global features
 - helps with the validation of the background modelling
 - the training converge faster and less prone to training statistics
- In final fit SM $t\bar{t}t\bar{t}$ cross-section is fixed to the prediction
- Combined with the 2LSS/ML results
 - 2LSS/ML drives the sensitivity
 - 1L/2LOS introduces a larger improvement at high masses

• More on 2HDM and scalar search by Eleanor

Summary

- $t\bar{t}t\bar{t}$ production observed by ATLAS and CMS experiments
 - both experiments outperformed the earlier projection
 - measured cross section slightly higher than the prediction
 - results can still benefit from more data
- Direct BSM searches and reinterpretation of the measurements
 - nothing significant so far not the end of the story!
- Run 3 with $\sqrt{s}=13.6$ TeV 20% larger $t\bar{t}t\bar{t}$ cross section
 - $15.82^{+1.5\%}_{-11.6\%}$ fb at 13.6 TeV (<u>M. Beekveld, A. Kulesza, L. Valero</u>)
 - independent data to check against what we saw in Run 2
 - much improved BSM search sensitivity when combining Run 2 + Run 3

s.

Significance

BACKUP

R. Frederix, D. Pagani, M. Zaro

$\sigma_{(N)LO_i}/\sigma_{LO_1} [\%]$

$\delta [\%]$	$\mu = H_T/8$	$\mu = H_T/4$	$\mu = 1$
LO_2	-26.0	-28.3	-3
LO_3	32.6	39.0	45
LO_4	0.2	0.3	0
LO_5	0.02	0.03	0.
NLO_1	14.0	62.7	10
NLO_2	8.6	-3.3	—1
NLO_3	-10.3	1.8	16
NLO_4	2.3	2.8	3
NLO_5	0.12	0.16	0.
NLO_6	< 0.01	< 0.01	< (
$NLO_2 + NLO_3$	-1.7	-1.6	0

The role of *ttt*

- Strong correlation with $t\bar{t}t\bar{t}$ seen by both experiments
 - tttW indistinguishable from $t\bar{t}t\bar{t}$ •
- <u>NLO prediction</u> from G. Durieux: 2 fb ±15%
 - higher order and EW correlations largely cancel (apart from NLO QCD)
- need better modelling and dedicated separation strategy in future analyses

CMS: all-had/1L/2LOS channels

- 1L and 2LOS channels
 - SR/CR defined using number of leptons, jets and b-jets
 - 1L also uses the number of top candidates, identified using a BDT-based resolved top tagger
 - Background estimate relies on profile likelihood fit to CR+SR
 - S-B separation: 1L BDT; 2LOS H_T (scalar sum of jet p_T)
- All-had channel: first $t\bar{t}t\bar{t}$ analysis using this channel
 - SR/CR/VR defined using number of jets, b-jets
 - Each split by number of resolved/boosted top candidates and $H_{\rm T}$
 - data-driven background estimate extrapolated from CR to SR
 - ABCD method for normalisation
 - DDN trained to predict the shape
 - BDT used for S-B separation

d fit to CR+SR of jet p_T)

All-had/1L/2LOS channel

- Similar strategy used by ATLAS and CMS
 - \bullet
 - Boosted Decision Tree (BDT) for signal-background separation \bullet
- Compatible results from different channels and between ATLAS and CMS

categorise events according to number of leptons, jets, b-jets, and boosted top candidates

ttt production

- An important background for $t\bar{t}t\bar{t}$ potentially a signal very soon
 - two different groups of processes: tttW (dominant) and tttj (subleading)
- 4 vs 5 flavour scheme
- For tttW, interference with tttt already at LO when using 4FS; NLO when using 5FS
 - difficult to separate from *tttt*
- NLO QCD prediction from <u>Gauthier</u>: 2 fb $^{+13\%}_{-12\%}$ (scales) ±5.9% (pdf)
- On-going studies for further improvement (Hesham El Faham, Gauthier, et al)
 - choice of the theorist HT/8 -> gives minimal scale variation
 - inclusion of NLO EW corrections

						<u>Gauthier</u>
Cross section [fb]	NLO1 (+LO1)	LO1	LO2	LO3	LO QCD+EW	NLO QCD + LO EW
tttj+	0.2	0.11	-0.088	0.098	0.12	0.21
tttj-	0.44	0.24	-0.19	0.24	0.29	0.49
tttW+	0.52	0.29	-0.19	0.33	0.43	0.66
tttW-	0.52	0.29	-0.19	0.33	0.43	0.66
Total	1.68	0.93	-0.658	0.998	1.27	2.02

Observation of *tttt* **production**

- Using events in 2LSS/ML channel
 - requiring ≥ 2 SS leptons:
 - leading lepton $p_{\rm T}$ > 28 GeV
 - subleading leptons $p_{\rm T}$ > 15 GeV
 - jets $p_{\rm T}$ > 20 GeV
- Simple SR selection
 - \geq 6 jets, \geq 2 b-tagged jets (77% eff.), $H_{\rm T}$ > 500 GeV
 - Selected
 - 38 signal events (pre-fit)
 - 482 data events

EPJC 83 (2023) 496

Background estimate

- Combining MC and data-driven techniques
- Reducible background mainly from $t\bar{t}$ (~20%)
 - events with charge mis-identified leptons (QmisID)
 - data-driven QmisID rates using $Z \rightarrow ee$ events ~($p_{\rm T}, \eta$)
 - events with fake/non-prompt leptons
 - material conversion, low m_{γ^*} , HFe, HFµ
 - using MC templates, with free floating normalisation, with dedicated CR for each
- Irreducible background (~60%)
 - $t\bar{t}W$: MC with data-driven N-jets (JHEP10(2012)162)

$$R_{(j+1)/j} = \frac{N_{j+1}}{N_j} = a_0 + \frac{a_1}{a_2 + j} \qquad (a_2 = 0)$$

- fit the N-jets distributions separately in $t\bar{t}W^+$ and $t\bar{t}W^-$ regions
- Other backgrounds from simulations
- Profile likelihood fit with all CRs and SR
 - determine background and signal simultaneously

Path to the observation - ATLAS

- Combining MC and data-driven techniques
- Reducible background
 - events with fake/non-prompt leptons
 - using shape from MC, with free floating normalisation in the profiling, with dedicated CR for each
 - QmisID: data-driven QmisID rates using Drell-Yan events, parametrised as ($p_{\rm T}, \eta$)
- Irreducible background (~60%)
 - $t\bar{t}W$: MC includes NLO QCD + EW (t-W scattering) contributions
 - with data-driven N-jets (JHEP10(2012)162) \bullet

$$R_{(j+1)/j} = \frac{N_{j+1}}{N_j} = a_0 + \frac{a_1}{a_2 + j} \qquad (a_2 = 0)$$

- fit the N-jets distributions separately in $t\bar{t}W^+$ and $t\bar{t}W^-$ regions
- Other backgrounds from simulations

- Trained in the signal regions
 - ≥7 jets

Results - SM *tītī* cross section

Systematics

- Stat. dominated measurement
 - $t\bar{t}W$ estimate also depend on stat.
- $t\bar{t}t\bar{t}$ modelling uncertainties
 - aMC@NLO+Pythia8 vs. Sherpa
 - aMC@NLO+Pythia8 vs +Herwig7
 - both aMC@NLO and Sherpa samples are LO QCD+EW with NLO QCD

Uncertainty source	$\Delta \sigma$	[fb]	$\Delta \sigma$
Signal modelling			
<i>tītī</i> generator choice	+3.7	-2.7	+17
$t\bar{t}t\bar{t}$ parton shower model	+1.6	-1.0	+7
Other <i>ttttt</i> modelling	+0.8	-0.5	+4
Background modelling			
$t\bar{t}H$ +jets modelling	+0.9	-0.7	+4
$t\bar{t}W$ +jets modelling	+0.8	-0.8	+4
$t\bar{t}Z$ +jets modelling	+0.5	-0.4	+2
Other background modelling	+0.5	-0.4	+2
Non-prompt leptons modelling	+0.4	-0.3	+2
<i>tīt</i> modelling	+0.3	-0.2	+1
Charge misassignment	+0.1	-0.1	+0
Instrumental			
Jet flavour tagging (<i>b</i> -jets)	+1.1	-0.8	+5
Jet uncertainties	+1.1	-0.7	+5
Jet flavour tagging (light-flavour jets)	+0.9	-0.6	+4
Jet flavour tagging (<i>c</i> -jets)	+0.5	-0.4	+2
Simulation sample size	+0.4	-0.3	+2
Other experimental uncertainties	+0.4	-0.3	+2
Luminosity	+0.2	-0.2	+1
Total systematic uncertainty	+4.6	-3.4	+20
Statistical			
Intrinsic statistical uncertainty	+4.2	-3.9	+19
$t\bar{t}W$ +jets normalisation and scaling factors	+1.2	-1.1	+6
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.4	-0.3	+2
Total statistical uncertainty	+4.7	-4.3	+2]
Total uncertainty	+6.6	-5.5	+29

ATLAS 1L/2LOS channel (arXiv:2408.17164, submitted to EPJC)

Events categorised using number of jets and various b-tagging ulletrequirements

3bL = Light-flavour enriched 3bH = Heavy-flavour enriched 3bV = Validation region

Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	N_b^8
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

2LOS channel

Variable	Description
$\sum_{i \in [1,6]} \text{pcb}_i$	Sum of the pcb scores of the six
H_{T}	$p_{\rm T}$ sum of all reconstructed lepto
N _{jets}	Jet multiplicities
$H_{\mathrm{T}}^{\mathrm{ratio}}$	$p_{\rm T}$ sum of the four leading jets in
$dR_{ii}^{\text{avg.}}$	Average ΔR across all jet pairs
$m_{\mathrm{T}}^{\check{W}}$	W-boson transverse mass calcula
ΔR_{bb}^{\min}	Minimum ΔR between any pair of
$\Delta R_{\ell b}^{\min}$	Minimum ΔR between any pair of
$m_{bbb}^{avg.}$	Average invariant mass of all trip
$m_{jj}^{\text{avg.}}$	Average invariant mass of all jet-
$\sum d_{12}$	Sum of the first k_t splitting scale
$\sum d_{23}$	Sum of the second k_t splitting sc
N _{LR-jets}	Number of large-R jets with a ma
Centrality	$\sum_i p_{\rm T}^i / \sum_i E_i$ where the sums are
$m_{\ell\ell}$	Invariant mass of the two leptons

jets with the highest scores ons and jets

n $p_{\rm T}$ divided by the $p_{\rm T}$ sum of the remaining jets

ated using the lepton four-momenta and $E_{\rm T}^{\rm miss}$ (1L only) of jets *b*-tagged at the 70% OP

of lepton and jet b-tagged at the 70% OP

plets of jets b-tagged at the 70% OP

-triplets with an angular separation of $\Delta R < 3$

e d_{12} over all large-R jets

cale d_{12} over all large-R jets

ass greater than 100 GeV

e performed over all reconstructed jets and leptons s (2LOS only)

$$O(\mathbf{x}) = P(\text{data}|\mathbf{x}) = \frac{\alpha_{\text{data}}P_{\text{data}}(\mathbf{x})}{\alpha_{\text{data}}P_{\text{data}}(\mathbf{x}) + \alpha_{\text{sim}}P_{\text{sim}}(\mathbf{x})},$$

Exponential loss function to help with the training in low-stat regime •

$$\mathcal{L} = P_{\text{data}} e^{-\frac{O(\mathbf{x})}{2}} + P_{\text{sim}} e^{\frac{O(\mathbf{x})}{2}}.$$

- after minimisation $\mathscr{L} = 0$
- resulting event weight •

$$w(\mathbf{x}) = e^{O(\mathbf{x})}.$$

$$w(\mathbf{x}) = \frac{\alpha_{\text{data}} P_{\text{data}}(\mathbf{x})}{\alpha_{\text{sim}} P_{\text{sim}}(\mathbf{x})} = \frac{O(\mathbf{x})}{1 - O(\mathbf{x})}.$$

Search for heavy resonances - H/AJHEP 07 (2023) 203 tanβ - Observed Consider 2HDM signal in the alignment limit $sin(\beta - \alpha) \sim 1$ ATLAS ---- Observed $\pm 1\sigma_{theory}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 2.5 **BSM 4tops SSML** — – Expected • 400 - 1000 GeV, with 100 GeV steps Expected $\pm 1\sigma_{experiment}$ 2 Scalar+pseudo-scalar mass width set to 5 - 30 GeV, consistent with $\tan\beta = 1$ 95% CL upper limit on xsec x BR ~10 fb • SM $t\bar{t}t\bar{t}$ normalised to 12 fb, with 20% uncertainty on xsec, 0.5 plus other modelling uncertainties 0.5 0.6 0.7 0.8 0.9 0.4 $m_{A} = m_{H} [TeV]$ З tanβ Observed limit ATLAS Observed ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ---- Observed $\pm 1\sigma_{theory}$ •••••• Expected limit $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 2.5 **BSM 4tops SSML BSM 4tops SSML** — – Expected ± 1σ $\sigma(pp \rightarrow t\bar{t}H/A) \times B(H/A)$ Expected $\pm 1\sigma_{experiment}$ $\pm 2\sigma$ 2 Theory: Scalar tanβ=0.5 10 — tanβ=1.0 1.5 0.5 0.9 0.5 0.6 0.7 0.8 0.9

m_{H/A} [TeV]

